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ABSTRACT. We consider a singular second order differential operAtdefined or0, co[. We

give nice estimates for the kernel which intervenes in the integral transform of the eigenfunction
of A. Using these results, we establish Hardy type inequalities for Riemann-Liouville and Weyl
transforms associated with the operator
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1. INTRODUCTION

In this paper we consider the differential operatoff@mnx|, defined by
& A) d 5

R A(m)%—'—p ’
whereA is a real function defined 0, oo[ , satisfying
A(z) = :1:20‘+1B(x); a > —%

and B is a positive, ever'> function onR such thatB(0) = 1, andp > 0. We suppose that
the functionA satisfies the following assumptions

i) A(z) isincreasing, antim ., A(z) = +oc.
i) A()

A=)
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2 M. DzIRI AND L.T. RACHDI

iii) there exists a constamt> 0, satisfying

g((;c)) =2p— 20;_“ +e %% F(x), for p >0,

B'(x —ox
B((m)) = e % F (1), for p =0,

whereF' is C* on]0, co[, bounded together with its derivatives on the intefwgl o[, zo >
0.

This operator plays an important role in harmonic analysis, for example, many special func-
tions (orthogonal polynomials,...) are eigenfunctions of operators of the same t¥pe as
The Bessel and Jacobi operators defined respectively by

A :d_2+2a+1i_ 0o L
“ da? x dx’ 2
and
A :d—2+((2a+1)cothx+(25+1)tanhx)i+(a+6+1)2
8 2 dx ’
1
@2ﬁ>—§,

are of the type\, with
A(z) = 2% p=0,
respectively
A(z) =sinh®** ™ zcosh® ™ z; p=a+ G+ 1.
Also, the radial part of the Laplacian - Betrami operator on the Riemannian symmetric space,
is of typeA.
The operatoA has been studied from many points of view ([1], [7],/[13],/[14],/[15],/[16]).In
particular, K. Trimeche has proved in |15] that the differential equation

Au(z) = —\u(z), AeC

has a unique solution df, co[, satisfying the conditions(0) = 1, «/(0) = 0. We extend this
solution onR by parity and we denote it by,. He has also proved that the eigenfunctign
has the following Mehler integral representation

SDA($)=/ k(z,t) cos Atdt,
0

where the kernel(zx, t) is defined by

1

k(z,t) = 2h(x,t) + CoA™2 (2)z (2> —12)*72, O<t<u

with .

h(z,t) = l/ W(x, A) cos(At)dA,

IT /o
~ 2l(a+1)
and o
VAER, 2 €R; ¢z, \) = pa(e) — 272 A72(2)ja(A @),
where
Ja(2) = 2T (a + 1)%;—&2)

andJ, is the Bessel function of the first kind and orde([8]).
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HARDY TYPE INEQUALITIES 3

The Riemann - Liouville and Weyl transforms associated with the opefasoe respectively
defined, for all non-negative measurable functigris/

Rumwzl%uﬁﬂmﬁ
and .
WUW%i[k@ﬁﬂﬂﬂﬂm-

These operators have been studied on regular spaces of functions. In particular, in [15], the
author has proved that the Riemann-Liouville transf@ns an isomorphism frord*(RR) (the
space of even infinitely differentiable functions B onto itself, and that the Weyl transform
W is an isomorphism fronD,.(R) (the space of even infinitely differentiable functionsRn
with compact support) onto itself.

The Weyl transform has also been studied on Schwarz spagg ([13]).

Our purpose in this work is to study the operatBrand)V on the spaces&” ([0, oo, A(z)dx)
consisting of measurable functiofison [0, oo[ such that

1

|umﬂz(é|ﬂ@wmw¢ﬁp<m;1<p<m.

The main results of this paper are the following Hardy type inequalities

e Forp >0 andp > max (2,2« + 2), there exists a positive constaii, such that for
all f e L(]0, oo], A(z)dx),

(1.1) IR()lp.a < Cpallfllpa
and for allg € L ([0, o[, A(z)dx),

1
1.2 @ < Coalialion
A(l’) p' A 8 :
wherep’ = ﬁ
e Forp = 0 andp > 2a + 2 there exists a positive constaif , such that[(1]1) and (1.2)
hold.
In (5], [6]) we have obtained (1].1) and (1.2) in the cases
1
Alz) =2 a> )
respectively
1
A(z) = sinh®*™(2) cosh®’ ™ (z); a>[> ~3

This paper is arranged as follows. In the first section, we recall some properties of the eigen-
functions of the operatafA. The second section deals with the study of the behavior of the
kernelh(z,t). In the third section, we introduce the following integral operator

where

e o is a measurable function defined jon1],
e v is a measurable non-negative function]oyo| locally integrable.

J. Inequal. Pure and Appl. Math?(1) Art. 38, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 M. DzIRI AND L.T. RACHDI

Then we give the criteria in terms of the functignto obtain the following Hardy type
inequalities forT,

for all real numbers] < p < g < oo, there exists a positive constafif , such that for all
non-negative measurable functiohandg we have

( /0 ) (Tg;(f(ar)))qu(x)da:); < Cpg ( /0 o f(x))pu(x)dx) ’

In the fourth section, we use the precedent results to establish the Hardy type ineqpalities (1.1)
and [1.2) for the operatof® and\ .

2. THE EIGENFUNCTIONS OF THE OPERATOR A
As mentioned in the introduction, the equation
(2.1) Au(r) = —Nu(z), M eC

has a unique solution d, co|, satisfying the conditions(0) = 1, v/(0) = 0. We extend this
solution onR by parity and we denote it,. Equation[(2.]l) possesses also two solutiops
linearly independent having the following behavior at infinity, (x) ~ ¢(F*~=*)*. Then there
exists a functiorr such that

pA(T) = c(N)pa(w) + c(=A) g ().

In the case of the Bessel operathy, the functionsp,, ¢, andc are given respectively by

(2.2) ja(A\z) = 2°T(a + 1) J(L;(;)ﬁ) Az 40,
ko(idz) = 2°T (a0 + 1)%;—;))?, Ax # 0,

c(A) = 2°T(a + e etz =)\ 5,
whereJ, and K, are respectively the Bessel function of first kind and orgdeand the Mac-

Donald function of ordet.
In the case of the Jacobi operatdy, 5, the functionsp,, ¢, andc are respectively

1 1
o3P (x) = oF) (§(p —iA), E(p—i-i)\), (a+1), —sinh%x)) , x>0,AeC,

: 1 1
@B (z) = (2sinhz) 7 L Fy [ Z(p— 2a —i)), =(p —i\), 1 — i), (sinhz) 2 ) ;
A 2 2

x>0, A€ C— (—iN)
and ,
() = 20~ (o + 1T (i)
ST (3(p—iN)T (3(a=B+1+iN)
where, F7 is the Gaussian hypergeometric function.
From ([1], [2], [15], [16]) we have the following properties:

1) We have:
eForp=0: VYaz2>0, po(z) =1,
e Forp > 0 : there exists a constaht> 0 such that

(2.3) Ve >0, e < po(r) < k(14 x)e .
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HARDY TYPE INEQUALITIES 5

i) For A € R andz > 0 we have

(2.4) [oa(2)] < po(z).
iif) For A € Csuch that3\| < pandx > 0 we havelp, (z)| < 1.
iv) We have the integral representation of Mehler type,
(2.5) Ve >0, VA e C, oa(x) = / k(x,t) cos(At)dt,
0

wherek(z, -) is an even positiv€’> function on| — z, [ with support in[—z, x].
v) For) € R, we haver(—\) = ¢()).
vi) The function|c()\)|~2is continuous oif, +oo[ and there exist positive constamtsky, k-
such that
elf p>0:VAEC, |A >k

B AP < Je(0)[72 < kol AP
elf p>0 :VAeC, |N<k
kA2 < e[ < koA
e lf p=0,a>0:VAeC, |N<Ek
(2.6) R AP < Je(N)]72 < Raf AP
Now, let us put

The equation(2]1) becomes
V() = (G(x) = N)v(z) = 0,

-3 () 36~

1 2

= [0
§(2) = Gla) + 1
Thus from hypothesis of the functiof, we deduce the following results for the function

where

Let

Proposition 2.1.

(1) The functiorg is continuous om0, co|.
(2) There exist > 0 anda € R such that the functiog satisfies

§(2) = = + exp(—da) Fy(a),
where F; is C* on |0, oo[, bounded together with all its derivatives on the interval
[0, 00[ ,z9 > 0.
Proposition 2.2([15]). Let
(27) bl A) = pale) = 2" TEAT (@) ja((A),

wherej, is defined by[(2]2).
Then there exist positive constadtsand C', such that

3

(2.8) Yz >0,VA € R, |z, \)| < C1AT (2)€(x) A2 exp (Cf—) :
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6 M. DzIRI AND L.T. RACHDI

with

/ £(r)dv.

The kernek(z, t) given by the relatlor.S) can be written

(2.9) k(z,t) = 2h(x,t) + C,AZ 7 (x)m? *(2? — t2)a_5, 0<t<uz,
where
(2.10) B, t) = — / (e, 1) cos(M)d,
IT Jo
2l (e + 1)

Co = —F="11,
VIIT (o + 3)
and(z, \) is the function defined by the relatidn (2.7).

Since the Riemann-Liouville and Weyl transforms associated with the opexadoe given
by the kernel, then, we need some properties of this function. But from the reldtioh (2.9) it
suffices to study the kernél

3. THE KERNEL h
In this section we will study the behaviour of the kerhel

Lemma 3.1. For any reala > 0 there exist positive constants (a) ,C5(a) such that for all
x € [0,qal,
Ci(a)z® ™ < A(x) < Cy(a)z® .

From Proposition]1, and [16], we deduce the following lemma.
Lemma 3.2. There exist positive constants, a;, C; and C, such that fof\| > a4
((Cla)z*T2 A2 (2) (ju(Ax) + O(Nz))  for  |Az| < ay

or(z) = C’(a)/\_(O‘J“%)A_%(x) (Crexp —idz + CyexpiAr)
X1+ 0N H+0((M)™h)
L for |Az| > as,

(1) exp (—%/OIB(t)dt) |

Theorem 3.3.For anya > 0, there exists a positive constatit(«, a) such that
Vo<t<az<a; |h(zt)]< Cl(a,a)xo‘_%A_%(x).
Proof. By (2.10) we have fob <t < z,

TS N ER

:—/ x)\|d>\+—/ b(z, \)|dA

(3.1) = Ii(z) + Ix(z),
wherea, is the constant given by Lemrpa B.2.

where

N|=

Cla)=T(a+1)A
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HARDY TYPE INEQUALITIES 7

We put
A@) =22 A3 (2)p(z,N)], 0<z<a AER.
From Propositiof 2]2 the function
(x,A) — fa(z)
is continuous on0, a] x [0, a,]. Then
(32) L) = [ (e Nldr < ClabA-d(a),
0

where a
Co== sup  |[fl2)]

(z,2)€[0,a]x[0,a1]
Let us study the second term

L@ =g [ vl
i) Suppose-3 < o < 1. From inequality[(2.8) we get

I(z) < % %( )é( )/OO Ao exp <02%> dA

al

“}(@)€(x) exp (caﬁﬁfl) b

a1

<CA

w\»—'

Since¢ is bounded o0, co[, we deduce that
(3.3) L(r) < O2,a96a_%14_

This completes the proof in the casg < a < 1.
ii) Suppose now that > 1.
e Leta,,ay be the constants given in Leminal3.2. From this lemma we deduce that there
exists a positive constant; («) such that

(34) Va > %’ A > a; oa(r)] < 01(05)14_%(1’)/\_(0‘—"%)
1

N[

().

On the other hand, the function

OH_%ja(s)

S — S

is bounded o0, co.
Then from equality@?) we have, for>

—/ (2, \)]d) < —/ o )]dAJr%xa*?A Ha )/OO Lo (A2)[dA
Ci(a)

al

< Sate [Txedan geiato) [Tl

ai

(3.5) < Cy()z® 2 A2 (),
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where
Crfe) = )+ 1 [l
(0 —3)1 11 Ja,

e 0 <z <. From Lemm@z and the fact that
Ve €R, |ja(Ar)| <1
we deduce that there exists a positive considntw) such that

V0<r<20<a< 2 e, < Mi(a)r AT @),

1
This involves

M( ) 2% ag
—/ NJdx < S ()<§_“1>
(3.6) < %Ml(a)xa’%fl’%(:c).
Moreover
1 o0
ﬁ?wwww
Ci(a) 1 Oo_al a—l 1 <
< é)A Q(x)/? A (+2)d)\+%a: i 2($)/a2 o (10) |
Cil0) oy (i)(a—é) L [ i
Seonrtie(g)  rpetate) [l
(3.7) < Cyl@)2* 2 A2 ().
From (3.6) and[(3]7) we deduce that
(3.8) V0<x<—--—/ Wz, N)|dA < My(a)z® 2 A2 (x)
where

My(a) = %Ml(a) + Cy(a).
From (3.5),[(3.B) it follows that
VOo<z<a; Izr)< MQ(a)wa_%A_%(:c).
This completes the proof.

O

In order to provide some estimates for the kerhdbr later use, we need the following
lemmas

Lemma 3.4.
i) For p > 0, we have
A(x) ~ e, (2 — +00)
i) For p =0, we have
A(x) ~ 2*t (2 — +00).

This lemma can be deduced from hypothesis of the function

J. Inequal. Pure and Appl. Math?(1) Art. 38, 2006 http://jipam.vu.edu.au/
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Lemma 3.5([2]). For p = 0 anda > % there exist two positive constanty (o) and D («)
satisfying

)
loa(2)] < Dy(a)z® 2 A 2(2), x>0, A> 0.
i)
loa(@)] < Da(a)|eN)| A3 (2), =>1, Az >1
where
A — c(A)
is the spectral function given by (2.6).

Using previous results we will give the behavior of the functiofor large values of the
variablex

Theorem 3.6.Forp =0, a > % and a > 0 there exists a positive constafit, , such that

1

O<t<z, x>a, |h(xt)|< COC’a;L‘O‘_%A_i(x)'

Proof. We have

Wz, 1) = % /0 " (a A)] cos(M)dA,

then
(3.9) |h(:c,t)]§%/ b(z, \) \d)\——/ lb(z, \) de—/ b, M|,
0
From Propositioh 2|2 and the fact that> § we get
C 1 ~ o 3
—/ (2, IdA < A5 (@)é(@) exp (02(5(1;))/ A3 A,
1
Since the functio is bounded ono, oo, we deduce that there exists > 0 verifying
(3.10) —/ bz, N|dA < daz® 2 A72 ().

On the other hand, we have

1 [t 1 [t 1 .1 1 !
il < = — otz A3 ; .
/0 |h(x, N)|dX\ < /o loa(z)|d\ + =292 A (93)/0 |7a(Ax)|dA

However,
1 [t 1 [= 1 [t
i | @i =g [Cie@in s g [ e

from Lemmg 3.5 i) we have

(3.11) L / oa()lir < Tao—b Al (o),

J. Inequal. Pure and Appl. Math?(1) Art. 38, 2006 http://jipam.vu.edu.au/
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10 M. DzIRI AND L.T. RACHDI

Furthermore from Lemmja 3.5 ii) and the relatipn {2.6) it follows that there edigts) > 0
such that

1 1 1
1 [e@lar < Bz [aerian

< dQ a)A_%<I‘)/ )\—(a—&-%)d)\
1 1
d 1 1
(3.12) < L.olxafifff(x).
(o —3)
The theorem follows from the relatioris (B.9), (3.10), (8.11) &nd {3.12). O

Theorem 3.7.For p > 0 anda > 1 there exists a positive constaflf, , such that
VOo<t<uz xz>a; |h(zt)]< Cg(a,a):z:VA’%(x),
wherey = max (1,a + 1)..
Proof. This theorem can be obtained in the same manner as Th¢orem 3.6, using the properties
(2.3) and[(2.B). O
4. HARDY TYPE OPERATORS T,

In this section, we will define a class of integral operators and we recall some of their prop-
erties which we use in the next section to obtain the main results of this paper.
Let

©:]0,1] — ]0,00]

be a measurable function, then we associate the integral op&iadefined for all non-negative
measurable functiong by

Vo> 0 To(f)(x) = /Oxgo <—) Fewt)dt

where
e v is a measurable non negative function|oypo[ such that

(4.1) Ya > 0, / v(t)dt < oo
0

and
e 4 is a non-negative function df, co| satisfying

b
4.2) V0<a<hb, / p(t)dt < oo.

These operators have been studied by many authors. In particular, in [5], seelalso([6], [10],
[11]), we have proved the following results.

Theorem 4.1. Let p, ¢ be two real numbers such that
l<p<g<oo.

Let » and 1. be two measurable non-negative functions|@mo|, satisfying [(4.ll) and (4]2).
Lastly, suppose that the function

¢ 10,1 — 0, 00]

J. Inequal. Pure and Appl. Math?(1) Art. 38, 2006 http://jipam.vu.edu.au/
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is continuous non increasing and satisfies

Vo, y €]0,1[,  ¢(zy) < D(e(z) + ¢(y))
whereD is a positive constant. Then the following assertions are equivalent
(1) There exists a positive constari,, such that for all non-negative measurable functions

f:

([ mneuei) <. ([ <f<x>>py<x>dx>;

(2) The functions

and

are bounded offf), oo[, wherep’ = -£;.

Theorem 4.2. Letp andg be two real numbers such that

l<p<g<x

andy, v two measurable non-negative functions|@mo|, satisfying the hypothesis of Theorem
4.1.
Let
¢:]0,1[ — ]0,00]
be a measurable non-decreasing function.
If there exists? € [0, 1] such that the function

1
7

([ GO o) ([ )" o)

is bounded o010, oo, then there exists a positive constar)t, such that for all non-negative
measurable functiong, we have

( | @y M(x)da:) oy ( Ia <f<w>>%<x>dx)i

wherep’ = p%l.

The last result that we need is:

Corollary 4.3. With the hypothesis of Theor¢ml4.1 apd= 1, the following assertions are
equivalent:

(1) there exists a positive constafif , such that for all non-negative measurable functions
f we have

(/OOO(H(f)(x))qu(:c)d:c); <C,, (/Ooo(f(ff))pl/(x)dx) 3

J. Inequal. Pure and Appl. Math?(1) Art. 38, 2006 http://jipam.vu.edu.au/
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12 M. DzIRI AND L.T. RACHDI

(2) The function

3

I(r) = ( / h ,u(x)dx); ( /0 ' I/(x)dx)

is bounded on0, oo,
whereH is the Hardy operator defined by

Vo >0, H(f)(z)= /0 " Rt

5. THE RIEMANN - LIOUVILLE AND WEYL TRANSFORMS ASSOCIATED WITH THE
OPERATOR A

This section deals with the proof of the Hardy type inequalifieg (1.1)[and (1.2) mentioned in
the introduction.
We denote by

o 17 ([0,00[, A(z)dz); 1 < p < oo, the space of measurable functionsi@mo|, satisfy-
ing
I£la = ([ @rawas) <o
0

e R, the operator defined for all non-negative measurable funciidns

Ve >0, Rolf)(x) / (e, 0) f(0)dt,

wherefh is the kernel studied in the third section.
e R, the operator defined for all non-negative measurable functidns

2F(Oz —|— 1) 1 1

V>0, Ri(f)(z)= VI (o l)xaﬁA*é(x) /:(xz — )75 f(1)dt.

Definition 5.1.

(1) The Riemann-Liouville transform associated with the operata defined for all non-
negative measurable functioyion |0, co[ by

R(f)(x) = / (e, 0) f(0)dt.

(2) The Weyl transform associated with operators defined for all non-negative measur-
able functionsf by

WO = [ ka5 Aw)ds
wherek is the kernel given by the relatiop (2.5).

Proposition 5.1.

Q) Forp>0,a> —% andp > max(2, 2« + 2) there exists a positive constaft(«, p)
such that for allf € L?([0, co[, A(z)dx),

IRo(F)llp.a < Crle, )| l]p,a

2 For p=0, a> % andp > 2« + 2, there exists a positive constatit(«, p) such that
forall f € LP(]0, oo[, A(x)dx)

IRo(F)lp.a < Cola, p)l|fllp.a-

J. Inequal. Pure and Appl. Math?(1) Art. 38, 2006 http://jipam.vu.edu.au/
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Proof. (1) Suppose that > 0 andp > max(2, 2« + 2). Let
v(r) = AP (x)
and
p(z) = Cy(, @)z~ A5 (2)1)9 oy () + Colcr, a)a?? A5 (2)1 g nef(2),

with a > 1, Ci (e, a), C2(a, a) andy are the constants given in Theorem|3.3 and Theo-
rem[3.T.
Then
v(x) < my(a,p)ee i)
and
() < ma(a, p)a® .
These inequalities imply that

b
Vb > 0; / v(x)dr < oo,
0

b
VO <b < b / p(z)dr < oo

/r ) ()
p)

< d:c> ’ (/ u(x)dm) ’
0
< (mz(a, / xz"‘“_pdx)p (m1(a,p)/ x(2“+1)(1_p/)d$>p
r 0
<

(ms(a, p))7 (my (o, p))7

(p — 20 — 2)7 ((2a + 1)(1 — p/) + 1)7
_ (maf0,p))* x (0 — Vma(a,p))?

p— 20 —2 '

From Corollany 4.B, there exists a positive constapt, such that for all non-negative
measurable functiongwe have

a

=

nd
I(r)

=

=

(5.1) ([“otowrn@ar) <o ([ Oo(g(x))pu(m)da:)’l’ ,

with

Now let us put

7)) = (5

then we have

)’1’ | s

o)) = (55) T

where

J. Inequal. Pure and Appl. Math?(1) Art. 38, 2006 http://jipam.vu.edu.au/
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14 M. DzIRI AND L.T. RACHDI

From inequality[(5.]1), we deduce that for all non-negative measurable fungtions
have

(5.2 ([Tatnwrami) < e ([ Geraaa)
On the other hand from Theorems]3.3 3.7 we deduce that the function
Ro(£)() = [ hla.t) (0
0

is well defined and we have

(5.3) [Ro(f)(x)] < T([fD ().
Thus, the relations (5.2) and (b.3) imply that

([ matnrawis) < ([T i@rawas) .

which proves 1).
(2) Suppose that = 0 anda > 5. From Theoremss 33 afnd 8.6 we have

VO<t<az |h(tz)]<Cr*3A73(x).
Therefore if we take

p(x) = 272 AE (2)
and
v() = A"V (2),

we obtain the result in the same manner as 1).
0

Proposition 5.2. Suppose thaP% <a< %, p = 0 and that there exists a positive constant
such
Vo<t<z, z>a, h(zt)=0.

Then for allp > 2a + 2, we can find a positive constaft, , satisfying
Vf e LP([0, 00, A(x)dz);  [[Ro(f)llp.a < Coall fllp.a-

Proof. The hypothesis and Theor¢m|3.3 imply that there exists a positive consgtaoh that
Vo<t<a |t z)] <Ca, a)x“_%A_%(x)l]oﬂ} ().

Therefore, if we take
p(z) = C(a, a)xp("‘_%)Al_g(x)l]o,a] (x)
and
v(z) = AP (2)
then, we obtain the result using a similar procedure to that in Propgsjtion 1, 2). O

Now, let us study the operat®; defined for all measurable non-negative functigrisy
Ri(f)(z) = Coz2 A3 (z) / (2® — 2)°7 2 f(t)dt,
0

where
2I'(a + 1)

Co = UMt )
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Proposition 5.3.

(1) Fora > —%, p > 0andp > max(2, 2« + 2), there exists a positive constafi , such
that for all f € LP([0, +o0[, A(x)dz), we have

IR (Dllp.a < Cpallfllp.a-

(2) For a > —%, p = 0andp > 2a + 2 there exists a positive constaflf, , such that for
all f e L*([0, +o0[, A(x)dz), we have

IR (Dllp.a < Cpallfllp.a-

Proof. Let T, the Hardy type operator defined for all non-negative measurable fungtiops

T = [ o (1) rovvar,
where
ple) = (1—a?)"2
and

viz) = A" (z).
Then for all non-negative measurable functiginsve have

(5.4) Ri(f)(2) = Cox™ 2 A72 ()T, (g) (),
where
g(z) = f(2)A" ().
Let
plx) = 27D A (),

then, according to the hypothesis satisfied by the functipit follows that there exist positive
constantg’;, Cs such that for alky > —% andp > 0 we have

(5.5) Ve >0; 0<p(r)<Ca®t?

(5.6) Yz >0; 0<uv(z) < Chreth—r),

Thus from the relations (5.5) and (5.6) we deduce thatfor 3, p > 0 andp > 2a + 2, we
have

e the functiony is continuous and non-increasing jon1].
e the functionsp, v andy satisfy the hypothesis of Theor¢m4.1.
e the functions

1
7

VRS
%\_,
8
=
—~
=
QL
3
N——
3 =
VR
o\ﬁ
~~
AS)
~~
=8
N~
~—
’E\
<
—~
=
QU
3
N——
N

F(r)=

and

are bounded ofv, co].
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Hence from Theorern 4.1, there exigts, > 0 such that for all measurable non-negative
functionsf we have

</OOO(Tw(f(x)))pu<x)dx) = Cro </Ooo(f(l’>>pu(1:)dl’>; .

This inequality together with the relation (b.4) lead to

(/Om(Rl(f(x)))pA(x)dx); = Cpa (/ooo(f(w))pA(a:)dw);

which proves the Propositi@ 1, 1) in the case %
For—1 < a < 1 andp > 2 we have

e the functiony is continuous and non-decreasing]oni|.
e if we pick

L-p(z+a)\ . 1
B e }max (0,—2 ),mln (1,—){
(5 —a) p(z — )
and using inequalitie$ (3.5) ar{d (b.6), we deduce that the function

)= ([ (o (5)) "wtoar)” ([ (o (5)" " stras)

is bounded on0, co|.

Consequently, the result follows from Theorpm 4.2 and relafion (5.4).
2) can be obtained in the same fashion as 1). O

1
Y

Now we will give the main results of this paper.

Theorem 5.4.

(1) Fora > —31, p > 0andp > max(2,2a + 2), there exists a positive constafi ., such
that for all f € L*([0, oo|, A(z)dzx),

||R(f)Hp,A < Cp,a||f||p,A'

(2 Fora>—3, p> O andp > max(2 2a+ 2), there exists a positive constafif, , such

that for all g € L”'( (x)dz),

Proof. 1) follows from Propositiof|1, 1) and Propositioh 1, 1), and the fact that
R(f) = Ro(f) + Ru(f)

2) follows from 1) and the relations

< Cp,aHng’,A

wherep’ = z%

57 lallya = o [ flgle)ale)ds
for all measurable non-negative functiofsndg
5.8) | R@s@) A = [T Wi fa)is
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Theorem 5.5.

(1) Fora > %, p = 0andp > 2a + 2 there exists a positive constafif , such that for all
f € LP([0, oo, A(x)dx)

IR(Pllp.a < CpallFllp.a-

(2) For a > %, p = 0and p > 2a + 2 there exists a positive constaf , such that for
all g € L7 ([0, o[, A(x)dx)

< Cp7oz||9||p’7A
p',A

Hﬁ)”’(g)

wherep’ = I%.
(3) For -1 < o < 1, p = 0, p > 2a + 2 and under the hypothesis of Proposit|on|5.2, the
previous results hold.

Proof. This theorem is obtained by using Propositipps 1], 2), 5.7 &and 1, 2). O
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