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Abstract: Denote byLn the projection operator obtained by applying the Lagrange inter-
polation method, weighted by(1−x2)1/2, at the zeros of the Chebyshev polyno-
mial of the second kind of degreen + 1. The norm‖Ln‖ = max

‖f‖∞≤1
‖Lnf‖∞,

where‖ · ‖∞ denotes the supremum norm on[−1, 1], is known to be asymptot-
ically the same as the minimum possible norm over all choices of interpolation
nodes for unweighted Lagrange interpolation. Because the projection forces the
interpolating function to vanish at±1, it is appropriate to consider a modified
projection norm‖Ln‖ψ = max

|f(x)|≤ψ(x)
‖Lnf‖∞, whereψ ∈ C[−1, 1] is a given

function (acurved majorant) that satisfies0 ≤ ψ(x) ≤ 1 andψ(±1) = 0. In
this paper the asymptotic behaviour of the modified projection norm is studied
in the case whenψ(x) is the circular majorantw(x) = (1− x2)1/2. In particu-
lar, it is shown that asymptotically‖Ln‖w is smaller than‖Ln‖ by the quantity
2π−1(1− log 2).
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1. Introduction

Supposen ≥ 1 is an integer, and for anys, let θs = θs,n = (s + 1)π/(n + 2). For
i = 0, 1, . . . , n, putxi = cos θi. Thexi are the zeros of the Chebyshev polynomial
of the second kind of degreen+1, defined byUn+1(x) = [sin(n+2)θ]/ sin θ where
x = cos θ and0 ≤ θ ≤ π. Also letw be the weight functionw(x) =

√
1− x2, and

denote the set of all polynomials of degreen or less byPn.
In the paper [5], J.C. Mason and G.H. Elliott introduced the interpolating projec-

tionLn of C[−1, 1] on{wpn : pn ∈ Pn} that is defined by

(1.1) (Lnf)(x) = w(x)
n∑
i=0

`i(x)
f(xi)

w(xi)
,

where`i(x) is the fundamental Lagrange polynomial

(1.2) `i(x) =
n∏
k=0
k 6=i

x− xk
xi − xk

=
Un+1(x)

U ′
n+1(xi)(x− xi)

.

Mason and Elliott studied the projection norm

‖Ln‖ = max
‖f‖∞≤1

‖Lnf‖∞,

where‖ · ‖∞ denotes the uniform norm‖g‖∞ = max−1≤x≤1 |g(x)|, and obtained
results that led to the conjecture

(1.3) ‖Ln‖ =
2

π
log n+

2

π

(
log

4

π
+ γ

)
+ o(1) asn→∞,

whereγ = 0.577 . . . is Euler’s constant. This result (1.3) was proved later by
Smith [8].
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As pointed out by Mason and Elliott, the projection norm for the much-studied
Lagrange interpolation method based on the zeros of the Chebyshev polynomial of
the first kindTn+1(x) = cos(n+ 1)θ, wherex = cos θ and0 ≤ θ ≤ π, is

2

π
log n+

2

π

(
log

8

π
+ γ

)
+ o(1).

(See Luttmann and Rivlin [4] for a short proof of this result based on a conjecture that
was later established by Ehlich and Zeller [3].) Therefore the norm of the weighted
interpolation method (1.1) is smaller by a quantity asymptotic to2π−1 log 2. In ad-
dition, (1.3) means thatLn, which is based on a simple node system, has (to within
o(1) terms) the same norm as the Lagrange method of minimal norm over all pos-
sible choices of nodes — and the optimal nodes for Lagrange interpolation are not
known explicitly. (See Brutman [2, Section 3] for further discussion and references
on the optimal choice of nodes for Lagrange interpolation.)

Now, an immediate consequence of (1.1) is that for allf , (Lnf)(±1) = 0. Thus
Ln is particularly appropriate for approximations of thosef for which f(±1) = 0.
This leads naturally to a study of the norm

(1.4) ‖Ln‖ψ = max
|f(x)|≤ψ(x)

‖Lnf‖∞,

whereψ ∈ C[−1, 1] is a given function (acurved majorant) that satisfies0 ≤
ψ(x) ≤ 1 andψ(±1) = 0. Evidently‖Ln‖ψ ≤ ‖Ln‖. In this paper we will look
at the particular case whenψ(x) is the circular majorantw(x) =

√
1− x2. Note

that studies of this nature were initiated by P. Turán in the early 1970s, in the con-
text of obtaining Markov and Bernstein type estimates forp′ if p ∈ Pn satisfies
|p(x)| ≤ w(x) for x ∈ [−1, 1] — see Rahman [6] for a key early paper in this area.

Our principal result is the following theorem, the proof of which will be devel-
oped in Sections2 and3.
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Theorem 1.1. The modified projection norm‖Ln‖w, defined by (1.4) with w(x) =√
1− x2, satisfies

(1.5) ‖Ln‖w =
2

π
log n+

2

π

(
log

8

π
+ γ − 1

)
+ o(1) asn→∞.

Observe that (1.5) shows‖Ln‖w is smaller than‖Ln‖ by an amount that is asymp-
totic to2π−1(1− log 2).

Before proving the theorem, we make a few remarks about the method to be used.
By (1.1),

‖Ln‖w = max
−1≤x≤1

(
w(x)

n∑
i=0

|`i(x)|

)
.

Since thexi are arranged symmetrically about 0, thenw(x)
∑n

i=0 |`i(x)| is even, and
so by (1.2),

‖Ln‖w = max
0≤θ≤π/2

Fn(θ),

where

(1.6) Fn(θ) =
| sin(n+ 2)θ|

n+ 2

n∑
i=0

sin2 θi
| cos θ − cos θi|

.

Figure 1 shows the graph of a typicalFn(θ) if n is even, and it suggests that
the local maximum values ofFn(θ) are monotonic increasing asθ moves from left
to right, so that the maximum ofFn(θ) occurs close toπ/2. For n odd, similar
graphs suggest that the maximum occurs precisely atπ/2. These observations help
to motivate the strategy used in Sections2and3 to prove the theorem — the approach
is akin to that used by Brutman [1] in his investigation of the Lebesgue function for
Lagrange interpolation based on the zeros of Chebyshev polynomials of the first
kind.
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Figure 1: Plot ofF12(θ) for 0 ≤ θ ≤ π/2
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2. Some Lemmas

This section contains several lemmas that will be needed to prove the theorem. The
first such lemma provides alternative representations of the functionFn(θ) that was
defined in (1.6).

Lemma 2.1. If j is an integer with0 ≤ j ≤ n+ 1, andθj−1 ≤ θ ≤ θj, then

Fn(θ) = (−1)j
sin(n+ 2)θ

n+ 2

(
j−1∑
i=0

sin2 θi
cos θi − cos θ

+
n∑
i=j

sin2 θi
cos θ − cos θi

)
(2.1)

= (−1)j

[
sin(n+ 1)θ +

2 sin(n+ 2)θ

n+ 2

j−1∑
i=0

sin2 θi
cos θi − cos θ

]
.(2.2)

Proof. The result (2.1) follows immediately from (1.6). For (2.2), note that the La-
grange interpolation polynomial forUn(x) based on the zeros ofUn+1(x) is simply
Un(x) itself, so, with`i(x) defined by (1.2),

Un(x) =
n∑
i=0

`i(x)Un(xi) =
Un+1(x)

n+ 2

n∑
i=0

1− x2
i

x− xi
.

(This formula appears in Rivlin [7, p. 23, Exercise 1.3.2].) Therefore

sin(n+ 1)θ =
sin(n+ 2)θ

n+ 2

n∑
i=0

sin2 θi
cos θ − cos θi

.

If this expression is used to rewrite the second sum in (2.1), the result (2.2) is ob-
tained.
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We now show that on the interval[0, π/2], the values ofFn(θ) at the midpoints
between consecutiveθ-nodes are increasing — this result is established in the next
two lemmas.

Lemma 2.2. If j is an integer with0 ≤ j ≤ n, then

∆n,j := (n+ 2)
(
Fn(θj+1/2)− Fn(θj−1/2)

)
= 2 sin θj sin θ−1/2 ×∆∗

n,j,

where

(2.3) ∆∗
n,j := (j − n− 1) +

j∑
i=1

cot θ(2j+2i−3)/4 cot θ(2j−2i−1)/4

+ cot θj−1/4 cot θ−1/2 +
1

2
csc θj−1/4 csc θj+1/4.

Proof. By (2.2),

∆n,j = −2(n+ 2) sin θj sin θ−1/2

+ 2

[
j∑
i=0

sin2 θi
cos θi − cos θj+1/2

−
j−1∑
i=0

sin2 θi
cos θi − cos θj−1/2

]
.

From the trigonometric identity

(2.4)
sin2A

cosA− cosB

=
1

2
sinB

[
cot

(
B − A

2

)
+ cot

(
B + A

2

)]
− cosA− cosB,
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it follows that

j∑
i=0

sin2 θi
cos θi − cos θj+1/2

−
j−1∑
i=0

sin2 θi
cos θi − cos θj−1/2

=
1

2
sin θj+1/2

2j+2∑
i=0
i6=j+1

cot θ(2i−3)/4 −
1

2
sin θj−1/2

2j∑
i=0
i6=j

cot θ(2i−3)/4

− cos θj − (j + 1) cos θj+1/2 + j cos θj−1/2

= cos θj sin θ−1/2

2j∑
i=1

cot θ(2i−3)/4 + (2j + 2) sin θj sin θ−1/2

+
1

2
sin θj+1/2

(
cot θj−1/4 + cot θj+1/4

)
.

Therefore

(2.5) ∆n,j = (4j − 2n) sin θj sin θ−1/2 + 2 cos θj sin θ−1/2

2j∑
i=1

cot θ(2i−3)/4

+ sin θj+1/2

(
cot θj−1/4 + cot θj+1/4

)
.

Next consider

j sin θj + cos θj

2j∑
i=1

cot θ(2i−3)/4

=

j∑
i=1

[
sin θj + cos θj

(
cot θ(2i−3)/4 + cot θ(4j−2i−1)/4

)]
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= sin θj

j∑
i=1

[
1 +

cos θj
sin θ(2i−3)/4 sin θ(4j−2i−1)/4

]

= sin θj

j∑
i=1

cot θ(4j−2i−1)/4 cot θ(2i−3)/4

= sin θj

j∑
i=1

cot θ(2j+2i−3)/4 cot θ(2j−2i−1)/4.(2.6)

Also

sin θj+1/2

(
cot θj−1/4 + cot θj+1/4

)
= 2 sin θj

cos θj sin θj+1/2

sin θj−1/4 sin θj+1/4

= sin θj
2 cos θj+1/4 sin θj+1/4 + sin θ−1/2

sin θj−1/4 sin θj+1/4

= sin θj sin θ−1/2

[
2 cos θj+1/4

sin θj−1/4 sin θ−1/2

+ csc θj−1/4 csc θj+1/4

]
= sin θj sin θ−1/2

[
−2 + 2 cot θj−1/4 cot θ−1/2 + csc θj−1/4 csc θj+1/4

]
.(2.7)

The lemma is now established by substituting (2.6) and (2.7) into (2.5).

Lemma 2.3. If j is an integer with0 ≤ j ≤ (n− 1)/2, then

Fn(θj+1/2) > Fn(θj−1/2).

Proof. By Lemma2.2we need to show that∆∗
n,j > 0, where∆∗

n,j is defined by (2.3).
Now, if 0 < a < π/4 and0 < b < a, then

cot(a+ b) cot(a− b) > cot2 a.
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Also,x csc2 x is decreasing on(0, π/4), socsc2 x > π/(2x) if 0 < x < π/4. Thus

j +

j∑
i=1

cot θ(2j+2i−3)/4 cot θ(2j−2i−1)/4 > j +

j∑
i=1

cot2 θ(j−1)/2

= j csc2 θ(j−1)/2 >
(n+ 2)j

j + 1
,

and so

∆∗
n,j > 1 + cot θj−1/4 cot θ−1/2 +

1

2
csc θj−1/4 csc θj+1/4 −

n+ 2

j + 1

> csc2 θ(4j−3)/8 +
1

2
csc θj−1/4 csc θj+1/4 −

n+ 2

j + 1
.

Becauseθ(4j−3)/8 < π/4, the first term in this expression can be estimated using
csc2 x > π/(2x), while the second term can be estimated usingcsc x > 1/x. There-
fore

∆∗
n,j >

[
n+ 2

j + 5/4
− n+ 2

j + 1

]
+

(n+ 2)2

2π2(j + 3/4)(j + 5/4)

>
n+ 2

(j + 1)(j + 5/4)

[
−1

4
+
n+ 2

2π2

]
.

This latter quantity is positive ifn ≥ 3. Since0 ≤ j ≤ (n−1)/2, the only unresolved
cases are whenj = 0 andn = 1, 2, and it is a trivial calculation using (2.3) to show
that∆∗

n,j > 0 in these cases as well.

We next show that in any interval between successiveθ-nodes,Fn(θ) achieves its
maximum in the right half of the interval.
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Lemma 2.4. If j is an integer with0 ≤ j ≤ (n+ 1)/2, and0 < t < 1/2, then

(2.8) Fn(θj−1/2+t) ≥ Fn(θj−1/2−t).

Proof. If j = (n+1)/2, thenθj−1/2 = π/2, so equality holds in (2.8) becauseFn(θ)
is symmetric aboutπ/2. Thus we can assumej ≤ n/2. For convenience, write
a = j−1/2− t, b = j−1/2+ t. Sincesin(n+2)θa = sin(n+2)θb = (−1)j cos tπ,
it follows from (2.1) thatFn(θb)− Fn(θa) has the same sign as

Gn,j(t) :=
n∑
i=j

sin2 θi
(cos θb − cos θi)(cos θa − cos θi)

−
j−1∑
i=0

sin2 θi
(cos θi − cos θb)(cos θi − cos θa)

.

If j = 0 this is clearly positive, and otherwise

Gn,j(t) >

2j−1∑
i=j

sin2 θi
(cos θb − cos θi)(cos θa − cos θi)

−
j−1∑
i=0

sin2 θi
(cos θi − cos θb)(cos θi − cos θa)

=

j−1∑
i=0

[
sin2 θ2j−i−1

(cos θb − cos θ2j−i−1)(cos θa − cos θ2j−i−1)

− sin2 θi
(cos θi − cos θb)(cos θi − cos θa)

]
.
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We will show that each term in this sum is positive. Becausesin θ2j−i−1 > sin θi,
this will be true if for0 ≤ i ≤ j − 1,

sin θ2j−i−1(cos θi − cos θb)(cos θi − cos θa)

− sin θi(cos θb − cos θ2j−i−1)(cos θa − cos θ2j−i−1) > 0.

By rewriting each difference of cosine terms as a product of sine terms, it follows
that we require

sin θ2j−i−1 sin θ(j+i−1/2+t)/2 sin θ(j+i−1/2−t)/2

− sin θi sin θ(3j−i−3/2+t)/2 sin θ(3j−i−3/2−t)/2 > 0.

To establish this inequality, note that

sin θ2j−i−1 sin θ(j+i−1/2+t)/2 sin θ(j+i−1/2−t)/2

− sin θi sin θ(3j−i−3/2+t)/2 sin θ(3j−i−3/2−t)/2

=
1

2

[
cos θt−1(sin θ2j−i−1 − sin θi)− sin θ2j−i−1 cos θj+i+1/2 + sin θi cos θ3j−i−1/2

]
= cos θt−1 sin θj−i−3/2 cos θj−1/2 −

1

4

[
sin θj−2i−5/2 + sin θ3j−2i−3/2

]
= cos θj−1/2

[
cos θt−1 sin θj−i−3/2 −

1

2
sin θ2j−2i−2

]
= cos θj−1/2 sin θj−i−3/2

[
cos θt−1 − cos θj−i−3/2

]
> 0,

and so the lemma is proved.

The final major step in the proof of the theorem is to show that in each interval
between successiveθ-nodes, the maximum value ofFn(θ) is achieved essentially at
the midpoint of the interval.
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Lemma 2.5. If n, j are integers withn ≥ 2 and0 ≤ j ≤ (n+ 1)/2, then

(2.9) max
θj−1≤θ≤θj

Fn(θ) = Fn(θj−1/2) +O
(
(log n)−1

)
,

where theO ((log n)−1) term is independent ofj.

Proof. By Lemma2.4, it is sufficient to show thatGn,j,t := Fn(θj−1/2+t)−Fn(θj−1/2)
is bounded above by anO ((log n)−1) term that is independent ofj andt for 0 ≤
t ≤ 1/2.

Now, by (2.2) we have

(2.10) Gn,j,t =
2

n+ 2

j−1∑
i=0

[
cos tπ sin2 θi

cos θi − cos θj−1/2+t

− sin2 θi
cos θi − cos θj−1/2

]
+ 2 sin

(n+ 1)tπ

2(n+ 2)
sin

(
(2j + 1)π

2(n+ 2)
− (n+ 1)tπ

2(n+ 2)

)
.

Sincecos tπ ≤ 1− 4t2 if 0 ≤ t ≤ 1/2, then each summation term can be estimated
by

cos tπ sin2 θi
cos θi − cos θj−1/2+t

− sin2 θi
cos θi − cos θj−1/2

≤ −4t2 sin2 θi
cos θi − cos θj−1/2+t

.

From(2x)/π ≤ sin x ≤ x for 0 ≤ x ≤ π/2, it follows that

sin2 θi
cos θi − cos θj−1/2+t

=
sin2 θi

2 sin θ(j+i−1/2+t)/2 sin θ(j−i−5/2+t)/2

≥ 8(i+ 1)2

π2(j − i)(j + i+ 2)
,
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and so
j−1∑
i=0

[
cos tπ sin2 θi

cos θi − cos θj−1/2+t

− sin2 θi
cos θi − cos θj−1/2

]

≤ −32t2

π2

j−1∑
i=0

(i+ 1)2

(j − i)(j + i+ 2)

= −32t2

π2

[
−j − 1

2
+
j + 1

2

2j+1∑
k=1

1

k

]

≤ −16t2

π2
(j + 1) (log(j + 1)− 1) ,(2.11)

where the final inequality follows from

2j+1∑
k=1

1

k
≥ 1 + log(j + 1).

Also,

sin
(n+ 1)tπ

2(n+ 2)
sin

(
(2j + 1)π

2(n+ 2)
− (n+ 1)tπ

2(n+ 2)

)
≤ sin

tπ

2
sin

(2j + 1)π

2(n+ 2)
(2.12)

≤ tπ2(j + 1)

2(n+ 2)
.

We now return to the characterization (2.10) of Gn,j,t. By (2.12), Gn,0,t ≤
π2/(2(n+ 2)). Forj ≥ 1, it follows from (2.11) and (2.12) that

(2.13) Gn,j,t ≤
2π2t(j + 1)

n+ 2

[
1− 16t

π4
log(j + 1)

]
≤ π6

32(n+ 2)

[
j + 1

log(j + 1)

]
,
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where the latter inequality follows by maximizing the quadratic int. On the interval
1 ≤ j ≤ (n+ 1)/2, the maximum of(j + 1)/ log(j + 1) occurs at an endpoint, so

(2.14)
j + 1

log(j + 1)
≤ max

{
2

log 2
,

n+ 3

2 log((n+ 3)/2)

}
.

The result (2.9) then follows from (2.13) and (2.14).
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3. Proof of the Theorem

Since‖Ln‖w = max0≤θ≤π/2 Fn(θ), it follows from Lemmas2.3and2.5that

‖Ln‖w =


Fn
(
π
2

)
+O ((log n)−1) if n is odd,

Fn

(
π(n+1)
2(n+2)

)
+O ((log n)−1) if n is even.

To obtain the asymptotic result (1.5) for ‖Ln‖w we use a method that was introduced
by Luttmann and Rivlin [4, Theorem 3], and used also by Mason and Elliott [5,
Section 9].

If n is odd, then by (2.2) with n = 2m− 1,

Fn

(π
2

)
=

2

2m+ 1

m−1∑
i=0

sin2 θi
cos θi

(3.1)

=
2

2m+ 1

m∑
k=1

[
csc

(k − 1/2)π

2m+ 1
− sin

(k − 1/2)π

2m+ 1

]
,

where the second equality follows by reversing the order of summation. Now,

π

2m+ 1

m∑
k=1

csc
(k − 1/2)π

2m+ 1

=
π

2m+ 1

m∑
k=1

[
csc

(k − 1/2)π

2m+ 1
− 2m+ 1

(k − 1/2)π

]
+

m∑
k=1

1

k − 1/2
.

The asymptotic behaviour asm→∞ of each of the sums in this expression is given
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by

lim
m→∞

π

2m+ 1

m∑
k=1

[
csc

(k − 1/2)π

2m+ 1
− 2m+ 1

(k − 1/2)π

]
=

∫ π/2

0

[
csc x− 1

x

]
dx

= log
4

π

and
m∑
k=1

1

k − 1/2
= 2

2m∑
k=1

1

k
−

m∑
k=1

1

k
= log(4m) + γ + o(1).

Also,

m∑
k=1

sin
(k − 1/2)π

2m+ 1
= csc

π

4m+ 2
sin2 mπ

4m+ 2
=

2m+ 1

π
+O(1).

Substituting these asymptotic results into (3.1) yields the desired result (1.5) if n is
odd.

On the other hand, ifn = 2m is even, then by (2.2) and (2.4),

Fn

(
π(n+ 1)

2(n+ 2)

)
= sin

π

4m+ 4
+

1

m+ 1

m−1∑
i=0

sin2 θi

cos θi − cos (2m+1)π
4m+4

=
1

m+ 1

(
1

2
cos

π

4m+ 4

2m+2∑
i=1

cot
(2i− 1)π

8m+ 8
−

m−1∑
i=0

cos θi

)
+O(m−1).(3.2)
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The sum of the cotangent terms can be estimated by a similar argument to that above,
using ∫ π/2

0

(cotx− x−1) dx = log
2

π
,

to obtain

1

2m+ 2

2m+2∑
i=1

cot
(2i− 1)π

8m+ 8
=

2

π

(
log

16m

π
+ γ

)
+ o(1).

Also,

1

m+ 1

m−1∑
i=0

cos θi =
1√

2(m+ 1)

(
cos

mπ

4m+ 4
csc

π

4m+ 4
−
√

2

)
=

2

π
+O(m−1).

If these asymptotic results are substituted into (3.2), the result (1.5) is obtained ifn
is even, and so the proof of Theorem1.1 is completed.
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