ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT

SIMON J. SMITH

Department of Mathematics and Statistics
La Trobe University, P.O. Box 199, Bendigo
Victoria 3552, Australia
EMail: s.smith@latrobe.edu.au

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

31 July, 2008
06 February, 2009
Q.I. Rahman

41A05, 41A10.
Interpolation, Lagrange interpolation, Weighted interpolation, Circular majorant, Projection norm, Lebesgue constant, Chebyshev polynomial.

Denote by L_{n} the projection operator obtained by applying the Lagrange interpolation method, weighted by $\left(1-x^{2}\right)^{1 / 2}$, at the zeros of the Chebyshev polynomial of the second kind of degree $n+1$. The norm $\left\|L_{n}\right\|=\max _{\|f\|_{\infty} \leq 1}\left\|L_{n} f\right\|_{\infty}$, where $\|\cdot\|_{\infty}$ denotes the supremum norm on $[-1,1]$, is known to be asymptotically the same as the minimum possible norm over all choices of interpolation nodes for unweighted Lagrange interpolation. Because the projection forces the interpolating function to vanish at ± 1, it is appropriate to consider a modified projection norm $\left\|L_{n}\right\|_{\psi}=\max _{|f(x)| \leq \psi(x)}\left\|L_{n} f\right\|_{\infty}$, where $\psi \in C[-1,1]$ is a given function (a curved majorant) that satisfies $0 \leq \psi(x) \leq 1$ and $\psi(\pm 1)=0$. In this paper the asymptotic behaviour of the modified projection norm is studied in the case when $\psi(x)$ is the circular majorant $w(x)=\left(1-x^{2}\right)^{1 / 2}$. In particular, it is shown that asymptotically $\left\|L_{n}\right\|_{w}$ is smaller than $\left\|L_{n}\right\|$ by the quantity $2 \pi^{-1}(1-\log 2)$.

Weighted Interpolation

 of FunctionsSimon J. Smith

```
vol. 10, iss. 2, art. 33, 2009
```

Title Page

Contents

Page 1 of 20
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Contents

1 Introduction 3
2 Some Lemmas 7
3 Proof of the Theorem 17
Weighted Interpolation of Functions

Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents
44

Page 2 of 20
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

Suppose $n \geq 1$ is an integer, and for any s, let $\theta_{s}=\theta_{s, n}=(s+1) \pi /(n+2)$. For $i=0,1, \ldots, n$, put $x_{i}=\cos \theta_{i}$. The x_{i} are the zeros of the Chebyshev polynomial of the second kind of degree $n+1$, defined by $U_{n+1}(x)=[\sin (n+2) \theta] / \sin \theta$ where $x=\cos \theta$ and $0 \leq \theta \leq \pi$. Also let w be the weight function $w(x)=\sqrt{1-x^{2}}$, and denote the set of all polynomials of degree n or less by P_{n}.

In the paper [5], J.C. Mason and G.H. Elliott introduced the interpolating projection L_{n} of $C[-1,1]$ on $\left\{w p_{n}: p_{n} \in P_{n}\right\}$ that is defined by

$$
\begin{equation*}
\left(L_{n} f\right)(x)=w(x) \sum_{i=0}^{n} \ell_{i}(x) \frac{f\left(x_{i}\right)}{w\left(x_{i}\right)}, \tag{1.1}
\end{equation*}
$$

where $\ell_{i}(x)$ is the fundamental Lagrange polynomial

$$
\begin{equation*}
\ell_{i}(x)=\prod_{\substack{k=0 \\ k \neq i}}^{n} \frac{x-x_{k}}{x_{i}-x_{k}}=\frac{U_{n+1}(x)}{U_{n+1}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)} . \tag{1.2}
\end{equation*}
$$

Mason and Elliott studied the projection norm

$$
\left\|L_{n}\right\|=\max _{\|f\|_{\infty} \leq 1}\left\|L_{n} f\right\|_{\infty}
$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm $\|g\|_{\infty}=\max _{-1 \leq x \leq 1}|g(x)|$, and obtained results that led to the conjecture

$$
\begin{equation*}
\left\|L_{n}\right\|=\frac{2}{\pi} \log n+\frac{2}{\pi}\left(\log \frac{4}{\pi}+\gamma\right)+o(1) \quad \text { as } n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

where $\gamma=0.577 \ldots$ is Euler's constant. This result (1.3) was proved later by Smith [8].

Weighted Interpolation of Functions

Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 3 of 20
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: l443-575b

As pointed out by Mason and Elliott, the projection norm for the much-studied Lagrange interpolation method based on the zeros of the Chebyshev polynomial of the first kind $T_{n+1}(x)=\cos (n+1) \theta$, where $x=\cos \theta$ and $0 \leq \theta \leq \pi$, is

$$
\frac{2}{\pi} \log n+\frac{2}{\pi}\left(\log \frac{8}{\pi}+\gamma\right)+o(1)
$$

(See Luttmann and Rivlin [4] for a short proof of this result based on a conjecture that was later established by Ehlich and Zeller [3].) Therefore the norm of the weighted interpolation method (1.1) is smaller by a quantity asymptotic to $2 \pi^{-1} \log 2$. In addition, (1.3) means that L_{n}, which is based on a simple node system, has (to within $o(1)$ terms) the same norm as the Lagrange method of minimal norm over all possible choices of nodes - and the optimal nodes for Lagrange interpolation are not known explicitly. (See Brutman [2, Section 3] for further discussion and references on the optimal choice of nodes for Lagrange interpolation.)

Now, an immediate consequence of (1.1) is that for all $f,\left(L_{n} f\right)(\pm 1)=0$. Thus L_{n} is particularly appropriate for approximations of those f for which $f(\pm 1)=0$. This leads naturally to a study of the norm

$$
\begin{equation*}
\left\|L_{n}\right\|_{\psi}=\max _{|f(x)| \leq \psi(x)}\left\|L_{n} f\right\|_{\infty}, \tag{1.4}
\end{equation*}
$$

where $\psi \in C[-1,1]$ is a given function (a curved majorant) that satisfies $0 \leq$ $\psi(x) \leq 1$ and $\psi(\pm 1)=0$. Evidently $\left\|L_{n}\right\|_{\psi} \leq\left\|L_{n}\right\|$. In this paper we will look at the particular case when $\psi(x)$ is the circular majorant $w(x)=\sqrt{1-x^{2}}$. Note that studies of this nature were initiated by P. Turán in the early 1970s, in the context of obtaining Markov and Bernstein type estimates for p^{\prime} if $p \in P_{n}$ satisfies $|p(x)| \leq w(x)$ for $x \in[-1,1]$ - see Rahman [6] for a key early paper in this area.

Our principal result is the following theorem, the proof of which will be developed in Sections 2 and 3.

Weighted Interpolation of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 4 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 1.1. The modified projection norm $\left\|L_{n}\right\|_{w}$, defined by (1.4) with $w(x)=$ $\sqrt{1-x^{2}}$, satisfies

$$
\begin{equation*}
\left\|L_{n}\right\|_{w}=\frac{2}{\pi} \log n+\frac{2}{\pi}\left(\log \frac{8}{\pi}+\gamma-1\right)+o(1) \quad \text { as } n \rightarrow \infty . \tag{1.5}
\end{equation*}
$$

Observe that (1.5) shows $\left\|L_{n}\right\|_{w}$ is smaller than $\left\|L_{n}\right\|$ by an amount that is asymptotic to $2 \pi^{-1}(1-\log 2)$.

Before proving the theorem, we make a few remarks about the method to be used. By (1.1),

$$
\left\|L_{n}\right\|_{w}=\max _{-1 \leq x \leq 1}\left(w(x) \sum_{i=0}^{n}\left|\ell_{i}(x)\right|\right)
$$

Since the x_{i} are arranged symmetrically about 0 , then $w(x) \sum_{i=0}^{n}\left|\ell_{i}(x)\right|$ is even, and so by (1.2),

$$
\left\|L_{n}\right\|_{w}=\max _{0 \leq \theta \leq \pi / 2} F_{n}(\theta)
$$

where

$$
\begin{equation*}
F_{n}(\theta)=\frac{|\sin (n+2) \theta|}{n+2} \sum_{i=0}^{n} \frac{\sin ^{2} \theta_{i}}{\left|\cos \theta-\cos \theta_{i}\right|} \tag{1.6}
\end{equation*}
$$

Figure 1 shows the graph of a typical $F_{n}(\theta)$ if n is even, and it suggests that the local maximum values of $F_{n}(\theta)$ are monotonic increasing as θ moves from left to right, so that the maximum of $F_{n}(\theta)$ occurs close to $\pi / 2$. For n odd, similar graphs suggest that the maximum occurs precisely at $\pi / 2$. These observations help to motivate the strategy used in Sections 2 and 3 to prove the theorem - the approach is akin to that used by Brutman [1] in his investigation of the Lebesgue function for Lagrange interpolation based on the zeros of Chebyshev polynomials of the first kind.

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 5 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Figure 1: Plot of $F_{12}(\theta)$ for $0 \leq \theta \leq \pi / 2$

Weighted Interpolation of Functions

Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

44

Page 6 of 20
Go Back
\qquad

品
full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Some Lemmas

This section contains several lemmas that will be needed to prove the theorem. The first such lemma provides alternative representations of the function $F_{n}(\theta)$ that was defined in (1.6).

Lemma 2.1. If j is an integer with $0 \leq j \leq n+1$, and $\theta_{j-1} \leq \theta \leq \theta_{j}$, then

$$
\begin{equation*}
F_{n}(\theta)=(-1)^{j} \frac{\sin (n+2) \theta}{n+2}\left(\sum_{i=0}^{j-1} \frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta}+\sum_{i=j}^{n} \frac{\sin ^{2} \theta_{i}}{\cos \theta-\cos \theta_{i}}\right) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
=(-1)^{j}\left[\sin (n+1) \theta+\frac{2 \sin (n+2) \theta}{n+2} \sum_{i=0}^{j-1} \frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta}\right] \tag{2.2}
\end{equation*}
$$

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 7 of 20

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We now show that on the interval $[0, \pi / 2]$, the values of $F_{n}(\theta)$ at the midpoints between consecutive θ-nodes are increasing - this result is established in the next two lemmas.

Lemma 2.2. If j is an integer with $0 \leq j \leq n$, then

$$
\Delta_{n, j}:=(n+2)\left(F_{n}\left(\theta_{j+1 / 2}\right)-F_{n}\left(\theta_{j-1 / 2}\right)\right)=2 \sin \theta_{j} \sin \theta_{-1 / 2} \times \Delta_{n, j}^{*}
$$

where

$$
\begin{align*}
\Delta_{n, j}^{*}:=(j-n-1)+\sum_{i=1}^{j} & \cot \theta_{(2 j+2 i-3) / 4} \cot \theta_{(2 j-2 i-1) / 4} \tag{2.3}\\
& +\cot \theta_{j-1 / 4} \cot \theta_{-1 / 2}+\frac{1}{2} \csc \theta_{j-1 / 4} \csc \theta_{j+1 / 4}
\end{align*}
$$

Proof. By (2.2),

$$
\begin{aligned}
\Delta_{n, j}=-2(n+2) & \sin \theta_{j} \sin \theta_{-1 / 2} \\
& +2\left[\sum_{i=0}^{j} \frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j+1 / 2}}-\sum_{i=0}^{j-1} \frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2}}\right] .
\end{aligned}
$$

From the trigonometric identity

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 8 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
it follows that

$$
\begin{aligned}
& \sum_{i=0}^{j} \frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j+1 / 2}}-\sum_{i=0}^{j-1} \frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2}} \\
& =\frac{1}{2} \sin \theta_{j+1 / 2} \sum_{\substack{i=0 \\
i \neq j+1}}^{2 j+2} \cot \theta_{(2 i-3) / 4}-\frac{1}{2} \sin \theta_{j-1 / 2} \sum_{\substack{i=0 \\
i \neq j}}^{2 j} \cot \theta_{(2 i-3) / 4} \\
& \quad-\cos \theta_{j}-(j+1) \cos \theta_{j+1 / 2}+j \cos \theta_{j-1 / 2} \\
& =\cos \theta_{j} \sin \theta_{-1 / 2} \sum_{i=1}^{2 j} \cot \theta_{(2 i-3) / 4}+(2 j+2) \sin \theta_{j} \sin \theta_{-1 / 2} \\
& \quad+\frac{1}{2} \sin \theta_{j+1 / 2}\left(\cot \theta_{j-1 / 4}+\cot \theta_{j+1 / 4}\right)
\end{aligned}
$$

Therefore
(2.5) $\Delta_{n, j}=(4 j-2 n) \sin \theta_{j} \sin \theta_{-1 / 2}+2 \cos \theta_{j} \sin \theta_{-1 / 2} \sum_{i=1}^{2 j} \cot \theta_{(2 i-3) / 4}$

$$
+\sin \theta_{j+1 / 2}\left(\cot \theta_{j-1 / 4}+\cot \theta_{j+1 / 4}\right) .
$$

Next consider

$$
\begin{aligned}
j \sin \theta_{j}+\cos \theta_{j} & \sum_{i=1}^{2 j} \cot \theta_{(2 i-3) / 4} \\
& =\sum_{i=1}^{j}\left[\sin \theta_{j}+\cos \theta_{j}\left(\cot \theta_{(2 i-3) / 4}+\cot \theta_{(4 j-2 i-1) / 4}\right)\right]
\end{aligned}
$$

Weighted Interpolation of Functions

Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents
44

Page 9 of 20

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{align*}
& =\sin \theta_{j} \sum_{i=1}^{j}\left[1+\frac{\cos \theta_{j}}{\sin \theta_{(2 i-3) / 4} \sin \theta_{(4 j-2 i-1) / 4}}\right] \\
& =\sin \theta_{j} \sum_{i=1}^{j} \cot \theta_{(4 j-2 i-1) / 4} \cot \theta_{(2 i-3) / 4} \\
& =\sin \theta_{j} \sum_{i=1}^{j} \cot \theta_{(2 j+2 i-3) / 4} \cot \theta_{(2 j-2 i-1) / 4} . \tag{2.6}
\end{align*}
$$

Also

$$
\begin{align*}
\sin \theta_{j+1 / 2} & \left(\cot \theta_{j-1 / 4}+\cot \theta_{j+1 / 4}\right) \\
& =2 \sin \theta_{j} \frac{\cos \theta_{j} \sin \theta_{j+1 / 2}}{\sin \theta_{j-1 / 4} \sin \theta_{j+1 / 4}} \\
& =\sin \theta_{j} \frac{2 \cos \theta_{j+1 / 4} \sin \theta_{j+1 / 4}+\sin \theta_{-1 / 2}}{\sin \theta_{j-1 / 4} \sin \theta_{j+1 / 4}} \\
& =\sin \theta_{j} \sin \theta_{-1 / 2}\left[\frac{2 \cos \theta_{j+1 / 4}}{\sin \theta_{j-1 / 4} \sin \theta_{-1 / 2}}+\csc \theta_{j-1 / 4} \csc \theta_{j+1 / 4}\right] \\
\text { 2.7) } \quad & =\sin \theta_{j} \sin \theta_{-1 / 2}\left[-2+2 \cot \theta_{j-1 / 4} \cot \theta_{-1 / 2}+\csc \theta_{j-1 / 4} \csc \theta_{j+1 / 4}\right] . \tag{2.7}
\end{align*}
$$

The lemma is now established by substituting (2.6) and (2.7) into (2.5).
Lemma 2.3. If j is an integer with $0 \leq j \leq(n-1) / 2$, then

$$
F_{n}\left(\theta_{j+1 / 2}\right)>F_{n}\left(\theta_{j-1 / 2}\right)
$$

Proof. By Lemma 2.2 we need to show that $\Delta_{n, j}^{*}>0$, where $\Delta_{n, j}^{*}$ is defined by (2.3). Now, if $0<a<\pi / 4$ and $0<b<a$, then

$$
\cot (a+b) \cot (a-b)>\cot ^{2} a .
$$

J

Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 10 of 20

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Also, $x \csc ^{2} x$ is decreasing on $(0, \pi / 4)$, so $\csc ^{2} x>\pi /(2 x)$ if $0<x<\pi / 4$. Thus

$$
\begin{aligned}
j+\sum_{i=1}^{j} \cot \theta_{(2 j+2 i-3) / 4} \cot \theta_{(2 j-2 i-1) / 4} & >j+\sum_{i=1}^{j} \cot ^{2} \theta_{(j-1) / 2} \\
& =j \csc ^{2} \theta_{(j-1) / 2}>\frac{(n+2) j}{j+1}
\end{aligned}
$$

and so

$$
\begin{aligned}
\Delta_{n, j}^{*} & >1+\cot \theta_{j-1 / 4} \cot \theta_{-1 / 2}+\frac{1}{2} \csc \theta_{j-1 / 4} \csc \theta_{j+1 / 4}-\frac{n+2}{j+1} \\
& >\csc ^{2} \theta_{(4 j-3) / 8}+\frac{1}{2} \csc \theta_{j-1 / 4} \csc \theta_{j+1 / 4}-\frac{n+2}{j+1}
\end{aligned}
$$

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 11 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 2.4. If j is an integer with $0 \leq j \leq(n+1) / 2$, and $0<t<1 / 2$, then

$$
\begin{equation*}
F_{n}\left(\theta_{j-1 / 2+t}\right) \geq F_{n}\left(\theta_{j-1 / 2-t}\right) \tag{2.8}
\end{equation*}
$$

Proof. If $j=(n+1) / 2$, then $\theta_{j-1 / 2}=\pi / 2$, so equality holds in (2.8) because $F_{n}(\theta)$ is symmetric about $\pi / 2$. Thus we can assume $j \leq n / 2$. For convenience, write $a=j-1 / 2-t, b=j-1 / 2+t$. Since $\sin (n+2) \theta_{a}=\sin (n+2) \theta_{b}=(-1)^{j} \cos t \pi$, it follows from (2.1) that $F_{n}\left(\theta_{b}\right)-F_{n}\left(\theta_{a}\right)$ has the same sign as

$$
\begin{aligned}
& G_{n, j}(t):=\sum_{i=j}^{n} \frac{\sin ^{2} \theta_{i}}{\left(\cos \theta_{b}-\cos \theta_{i}\right)\left(\cos \theta_{a}-\cos \theta_{i}\right)} \\
&-\sum_{i=0}^{j-1} \frac{\sin ^{2} \theta_{i}}{\left(\cos \theta_{i}-\cos \theta_{b}\right)\left(\cos \theta_{i}-\cos \theta_{a}\right)} .
\end{aligned}
$$

If $j=0$ this is clearly positive, and otherwise

$$
\left.\left.\begin{array}{rl}
G_{n, j}(t)> & \sum_{i=j}^{2 j-1} \frac{\sin ^{2} \theta_{i}}{\left(\cos \theta_{b}-\cos \theta_{i}\right)\left(\cos \theta_{a}-\cos \theta_{i}\right)} \\
& -\sum_{i=0}^{j-1} \frac{\sin ^{2} \theta_{i}}{\left(\cos \theta_{i}-\cos \theta_{b}\right)\left(\cos \theta_{i}-\cos \theta_{a}\right)} \\
= & \sum_{i=0}^{j-1}[
\end{array} \frac{\sin ^{2} \theta_{2 j-i-1}}{\left(\cos \theta_{b}-\cos \theta_{2 j-i-1}\right)\left(\cos \theta_{a}-\cos \theta_{2 j-i-1}\right)}\right] . \quad \begin{array}{l}
\left(\sin \theta_{i}-\cos \theta_{b}\right)\left(\cos \theta_{i}-\cos \theta_{a}\right)
\end{array}\right] .
$$

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 12 of 20

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We will show that each term in this sum is positive. Because $\sin \theta_{2 j-i-1}>\sin \theta_{i}$, this will be true if for $0 \leq i \leq j-1$,

$$
\begin{aligned}
\sin \theta_{2 j-i-1}\left(\cos \theta_{i}\right. & \left.-\cos \theta_{b}\right)\left(\cos \theta_{i}-\cos \theta_{a}\right) \\
& -\sin \theta_{i}\left(\cos \theta_{b}-\cos \theta_{2 j-i-1}\right)\left(\cos \theta_{a}-\cos \theta_{2 j-i-1}\right)>0 .
\end{aligned}
$$

By rewriting each difference of cosine terms as a product of sine terms, it follows that we require

$$
\begin{aligned}
& \sin \theta_{2 j-i-1} \sin \theta_{(j+i-1 / 2+t) / 2} \sin \theta_{(j+i-1 / 2-t) / 2} \\
&-\sin \theta_{i} \sin \theta_{(3 j-i-3 / 2+t) / 2} \sin \theta_{(3 j-i-3 / 2-t) / 2}>0 .
\end{aligned}
$$

To establish this inequality, note that

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 13 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 2.5. If n, j are integers with $n \geq 2$ and $0 \leq j \leq(n+1) / 2$, then

$$
\begin{equation*}
\max _{\theta_{j-1} \leq \theta \leq \theta_{j}} F_{n}(\theta)=F_{n}\left(\theta_{j-1 / 2}\right)+\mathcal{O}\left((\log n)^{-1}\right) \tag{2.9}
\end{equation*}
$$

where the $\mathcal{O}\left((\log n)^{-1}\right)$ term is independent of j.
Proof. By Lemma 2.4, it is sufficient to show that $G_{n, j, t}:=F_{n}\left(\theta_{j-1 / 2+t}\right)-F_{n}\left(\theta_{j-1 / 2}\right)$ is bounded above by an $\mathcal{O}\left((\log n)^{-1}\right)$ term that is independent of j and t for $0 \leq$ $t \leq 1 / 2$.

Now, by (2.2) we have

$$
\begin{align*}
G_{n, j, t}=\frac{2}{n+2} \sum_{i=0}^{j-1}[& \left.\frac{\cos t \pi \sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2+t}}-\frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2}}\right] \tag{2.10}\\
& +2 \sin \frac{(n+1) t \pi}{2(n+2)} \sin \left(\frac{(2 j+1) \pi}{2(n+2)}-\frac{(n+1) t \pi}{2(n+2)}\right)
\end{align*}
$$

Since $\cos t \pi \leq 1-4 t^{2}$ if $0 \leq t \leq 1 / 2$, then each summation term can be estimated by

$$
\frac{\cos t \pi \sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2+t}}-\frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2}} \leq \frac{-4 t^{2} \sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2+t}}
$$

From $(2 x) / \pi \leq \sin x \leq x$ for $0 \leq x \leq \pi / 2$, it follows that

$$
\begin{aligned}
\frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2+t}} & =\frac{\sin ^{2} \theta_{i}}{2 \sin \theta_{(j+i-1 / 2+t) / 2} \sin \theta_{(j-i-5 / 2+t) / 2}} \\
& \geq \frac{8(i+1)^{2}}{\pi^{2}(j-i)(j+i+2)}
\end{aligned}
$$

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 14 of 20

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and so

$$
\begin{aligned}
\sum_{i=0}^{j-1} & {\left[\frac{\cos t \pi \sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2+t}}-\frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \theta_{j-1 / 2}}\right] } \\
& \leq-\frac{32 t^{2}}{\pi^{2}} \sum_{i=0}^{j-1} \frac{(i+1)^{2}}{(j-i)(j+i+2)} \\
& =-\frac{32 t^{2}}{\pi^{2}}\left[-j-\frac{1}{2}+\frac{j+1}{2} \sum_{k=1}^{2 j+1} \frac{1}{k}\right] \\
& \leq-\frac{16 t^{2}}{\pi^{2}}(j+1)(\log (j+1)-1)
\end{aligned}
$$

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
where the final inequality follows from

$$
\sum_{k=1}^{2 j+1} \frac{1}{k} \geq 1+\log (j+1)
$$

Also,

$$
\begin{align*}
\sin \frac{(n+1) t \pi}{2(n+2)} \sin \left(\frac{(2 j+1) \pi}{2(n+2)}-\frac{(n+1) t \pi}{2(n+2)}\right) & \leq \sin \frac{t \pi}{2} \sin \frac{(2 j+1) \pi}{2(n+2)} \tag{2.12}\\
& \leq \frac{t \pi^{2}(j+1)}{2(n+2)}
\end{align*}
$$

We now return to the characterization (2.10) of $G_{n, j, t}$. By (2.12), $G_{n, 0, t} \leq$ $\pi^{2} /(2(n+2))$. For $j \geq 1$, it follows from (2.11) and (2.12) that
(2.13)

$$
G_{n, j, t} \leq \frac{2 \pi^{2} t(j+1)}{n+2}\left[1-\frac{16 t}{\pi^{4}} \log (j+1)\right] \leq \frac{\pi^{6}}{32(n+2)}\left[\frac{j+1}{\log (j+1)}\right]
$$

Contents

Page 15 of 20

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where the latter inequality follows by maximizing the quadratic in t. On the interval $1 \leq j \leq(n+1) / 2$, the maximum of $(j+1) / \log (j+1)$ occurs at an endpoint, so

$$
\begin{equation*}
\frac{j+1}{\log (j+1)} \leq \max \left\{\frac{2}{\log 2}, \frac{n+3}{2 \log ((n+3) / 2)}\right\} \tag{2.14}
\end{equation*}
$$

The result (2.9) then follows from (2.13) and (2.14).

Weighted Interpolation of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 16 of 20	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Proof of the Theorem

Since $\left\|L_{n}\right\|_{w}=\max _{0 \leq \theta \leq \pi / 2} F_{n}(\theta)$, it follows from Lemmas 2.3 and 2.5 that

$$
\left\|L_{n}\right\|_{w}= \begin{cases}F_{n}\left(\frac{\pi}{2}\right)+\mathcal{O}\left((\log n)^{-1}\right) & \text { if } n \text { is odd } \\ F_{n}\left(\frac{\pi(n+1)}{2(n+2)}\right)+\mathcal{O}\left((\log n)^{-1}\right) & \text { if } n \text { is even }\end{cases}
$$

To obtain the asymptotic result (1.5) for $\left\|L_{n}\right\|_{w}$ we use a method that was introduced by Luttmann and Rivlin [4, Theorem 3], and used also by Mason and Elliott [5, Section 9].

If n is odd, then by (2.2) with $n=2 m-1$,

$$
\begin{align*}
F_{n}\left(\frac{\pi}{2}\right) & =\frac{2}{2 m+1} \sum_{i=0}^{m-1} \frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}} \tag{3.1}\\
& =\frac{2}{2 m+1} \sum_{k=1}^{m}\left[\csc \frac{(k-1 / 2) \pi}{2 m+1}-\sin \frac{(k-1 / 2) \pi}{2 m+1}\right]
\end{align*}
$$

where the second equality follows by reversing the order of summation. Now,

$$
\begin{aligned}
\frac{\pi}{2 m+1} \sum_{k=1}^{m} \csc & \frac{(k-1 / 2) \pi}{2 m+1} \\
& =\frac{\pi}{2 m+1} \sum_{k=1}^{m}\left[\csc \frac{(k-1 / 2) \pi}{2 m+1}-\frac{2 m+1}{(k-1 / 2) \pi}\right]+\sum_{k=1}^{m} \frac{1}{k-1 / 2}
\end{aligned}
$$

The asymptotic behaviour as $m \rightarrow \infty$ of each of the sums in this expression is given

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 17 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
by

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{\pi}{2 m+1} \sum_{k=1}^{m}\left[\csc \frac{(k-1 / 2) \pi}{2 m+1}-\frac{2 m+1}{(k-1 / 2) \pi}\right] & =\int_{0}^{\pi / 2}\left[\csc x-\frac{1}{x}\right] d x \\
& =\log \frac{4}{\pi}
\end{aligned}
$$

and

$$
\sum_{k=1}^{m} \frac{1}{k-1 / 2}=2 \sum_{k=1}^{2 m} \frac{1}{k}-\sum_{k=1}^{m} \frac{1}{k}=\log (4 m)+\gamma+o(1)
$$

Also,

$$
\sum_{k=1}^{m} \sin \frac{(k-1 / 2) \pi}{2 m+1}=\csc \frac{\pi}{4 m+2} \sin ^{2} \frac{m \pi}{4 m+2}=\frac{2 m+1}{\pi}+\mathcal{O}(1)
$$

Substituting these asymptotic results into (3.1) yields the desired result (1.5) if n is odd.

On the other hand, if $n=2 m$ is even, then by (2.2) and (2.4),

$$
F_{n}\left(\frac{\pi(n+1)}{2(n+2)}\right)
$$

$$
=\sin \frac{\pi}{4 m+4}+\frac{1}{m+1} \sum_{i=0}^{m-1} \frac{\sin ^{2} \theta_{i}}{\cos \theta_{i}-\cos \frac{(2 m+1) \pi}{4 m+4}}
$$

$$
\begin{equation*}
=\frac{1}{m+1}\left(\frac{1}{2} \cos \frac{\pi}{4 m+4} \sum_{i=1}^{2 m+2} \cot \frac{(2 i-1) \pi}{8 m+8}-\sum_{i=0}^{m-1} \cos \theta_{i}\right)+\mathcal{O}\left(m^{-1}\right) . \tag{3.2}
\end{equation*}
$$

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 18 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The sum of the cotangent terms can be estimated by a similar argument to that above, using

$$
\int_{0}^{\pi / 2}\left(\cot x-x^{-1}\right) d x=\log \frac{2}{\pi}
$$

to obtain

$$
\frac{1}{2 m+2} \sum_{i=1}^{2 m+2} \cot \frac{(2 i-1) \pi}{8 m+8}=\frac{2}{\pi}\left(\log \frac{16 m}{\pi}+\gamma\right)+o(1) .
$$

Also,

$$
\begin{aligned}
\frac{1}{m+1} \sum_{i=0}^{m-1} \cos \theta_{i} & =\frac{1}{\sqrt{2}(m+1)}\left(\cos \frac{m \pi}{4 m+4} \csc \frac{\pi}{4 m+4}-\sqrt{2}\right) \\
& =\frac{2}{\pi}+\mathcal{O}\left(m^{-1}\right)
\end{aligned}
$$

If these asymptotic results are substituted into (3.2), the result (1.5) is obtained if n is even, and so the proof of Theorem 1.1 is completed.

Weighted Interpolation of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 19 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] L. BRUTMAN, On the Lebesgue function for polynomial interpolation, SIAM J. Numer. Anal., 15 (1978), 694-704.
[2] L. BRUTMAN, Lebesgue functions for polynomial interpolation - a survey, Ann. Numer. Math., 4 (1997), 111-127.
[3] H. EHLICH and K. ZELLER, Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 164 (1966), 105-112.
[4] F.W. LUTTMANN and T.J. RIVLIN, Some numerical experiments in the theory of polynomial interpolation, IBM J. Res. Develop., 9 (1965), 187-191.
[5] J.C. MASON and G.H. ELLIOTT, Constrained near-minimax approximation by weighted expansion and interpolation using Chebyshev polynomials of the second, third, and fourth kinds, Numer. Algorithms, 9 (1995), 39-54.
[6] Q.I. RAHMAN, On a problem of Turán about polynomials with curved majorants, Trans. Amer. Math. Soc., 163 (1972), 447-455.
[7] T.J. RIVLIN, Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, 2nd ed., John Wiley and Sons, New York, 1990.
[8] S.J. SMITH, On the projection norm for a weighted interpolation using Chebyshev polynomials of the second kind, Math. Pannon., 16 (2005), 95-103.

Weighted Interpolation
of Functions
Simon J. Smith
vol. 10, iss. 2, art. 33, 2009

Title Page
Contents

Page 20 of 20
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

