ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT

SIMON J. SMITH

	Department of Mathematics and Statistics La Trobe University, P.O. Box 199, Bendigo Victoria 3552, Australia EMail: s.smith@latrobe.edu.au		Weighted In of Fun Simon J vol. 10, iss. 2,	ctions J. Smith	9
Received:	31 July, 2008	_			_
Accepted:	06 February, 2009		Title I	Page	
Communicated by:	Q.I. Rahman		Contents		
2000 AMS Sub. Class.:	41A05, 41A10.		••	••	
Key words:	Interpolation, Lagrange interpolation, Weighted interpolation, Circular majorant, Projection norm, Lebesgue constant, Chebyshev polynomial.			•	
Abstract: Denote by L_n the projection operator obtained by applying the Lagrange interpolation method, weighted by $(1-x^2)^{1/2}$, at the zeros of the Chebyshev polyn			Page 1	of 20	
	mial of the second kind of degree $n + 1$. The norm $ L_n = \max_{\ f\ _{\infty} \le 1} L_n f _{\infty}$,		Go E	Back	
	where $\ \cdot\ _{\infty}$ denotes the supremum norm on $[-1, 1]$, is known to be asymptotically the same as the minimum possible norm over all choices of interpolation		Full S	creen	
nodes for unweighted Lagrange interpolation. Because the projection forces the					
	interpolating function to vanish at ± 1 , it is appropriate to consider a modified projection norm $ L_n _{\psi} = \max_{ f(x) \le \psi(x)} L_n f _{\infty}$, where $\psi \in C[-1, 1]$ is a given		Clo	se	
	function (a <i>curved majorant</i>) that satisfies $0 \le \psi(x) \le 1$ and $\psi(\pm 1) = 0$. In this paper the asymptotic behaviour of the modified projection norm is studied in the case when $\psi(x)$ is the circular majorant $w(x) = (1 - x^2)^{1/2}$. In particular, it is shown that asymptotically $ L_n _w$ is smaller than $ L_n $ by the quantity $2\pi^{-1}(1 - \log 2)$.	in m	ournal of in pure and athemati	d applie ics	

M

Contents

1	Introduction	3
2	Some Lemmas	7
3	Proof of the Theorem	17

journal of inequalities in pure and applied mathematics

1. Introduction

Suppose $n \ge 1$ is an integer, and for any s, let $\theta_s = \theta_{s,n} = (s+1)\pi/(n+2)$. For $i = 0, 1, \ldots, n$, put $x_i = \cos \theta_i$. The x_i are the zeros of the Chebyshev polynomial of the second kind of degree n+1, defined by $U_{n+1}(x) = [\sin(n+2)\theta]/\sin\theta$ where $x = \cos\theta$ and $0 \le \theta \le \pi$. Also let w be the weight function $w(x) = \sqrt{1-x^2}$, and denote the set of all polynomials of degree n or less by P_n .

In the paper [5], J.C. Mason and G.H. Elliott introduced the interpolating projection L_n of C[-1, 1] on $\{wp_n : p_n \in P_n\}$ that is defined by

(1.1)
$$(L_n f)(x) = w(x) \sum_{i=0}^n \ell_i(x) \frac{f(x_i)}{w(x_i)}$$

where $\ell_i(x)$ is the fundamental Lagrange polynomial

(1.2)
$$\ell_i(x) = \prod_{\substack{k=0\\k\neq i}}^n \frac{x - x_k}{x_i - x_k} = \frac{U_{n+1}(x)}{U'_{n+1}(x_i)(x - x_i)}$$

Mason and Elliott studied the projection norm

$$||L_n|| = \max_{||f||_{\infty} \le 1} ||L_n f||_{\infty}$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm $\|g\|_{\infty} = \max_{-1 \le x \le 1} |g(x)|$, and obtained results that led to the conjecture

(1.3)
$$||L_n|| = \frac{2}{\pi} \log n + \frac{2}{\pi} \left(\log \frac{4}{\pi} + \gamma \right) + o(1) \text{ as } n \to \infty,$$

where $\gamma = 0.577...$ is Euler's constant. This result (1.3) was proved later by Smith [8].

weighted Interpolation of Functions		
Simon J. Smith		
vol. 10, iss. 2, art. 33, 2009		
Title Page		
Contents		
44 >>		
•	►	
Page 3 of 20		
Go Back		
Full Screen		
Close		

As pointed out by Mason and Elliott, the projection norm for the much-studied Lagrange interpolation method based on the zeros of the Chebyshev polynomial of the first kind $T_{n+1}(x) = \cos(n+1)\theta$, where $x = \cos\theta$ and $0 \le \theta \le \pi$, is

$$\frac{2}{\pi}\log n + \frac{2}{\pi}\left(\log\frac{8}{\pi} + \gamma\right) + o(1)$$

(See Luttmann and Rivlin [4] for a short proof of this result based on a conjecture that was later established by Ehlich and Zeller [3].) Therefore the norm of the weighted interpolation method (1.1) is smaller by a quantity asymptotic to $2\pi^{-1} \log 2$. In addition, (1.3) means that L_n , which is based on a simple node system, has (to within o(1) terms) the same norm as the Lagrange method of minimal norm over all possible choices of nodes — and the optimal nodes for Lagrange interpolation are not known explicitly. (See Brutman [2, Section 3] for further discussion and references on the optimal choice of nodes for Lagrange interpolation.)

Now, an immediate consequence of (1.1) is that for all f, $(L_n f)(\pm 1) = 0$. Thus L_n is particularly appropriate for approximations of those f for which $f(\pm 1) = 0$. This leads naturally to a study of the norm

(1.4)
$$||L_n||_{\psi} = \max_{|f(x)| \le \psi(x)} ||L_n f||_{\infty}$$

where $\psi \in C[-1,1]$ is a given function (a *curved majorant*) that satisfies $0 \leq \psi(x) \leq 1$ and $\psi(\pm 1) = 0$. Evidently $||L_n||_{\psi} \leq ||L_n||$. In this paper we will look at the particular case when $\psi(x)$ is the circular majorant $w(x) = \sqrt{1-x^2}$. Note that studies of this nature were initiated by P. Turán in the early 1970s, in the context of obtaining Markov and Bernstein type estimates for p' if $p \in P_n$ satisfies $|p(x)| \leq w(x)$ for $x \in [-1, 1]$ — see Rahman [6] for a key early paper in this area.

Our principal result is the following theorem, the proof of which will be developed in Sections 2 and 3.

in pure and applied mathematics **Theorem 1.1.** The modified projection norm $||L_n||_w$, defined by (1.4) with $w(x) = \sqrt{1-x^2}$, satisfies

(1.5)
$$||L_n||_w = \frac{2}{\pi} \log n + \frac{2}{\pi} \left(\log \frac{8}{\pi} + \gamma - 1 \right) + o(1) \quad as \ n \to \infty.$$

Observe that (1.5) shows $||L_n||_w$ is smaller than $||L_n||$ by an amount that is asymptotic to $2\pi^{-1}(1 - \log 2)$.

Before proving the theorem, we make a few remarks about the method to be used. By (1.1),

$$||L_n||_w = \max_{-1 \le x \le 1} \left(w(x) \sum_{i=0}^n |\ell_i(x)| \right).$$

Since the x_i are arranged symmetrically about 0, then $w(x) \sum_{i=0}^{n} |\ell_i(x)|$ is even, and so by (1.2),

$$||L_n||_w = \max_{0 \le \theta \le \pi/2} F_n(\theta),$$

where

(1.6)
$$F_n(\theta) = \frac{|\sin(n+2)\theta|}{n+2} \sum_{i=0}^n \frac{\sin^2 \theta_i}{|\cos \theta - \cos \theta_i|}.$$

Figure 1 shows the graph of a typical $F_n(\theta)$ if n is even, and it suggests that the local maximum values of $F_n(\theta)$ are monotonic increasing as θ moves from left to right, so that the maximum of $F_n(\theta)$ occurs close to $\pi/2$. For n odd, similar graphs suggest that the maximum occurs precisely at $\pi/2$. These observations help to motivate the strategy used in Sections 2 and 3 to prove the theorem — the approach is akin to that used by Brutman [1] in his investigation of the Lebesgue function for Lagrange interpolation based on the zeros of Chebyshev polynomials of the first kind.

Weighted Interpolation of Functions		
Simon .	J. Smith	
vol. 10, iss. 2	, art. 33, 2009	
Title Page		
Contents		
44 >>		
∢ ►		
Page 5 of 20		
Go Back		
Full Screen		
Close		

Figure 1: Plot of $F_{12}(\theta)$ for $0 \le \theta \le \pi/2$

journal of inequalities in pure and applied mathematics

2. Some Lemmas

This section contains several lemmas that will be needed to prove the theorem. The first such lemma provides alternative representations of the function $F_n(\theta)$ that was defined in (1.6).

Lemma 2.1. If j is an integer with $0 \le j \le n+1$, and $\theta_{j-1} \le \theta \le \theta_j$, then

(2.1)
$$F_n(\theta) = (-1)^j \frac{\sin(n+2)\theta}{n+2} \left(\sum_{i=0}^{j-1} \frac{\sin^2 \theta_i}{\cos \theta_i - \cos \theta} + \sum_{i=j}^n \frac{\sin^2 \theta_i}{\cos \theta - \cos \theta_i} \right)$$
$$(2.2) = (-1)^j \left[\sin(n+1)\theta + \frac{2\sin(n+2)\theta}{n+2} \sum_{i=0}^{j-1} \frac{\sin^2 \theta_i}{\cos \theta_i - \cos \theta} \right].$$

Proof. The result (2.1) follows immediately from (1.6). For (2.2), note that the Lagrange interpolation polynomial for $U_n(x)$ based on the zeros of $U_{n+1}(x)$ is simply $U_n(x)$ itself, so, with $\ell_i(x)$ defined by (1.2),

$$U_n(x) = \sum_{i=0}^n \ell_i(x) U_n(x_i) = \frac{U_{n+1}(x)}{n+2} \sum_{i=0}^n \frac{1-x_i^2}{x-x_i}$$

(This formula appears in Rivlin [7, p. 23, Exercise 1.3.2].) Therefore

$$\sin(n+1)\theta = \frac{\sin(n+2)\theta}{n+2} \sum_{i=0}^{n} \frac{\sin^2 \theta_i}{\cos \theta - \cos \theta_i}$$

If this expression is used to rewrite the second sum in (2.1), the result (2.2) is obtained. $\hfill \Box$

Weighted Interpolation of Functions Simon J. Smith vol. 10, iss. 2, art. 33, 2009			
_			
Title	Page		
Con	tents		
44	••		
•	•		
Page 7 of 20			
Go Back			
Full Screen			
Close			

We now show that on the interval $[0, \pi/2]$, the values of $F_n(\theta)$ at the midpoints between consecutive θ -nodes are increasing — this result is established in the next two lemmas.

Lemma 2.2. If j is an integer with $0 \le j \le n$, then

$$\Delta_{n,j} := (n+2) \left(F_n(\theta_{j+1/2}) - F_n(\theta_{j-1/2}) \right) = 2 \sin \theta_j \sin \theta_{-1/2} \times \Delta_{n,j}^*,$$

where

(2.3)
$$\Delta_{n,j}^* := (j - n - 1) + \sum_{i=1}^j \cot \theta_{(2j+2i-3)/4} \cot \theta_{(2j-2i-1)/4} + \cot \theta_{j-1/4} \cot \theta_{-1/2} + \frac{1}{2} \csc \theta_{j-1/4} \csc \theta_{j+1/4}.$$

Proof. By (2.2),

$$\Delta_{n,j} = -2(n+2)\sin\theta_j\sin\theta_{-1/2} + 2\left[\sum_{i=0}^j \frac{\sin^2\theta_i}{\cos\theta_i - \cos\theta_{j+1/2}} - \sum_{i=0}^{j-1} \frac{\sin^2\theta_i}{\cos\theta_i - \cos\theta_{j-1/2}}\right]$$

From the trigonometric identity

(2.4)
$$\frac{\sin^2 A}{\cos A - \cos B} = \frac{1}{2} \sin B \left[\cot \left(\frac{B-A}{2} \right) + \cot \left(\frac{B+A}{2} \right) \right] - \cos A - \cos B,$$

journal of inequalities in pure and applied mathematics

it follows that

$$\sum_{i=0}^{j} \frac{\sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j+1/2}} - \sum_{i=0}^{j-1} \frac{\sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2}}$$

= $\frac{1}{2} \sin \theta_{j+1/2} \sum_{\substack{i=0\\i \neq j+1}}^{2j+2} \cot \theta_{(2i-3)/4} - \frac{1}{2} \sin \theta_{j-1/2} \sum_{\substack{i=0\\i \neq j}}^{2j} \cot \theta_{(2i-3)/4}$
- $\cos \theta_j - (j+1) \cos \theta_{j+1/2} + j \cos \theta_{j-1/2}$
= $\cos \theta_j \sin \theta_{-1/2} \sum_{i=1}^{2j} \cot \theta_{(2i-3)/4} + (2j+2) \sin \theta_j \sin \theta_{-1/2}$
+ $\frac{1}{2} \sin \theta_{j+1/2} \left(\cot \theta_{j-1/4} + \cot \theta_{j+1/4} \right).$

Therefore

(2.5)
$$\Delta_{n,j} = (4j - 2n) \sin \theta_j \sin \theta_{-1/2} + 2 \cos \theta_j \sin \theta_{-1/2} \sum_{i=1}^{2j} \cot \theta_{(2i-3)/4} + \sin \theta_{j+1/2} \left(\cot \theta_{j-1/4} + \cot \theta_{j+1/4} \right)$$

Next consider

$$j\sin\theta_j + \cos\theta_j \sum_{i=1}^{2j} \cot\theta_{(2i-3)/4}$$
$$= \sum_{i=1}^j \left[\sin\theta_j + \cos\theta_j \left(\cot\theta_{(2i-3)/4} + \cot\theta_{(4j-2i-1)/4}\right)\right]$$

Weighted Interpolation of Functions Simon J. Smith vol. 10, iss. 2, art. 33, 2009 Title Page Contents 44 •• ◀ Page 9 of 20 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

2.6)
$$= \sin \theta_j \sum_{i=1}^{j} \left[1 + \frac{\cos \theta_j}{\sin \theta_{(2i-3)/4} \sin \theta_{(4j-2i-1)/4}} \right]$$
$$= \sin \theta_j \sum_{i=1}^{j} \cot \theta_{(4j-2i-1)/4} \cot \theta_{(2i-3)/4}$$
$$= \sin \theta_j \sum_{i=1}^{j} \cot \theta_{(2j+2i-3)/4} \cot \theta_{(2j-2i-1)/4}.$$

Also

$$\sin \theta_{j+1/2} \left(\cot \theta_{j-1/4} + \cot \theta_{j+1/4} \right) \\= 2 \sin \theta_j \frac{\cos \theta_j \sin \theta_{j+1/2}}{\sin \theta_{j-1/4} \sin \theta_{j+1/4}} \\= \sin \theta_j \frac{2 \cos \theta_{j+1/4} \sin \theta_{j+1/4}}{\sin \theta_{j-1/4} \sin \theta_{j+1/4}} \\= \sin \theta_j \sin \theta_{-1/2} \left[\frac{2 \cos \theta_{j+1/4}}{\sin \theta_{j-1/4} \sin \theta_{-1/2}} + \csc \theta_{j-1/4} \csc \theta_{j+1/4} \right] \\(2.7) = \sin \theta_j \sin \theta_{-1/2} \left[-2 + 2 \cot \theta_{j-1/4} \cot \theta_{-1/2} + \csc \theta_{j-1/4} \csc \theta_{j+1/4} \right].$$

The lemma is now established by substituting (2.6) and (2.7) into (2.5).

Lemma 2.3. If j is an integer with $0 \le j \le (n-1)/2$, then

$$F_n(\theta_{j+1/2}) > F_n(\theta_{j-1/2}).$$

Proof. By Lemma 2.2 we need to show that $\Delta_{n,j}^* > 0$, where $\Delta_{n,j}^*$ is defined by (2.3). Now, if $0 < a < \pi/4$ and 0 < b < a, then

$$\cot(a+b)\cot(a-b) > \cot^2 a.$$

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Also, $x \csc^2 x$ is decreasing on $(0, \pi/4)$, so $\csc^2 x > \pi/(2x)$ if $0 < x < \pi/4$. Thus

$$j + \sum_{i=1}^{j} \cot \theta_{(2j+2i-3)/4} \cot \theta_{(2j-2i-1)/4} > j + \sum_{i=1}^{j} \cot^2 \theta_{(j-1)/2}$$
$$= j \csc^2 \theta_{(j-1)/2} > \frac{(n+2)j}{j+1},$$

and so

$$\Delta_{n,j}^* > 1 + \cot \theta_{j-1/4} \cot \theta_{-1/2} + \frac{1}{2} \csc \theta_{j-1/4} \csc \theta_{j+1/4} - \frac{n+2}{j+1}$$
$$> \csc^2 \theta_{(4j-3)/8} + \frac{1}{2} \csc \theta_{j-1/4} \csc \theta_{j+1/4} - \frac{n+2}{j+1}.$$

Because $\theta_{(4j-3)/8} < \pi/4$, the first term in this expression can be estimated using $\csc^2 x > \pi/(2x)$, while the second term can be estimated using $\csc x > 1/x$. Therefore

$$\Delta_{n,j}^* > \left[\frac{n+2}{j+5/4} - \frac{n+2}{j+1}\right] + \frac{(n+2)^2}{2\pi^2(j+3/4)(j+5/4)} > \frac{n+2}{(j+1)(j+5/4)} \left[-\frac{1}{4} + \frac{n+2}{2\pi^2}\right].$$

This latter quantity is positive if $n \ge 3$. Since $0 \le j \le (n-1)/2$, the only unresolved cases are when j = 0 and n = 1, 2, and it is a trivial calculation using (2.3) to show that $\Delta_{n,j}^* > 0$ in these cases as well.

We next show that in any interval between successive θ -nodes, $F_n(\theta)$ achieves its maximum in the right half of the interval.

Title Page			
Contents			
44 >>			
•	►		
Page 11 of 20			
Go Back			
Full Screen			
Close			
ournal of inequalities			

in pure and applied mathematics

© 2007 Victoria University. All rights reserved.

Lemma 2.4. If *j* is an integer with $0 \le j \le (n + 1)/2$, and 0 < t < 1/2, then

(2.8)
$$F_n(\theta_{j-1/2+t}) \ge F_n(\theta_{j-1/2-t}).$$

Proof. If j = (n+1)/2, then $\theta_{j-1/2} = \pi/2$, so equality holds in (2.8) because $F_n(\theta)$ is symmetric about $\pi/2$. Thus we can assume $j \le n/2$. For convenience, write a = j - 1/2 - t, b = j - 1/2 + t. Since $\sin(n+2)\theta_a = \sin(n+2)\theta_b = (-1)^j \cos t\pi$, it follows from (2.1) that $F_n(\theta_b) - F_n(\theta_a)$ has the same sign as

$$G_{n,j}(t) := \sum_{i=j}^{n} \frac{\sin^2 \theta_i}{(\cos \theta_b - \cos \theta_i)(\cos \theta_a - \cos \theta_i)} - \sum_{i=0}^{j-1} \frac{\sin^2 \theta_i}{(\cos \theta_i - \cos \theta_b)(\cos \theta_i - \cos \theta_a)}.$$

If j = 0 this is clearly positive, and otherwise

$$G_{n,j}(t) > \sum_{i=j}^{2j-1} \frac{\sin^2 \theta_i}{(\cos \theta_b - \cos \theta_i)(\cos \theta_a - \cos \theta_i)} - \sum_{i=0}^{j-1} \frac{\sin^2 \theta_i}{(\cos \theta_i - \cos \theta_b)(\cos \theta_i - \cos \theta_a)} = \sum_{i=0}^{j-1} \left[\frac{\sin^2 \theta_{2j-i-1}}{(\cos \theta_b - \cos \theta_{2j-i-1})(\cos \theta_a - \cos \theta_{2j-i-1})} - \frac{\sin^2 \theta_i}{(\cos \theta_i - \cos \theta_b)(\cos \theta_i - \cos \theta_a)} \right].$$

We will show that each term in this sum is positive. Because $\sin \theta_{2i-i-1} > \sin \theta_i$, this will be true if for $0 \le i \le j - 1$,

$$\sin \theta_{2j-i-1} (\cos \theta_i - \cos \theta_b) (\cos \theta_i - \cos \theta_a) - \sin \theta_i (\cos \theta_b - \cos \theta_{2j-i-1}) (\cos \theta_a - \cos \theta_{2j-i-1}) > 0$$

By rewriting each difference of cosine terms as a product of sine terms, it follows that we require

$$\sin \theta_{2j-i-1} \sin \theta_{(j+i-1/2+t)/2} \sin \theta_{(j+i-1/2-t)/2} - \sin \theta_i \sin \theta_{(3j-i-3/2+t)/2} \sin \theta_{(3j-i-3/2-t)/2} > 0.$$

To establish this inequality, note that

$$\begin{aligned} \sin \theta_{2j-i-1} \sin \theta_{(j+i-1/2+t)/2} \sin \theta_{(j+i-1/2-t)/2} \\ &- \sin \theta_i \sin \theta_{(3j-i-3/2+t)/2} \sin \theta_{(3j-i-3/2-t)/2} \\ &= \frac{1}{2} \left[\cos \theta_{t-1} (\sin \theta_{2j-i-1} - \sin \theta_i) - \sin \theta_{2j-i-1} \cos \theta_{j+i+1/2} + \sin \theta_i \cos \theta_{3j-i-1/2} \right] \\ &= \cos \theta_{t-1} \sin \theta_{j-i-3/2} \cos \theta_{j-1/2} - \frac{1}{4} \left[\sin \theta_{j-2i-5/2} + \sin \theta_{3j-2i-3/2} \right] \\ &= \cos \theta_{j-1/2} \left[\cos \theta_{t-1} \sin \theta_{j-i-3/2} - \frac{1}{2} \sin \theta_{2j-2i-2} \right] \\ &= \cos \theta_{j-1/2} \sin \theta_{j-i-3/2} \left[\cos \theta_{t-1} - \cos \theta_{j-i-3/2} \right] > 0, \end{aligned}$$

and so the lemma is proved.

The final major step in the proof of the theorem is to show that in each interval between successive θ -nodes, the maximum value of $F_n(\theta)$ is achieved essentially at the midpoint of the interval.

mathematics issn: 1443-5756

Lemma 2.5. If n, j are integers with $n \ge 2$ and $0 \le j \le (n+1)/2$, then

(2.9) $\max_{\theta_{j-1} \le \theta \le \theta_j} F_n(\theta) = F_n(\theta_{j-1/2}) + \mathcal{O}\left((\log n)^{-1}\right),$

where the $\mathcal{O}((\log n)^{-1})$ term is independent of j.

Proof. By Lemma 2.4, it is sufficient to show that $G_{n,j,t} := F_n(\theta_{j-1/2+t}) - F_n(\theta_{j-1/2})$ is bounded above by an $\mathcal{O}((\log n)^{-1})$ term that is independent of j and t for $0 \le t \le 1/2$.

Now, by (2.2) we have

$$(2.10) \quad G_{n,j,t} = \frac{2}{n+2} \sum_{i=0}^{j-1} \left[\frac{\cos t\pi \sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2+t}} - \frac{\sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2}} \right] \\ + 2\sin \frac{(n+1)t\pi}{2(n+2)} \sin \left(\frac{(2j+1)\pi}{2(n+2)} - \frac{(n+1)t\pi}{2(n+2)} \right)$$

Since $\cos t\pi \le 1 - 4t^2$ if $0 \le t \le 1/2$, then each summation term can be estimated by

$$\frac{\cos t\pi \sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2+t}} - \frac{\sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2}} \le \frac{-4t^2 \sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2+t}}$$

From $(2x)/\pi \le \sin x \le x$ for $0 \le x \le \pi/2$, it follows that

$$\frac{\sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2+t}} = \frac{\sin^2 \theta_i}{2 \sin \theta_{(j+i-1/2+t)/2} \sin \theta_{(j-i-5/2+t)/2}} \\ \ge \frac{8(i+1)^2}{\pi^2 (j-i)(j+i+2)},$$

Weighted Interpolation of Functions		
Simon J. Smith		
vol. 10, iss. 2, art. 33, 2009		
Title Page		
Contents		
44	**	
•	►	
Page 14 of 20		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics

and so

$$\begin{split} \sum_{i=0}^{j-1} \left[\frac{\cos t\pi \sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2+t}} - \frac{\sin^2 \theta_i}{\cos \theta_i - \cos \theta_{j-1/2}} \right] \\ &\leq -\frac{32t^2}{\pi^2} \sum_{i=0}^{j-1} \frac{(i+1)^2}{(j-i)(j+i+2)} \\ &= -\frac{32t^2}{\pi^2} \left[-j - \frac{1}{2} + \frac{j+1}{2} \sum_{k=1}^{2j+1} \frac{1}{k} \right] \\ &\leq -\frac{16t^2}{\pi^2} (j+1) \left(\log(j+1) - 1 \right), \end{split}$$

where the final inequality follows from

$$\sum_{k=1}^{2j+1} \frac{1}{k} \ge 1 + \log(j+1).$$

Also,

(2.11)

(2.12)
$$\sin\frac{(n+1)t\pi}{2(n+2)}\sin\left(\frac{(2j+1)\pi}{2(n+2)} - \frac{(n+1)t\pi}{2(n+2)}\right) \le \sin\frac{t\pi}{2}\sin\frac{(2j+1)\pi}{2(n+2)} \le \frac{t\pi^2(j+1)}{2(n+2)}.$$

We now return to the characterization (2.10) of $G_{n,j,t}$. By (2.12), $G_{n,0,t} \leq \pi^2/(2(n+2))$. For $j \geq 1$, it follows from (2.11) and (2.12) that

(2.13)
$$G_{n,j,t} \le \frac{2\pi^2 t(j+1)}{n+2} \left[1 - \frac{16t}{\pi^4} \log(j+1) \right] \le \frac{\pi^6}{32(n+2)} \left[\frac{j+1}{\log(j+1)} \right],$$

journal of inequalities in pure and applied mathematics

where the latter inequality follows by maximizing the quadratic in t. On the interval $1 \le j \le (n+1)/2$, the maximum of $(j+1)/\log(j+1)$ occurs at an endpoint, so

(2.14)
$$\frac{j+1}{\log(j+1)} \le \max\left\{\frac{2}{\log 2}, \frac{n+3}{2\log((n+3)/2)}\right\}$$

The result (2.9) then follows from (2.13) and (2.14).

3. Proof of the Theorem

Since $||L_n||_w = \max_{0 \le \theta \le \pi/2} F_n(\theta)$, it follows from Lemmas 2.3 and 2.5 that

$$\|L_n\|_w = \begin{cases} F_n\left(\frac{\pi}{2}\right) + \mathcal{O}\left((\log n)^{-1}\right) & \text{if } n \text{ is odd,} \\ \\ F_n\left(\frac{\pi(n+1)}{2(n+2)}\right) + \mathcal{O}\left((\log n)^{-1}\right) & \text{if } n \text{ is even.} \end{cases}$$

To obtain the asymptotic result (1.5) for $||L_n||_w$ we use a method that was introduced by Luttmann and Rivlin [4, Theorem 3], and used also by Mason and Elliott [5, Section 9].

If n is odd, then by (2.2) with n = 2m - 1,

(3.1)
$$F_n\left(\frac{\pi}{2}\right) = \frac{2}{2m+1} \sum_{i=0}^{m-1} \frac{\sin^2 \theta_i}{\cos \theta_i}$$
$$= \frac{2}{2m+1} \sum_{k=1}^m \left[\csc \frac{(k-1/2)\pi}{2m+1} - \sin \frac{(k-1/2)\pi}{2m+1} \right],$$

where the second equality follows by reversing the order of summation. Now,

$$\frac{\pi}{2m+1} \sum_{k=1}^{m} \csc \frac{(k-1/2)\pi}{2m+1}$$
$$= \frac{\pi}{2m+1} \sum_{k=1}^{m} \left[\csc \frac{(k-1/2)\pi}{2m+1} - \frac{2m+1}{(k-1/2)\pi} \right] + \sum_{k=1}^{m} \frac{1}{k-1/2}$$

The asymptotic behaviour as $m \to \infty$ of each of the sums in this expression is given

Weighted Interpolation of Functions			
Simon	J. Smith		
vol. 10, iss. 2	, art. 33, 2009		
Title	Title Page		
Cont	ents		
44	••		
• •			
Page 1	Page 17 of 20		
Go Back			
Full Screen			
Close			

$$\lim_{m \to \infty} \frac{\pi}{2m+1} \sum_{k=1}^{m} \left[\csc \frac{(k-1/2)\pi}{2m+1} - \frac{2m+1}{(k-1/2)\pi} \right] = \int_{0}^{\pi/2} \left[\csc x - \frac{1}{x} \right] dx$$
$$= \log \frac{4}{\pi}$$

and

$$\sum_{k=1}^{m} \frac{1}{k-1/2} = 2\sum_{k=1}^{2m} \frac{1}{k} - \sum_{k=1}^{m} \frac{1}{k} = \log(4m) + \gamma + o(1).$$

Also,

$$\sum_{k=1}^{m} \sin \frac{(k-1/2)\pi}{2m+1} = \csc \frac{\pi}{4m+2} \sin^2 \frac{m\pi}{4m+2} = \frac{2m+1}{\pi} + \mathcal{O}(1).$$

Substituting these asymptotic results into (3.1) yields the desired result (1.5) if n is odd.

On the other hand, if n = 2m is even, then by (2.2) and (2.4),

$$F_n\left(\frac{\pi(n+1)}{2(n+2)}\right) = \sin\frac{\pi}{4m+4} + \frac{1}{m+1}\sum_{i=0}^{m-1}\frac{\sin^2\theta_i}{\cos\theta_i - \cos\frac{(2m+1)\pi}{4m+4}}$$

(3.2)
$$= \frac{1}{m+1}\left(\frac{1}{2}\cos\frac{\pi}{4m+4}\sum_{i=1}^{2m+2}\cot\frac{(2i-1)\pi}{8m+8} - \sum_{i=0}^{m-1}\cos\theta_i\right) + \mathcal{O}(m^{-1}).$$

Weighted Interpolation of Functions Simon J. Smith vol. 10, iss. 2, art. 33, 2009 **Title Page** Contents 44 •• ◀ Page 18 of 20 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

The sum of the cotangent terms can be estimated by a similar argument to that above, using

$$\int_0^{\pi/2} (\cot x - x^{-1}) \, dx = \log \frac{2}{\pi},$$

to obtain

$$\frac{1}{2m+2}\sum_{i=1}^{2m+2}\cot\frac{(2i-1)\pi}{8m+8} = \frac{2}{\pi}\left(\log\frac{16m}{\pi} + \gamma\right) + o(1).$$

Also,

$$\frac{1}{m+1} \sum_{i=0}^{m-1} \cos \theta_i = \frac{1}{\sqrt{2}(m+1)} \left(\cos \frac{m\pi}{4m+4} \csc \frac{\pi}{4m+4} - \sqrt{2} \right)$$
$$= \frac{2}{\pi} + \mathcal{O}(m^{-1}).$$

If these asymptotic results are substituted into (3.2), the result (1.5) is obtained if n is even, and so the proof of Theorem 1.1 is completed.

in pure and applied mathematics

References

- [1] L. BRUTMAN, On the Lebesgue function for polynomial interpolation, *SIAM J. Numer. Anal.*, **15** (1978), 694–704.
- [2] L. BRUTMAN, Lebesgue functions for polynomial interpolation a survey, *Ann. Numer. Math.*, **4** (1997), 111–127.
- [3] H. EHLICH AND K. ZELLER, Auswertung der Normen von Interpolationsoperatoren, *Math. Ann.*, **164** (1966), 105–112.
- [4] F.W. LUTTMANN AND T.J. RIVLIN, Some numerical experiments in the theory of polynomial interpolation, *IBM J. Res. Develop.*, **9** (1965), 187–191.
- [5] J.C. MASON AND G.H. ELLIOTT, Constrained near-minimax approximation by weighted expansion and interpolation using Chebyshev polynomials of the second, third, and fourth kinds, *Numer. Algorithms*, **9** (1995), 39–54.
- [6] Q.I. RAHMAN, On a problem of Turán about polynomials with curved majorants, *Trans. Amer. Math. Soc.*, **163** (1972), 447–455.
- [7] T.J. RIVLIN, Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, 2nd ed., John Wiley and Sons, New York, 1990.
- [8] S.J. SMITH, On the projection norm for a weighted interpolation using Chebyshev polynomials of the second kind, *Math. Pannon.*, **16** (2005), 95–103.

Weighted Interpolation of Functions				
	Simon J. Smith			
	vol. 10, iss. 2	, art. 33, 2009		
	Title Page			
	Contents			
	44 >>			
	•	•		
	Page 20 of 20			
	Go Back			
	Full Screen			
	Close			
ic	iournal of inequalitie			

in pure and applied mathematics