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ABSTRACT. We present bounds and approximations for the smallest positive zero of the La-
guerre polynomialL(α)

n (x) which are sharp asα → −1+. We indicate the applicability of the
results to more general functions including theq-Laguerre polynomials.
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1. I NTRODUCTION

The Laguerre polynomials are given by the explicit formula [13]

(1.1) L
(α)
n (x) =

n∑
k=0

(
n + α

n− k

)
(−x)k

k!
=

(
n + α

n

)[
1 +

n∑
k=1

(
n
k

)
(−x)k

(α + 1)k

]
,

valid for all x, α ∈ C (with the understanding that the second sum is interpreted as a limit when
α is a negative integer), where

(α + 1)k = (α + 1)(α + 2) · · · (α + k).

They satisfy the three term recurrence relation

(1.2) xL
(α)
n (x) = −(n + 1)L

(α)
n+1(x) + (α + 2n + 1)L

(α)
n (x)− (α + n)L

(α)
n−1(x),

with initial conditionsL
(α)
−1 (x) = 0 andL

(α)
0 (x) = 1 for all complexα andx. Whenα > −1,

this recurrence relation is positive definite and the Laguerre polynomials are orthogonal with
respect to the weight functionxαe−x on [0, +∞). From this it follows that the zeros ofL(α)

n (x)
are positive and simple, that they are increasing functions ofα and they interlace with the zeros
of L

(α)
n+1(x) [13]. Whenα ≤ −1 we no longer have orthogonality with respect to a positive

weight function and the zeros can be non-real and non-simple.
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Our purpose here is to present bounds and approximations for the smallest positive zero of
L

(α)
n (x), α > −1, which are sharp asα → −1+. The same kinds of results hold for more

general functions including theq-Laguerre polynomialsL(α)
n (x; q), 0 < q < 1 which satisfy

L
(α)
n (x(1− q)−1; q) → L

(α)
n (x) asq → 1−.

2. SMALLEST ZEROS OF L AGUERRE POLYNOMIALS

In the caseα > −1, successively better upper and lower bounds for the zeros of Laguerre
polynomials can be obtained by the method outlined in [7]. They follow from the knowledge
of the coefficients in the explicit expression forL

(α)
n (x). However, they are obtained more

conveniently by noting thaty = L
(α)
n (x) satisfies the differential equation

(2.1) xy′′ + (α + 1− x)y′ + ny = 0

and hence thatu = y′/y satisfies the Riccati type equation

(2.2) xu′2 + (α + 1− x)u + n = 0.

If we write

(2.3) y =

(
n + α

n

) n∏
i=1

(
1− x

xi

)
,

where the zerosxi satisfy0 < x1 < x2 < · · · , then

(2.4) u =
n∑

i=1

1

x− xi

= −
∞∑

k=0

Sk+1x
k,

where

(2.5) Sk =
n∑

i=1

x−k
i , k = 1, 2, . . . .

Substituting in (2.2), we get

(2.6)
∞∑

k=1

xk

(
Sk +

k∑
i=1

SiSk−i+1

)
− (α + k + 1)

∞∑
k=0

Sk+1x
k + n = 0,

from which it follows by comparing coefficients that

(2.7) S1 =
n

α + 1
, Sk+1 =

Sk +
∑k

i=1 SiSk−i+1

α + k + 1
, k = 1, 2. . . .

For the caseα > −1, the zeros are all positive and by the method outlined in [7, §3], we have

(2.8) S−1/m
m < x1 < Sm/Sm+1, m = 1, 2, . . . .

These upper and lower bounds give successively improving [7, §3] upper and lower bounds for
x1. For example, forα > −1, n ≥ 2, we get, for the smallest zerox1(α),

(2.9)
1

n
<

x1(α)

α + 1
<

(α + 2)

(α + 1 + n)
,

(2.10)

[
α + 2

n(n + α + 1)

] 1
2

<
x1(α)

α + 1
<

(α + 3)

(α + 1 + 2n)
,
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where the upper bound recovers that in [13, (6.31.12)], and[
(α + 2)(α + 3)

n(n + α + 1)(2n + α + 1)

] 1
3

<
x1(α)

α + 1

<
(α + 2)(α + 4)(α + 2n + 1)

α3 + 4α2 + 5α + 2 + 5nα2 + 16nα + 11n + 5n2α + 11n2
.(2.11)

Further such bounds may be found but they become successively more complicated. From the
higher estimates we can produce a series expansion valid for−1 < α < 0. The first five terms,
obtained with the help of MAPLE, are:

(2.12) x1(α) =
α + 1

n
+

n− 1

2

(
α + 1

n

)2

− n2 + 3n− 4

12

(
α + 1

n

)3

+
7n3 + 6n2 + 23n− 36

144

(
α + 1

n

)4

− 293n4 + 210n3 + 235n2 + 990n− 1728

8640

(
α + 1

n

)5

+ · · · .

It is known [13, Theorem 8.1.3] that

(2.13) lim
n→∞

n−αL(α)
n

( z

n

)
= z−α/2Jα(2z1/2),

and hence thatx1 ∼ j2
α1/(4n) asn →∞, with the usual notation for zeros of Bessel functions.

Hence we get

(2.14) j2
α1 ∼ 4(α + 1)

[
1 +

α + 1

2
− (α + 1)2

12
+

7(α + 1)3

144
− 293(α + 1)4

8640
+ · · ·

]
,

which agrees with the expansion of [12] forjα1.
It should be noted that the inequalities obtained here are particularly sharp forα close to−1

but not for largeα. Krasikov [10] gives uniform bounds for the extreme zeros of Laguerre and
other polynomials.

The series in (2.12) converges for|α + 1| < 1. This suggests that we consider the case
−2 < α < −1, when the zeros are still real butx1 < 0 < x2 < x3 < · · · [13, Theorem 6.73].
In accordance with [7, Lemma 3.3], the inequalities forx1 are changed, sometimes reversed.
For example, we have, forn ≥ 2,

(2.15)
1

n
>

x1(α)

α + 1
>

[
α + 2

n(n + α + 1)

] 1
2

, −2 < α < −1.

3. q EXTENSIONS

In extending the previous results, it is natural to consider some of theq-extensions of the
Laguerre polynomials. For this purpose we need the standard notations [4, 9] for the basic
hypergeometric functions:

1φ1

(
a
b

∣∣∣∣ q ; z

)
=

∞∑
k=0

(a; q)k

(b; q)k

q(
n
2) (−z)k

(q; q)k

,

2φ1

(
a, b
c

∣∣∣∣ q; z

)
=

∞∑
k=0

(a; q)k(b; q)k

(c; q)k

zk

(q; q)k

,
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where(a; q)n denotes theq-shifted factorial

(a; q)0 = 1, (a; q)n = (1− a)(1− aq) · · · (1− aqn−1),

so that(1− q)−k(qα; q)k → (α)k asq → 1−.
We seek appropriateq-analogues of the results of Section 2, which will reduce to those results

when q → 1. Different q-analogues are possible; we have found that a good approach is
through what we now call thelittle q-Jacobi polynomialsintroduced by W. Hahn [6] (see also
[9, (3.12.1), p.192]):

(3.1) pn(x; a, b; q) = 2φ1

(
q−n, abqn+1

aq

∣∣∣∣ q; xq

)
.

Hahn proved the discrete orthogonality [4, (7.3.4)]

(3.2)
∞∑

k=0

pm(qk; a, b; q)pn(qk; a, b; q)
(bq; q)k

(q; q)k

(aq)k

=
(q; q)n(1− abq)(bq; q)n(abq2; q)∞(aq)−n

(abq; q)n(1− abq2n+1)(aq; q)n(aq; q)∞
δm,n,

where0 < q, aq < 1 andbq < 1. In this case the orthogonality measure is positive and the
zeros of the polynomials lie in(0,∞). For a detailed study of the polynomialspn(x; a, b; q), we
refer to the article of Andrews and Askey [2], and the book of Gasper and Rahman [4, §7.3]. In
general, the polynomials give aq-analogue of the Jacobi polynomials but, forb < 0, they give
a q-analogue of the Laguerre polynomials; see (3.6) below.

From (3.1), we get [4, Ex.7.43, p. 210]

lim
b→∞

pn

(
−(1− q)x

bq
; qα, b; q

)
= 1φ1

(
q−n

qα+1

∣∣∣∣ q; − x(1− q)qn+α+1

)
=

L
(α)
n (x; q)

L
(α)
n (0; q)

,(3.3)

with the notation of [11, 8, 4] for theq-Laguerre polynomialsL(α)
n (x; q). This definition

(3.4) L(α)
n (x; q) =

(qα+1; q)n

(q; q)n
1φ1

(
q−n

qα+1

∣∣∣∣ q; − x(1− q)qn+α+1

)
,

gives [11]

(3.5) lim
q→1−

L(α)
n ((1− q)−1x; q) = L(α)

n (x).

(We remark that the definition ofL(α)
n (x; q) given in [9, p. 108] hasx replaced by(1− q)−1x.)

On the other hand, again from (3.1), we have

(3.6) lim
q→1−

pn

(
(1− q)x; qα,−qβ; q

)
=

n∑
k=0

(−n)k(2x)k

(1 + α)kk!
=

L
(α)
n (2x)

L
(α)
n (0)

.

This is reported in [4, (7.3.9)], but with a small error,L
(α)
n (x) rather thanL(α)

n (2x) on the right-
hand side. The relation (3.6) shows that littleq-Jacobi polynomials also provide aq-analogue
of the Laguerre polynomials. However, we use the name “q-Laguerre polynomials" only for
L

(α)
n (x; q), as defined in (3.4).
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The Wall, or little q-Laguerre, polynomialsWn(x; a; q) ([3], [9, 3.20.1]) are the particular
caseb = 0 of pn(x; a, b; q):

(3.7) Wn(x; a; q) = pn(x; a, 0; q) = 2φ1

(
q−n, 0
a, q

∣∣∣∣ q ; qx

)
,

where0 < q < 1 and0 < aq < 1. From the Wall polynomials, we can again obtain the
q-Laguerre polynomialsL(α)

n (x; q) using [9, p. 108] (changed to our notation):

(3.8) Wn(x; q−α
∣∣q−1 ) =

(q; q)n

(qα+1; q)n

L(α)
n ((1− q)−1x; q).

From the relation (3.6), we have

(3.9) lim
q→1−1

Wn((1− q)x; qα; q) =
L

(α)
n (x)

L
(α)
n (0)

.

Here we present in diagrammatic form the relations between the various polynomials consid-
ered:

pn(x; a, b; q)

(3.6)
��

��
��

��
�

����
��

��
��

�

(3.3)
��

b=0
OOOOO

''OOOOO

L
(α)
n (x; q)

(3.5)
rrr

r

xxrrr
r

Wn(x; a; q)(3.8)oo

(3.9)
hhhhhhhhhhh

sshhhhhhhhhhh

L
(α)
n (x)

4. BOUNDS FOR q EXTENSIONS

In finding bounds for the zeros of these polynomials, we no longer have available the dif-
ferential equations method used in Section 2. However we can still apply the Euler method,
described in [7], based on the explicit expressions for the coefficients in the polynomials to
obtain bounds for the smallest positive zero of the littleq-Jacobi polynomials. We consider the
function

pn((1− q)x; a, b; q) = 1 +
∞∑

k=1

akx
k.

where

(4.1) ak =
(q−n; q)k(abqn+1; q)k

(q; q)k(aq; q)k

qk(1− q)k

We can findS1, S2, . . . , defined as in (2.5), in terms ofa1, a2, . . . . As in Section 2, as long as
0 < q, aq < 1, b < 1, we have0 < x1 < x2 < · · · . Using [7, (3.4),(3.7)], we haveS1 = −a1,
and

Sn = −nan −
n−1∑
i=1

aiSn−i.

Using inequalities (2.8) form = 1, we obtain the following bounds for the smallest positive
zerosx1(a, b; q) of pn(x(1− q); a, b; q), where we assume that0 < q, aq < 1, b < 1:

(4.2)
1

(1− qn)(1− abqn+1)
<

x1(a, b; q)

qn−1(1− aq)
<

(1 + q)(1− aq2)

(1− q)P
,
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where

P = 1 + aq2 + qn − 2aqn+1 − aqn+2 − abqn+1

− 2abqn+2 + abq2n+1 + a2bqn+3 + a2bq2n+3.

Form = 2 we get improved lower and upper bounds:[
(1 + q)(1− aq2)

(1− qn)(1− q)(1− abqn+1)P

]1/2

<
x1(a, b; q)

qn−1(1− aq)

<
(1− q3)(1− aq3)P

σ1 + σ2 + σ3

,(4.3)

where

(4.4) σ1 = 3q3(1− aq)2(1− qn−1)(1− qn−2)(1− abqn+2)(1− abqn+3),

(4.5) σ2 = (1− q3)(1− aq)(1− aq3)(1− qn)(1− abqn+1)P

and

(4.6) σ3 = −q(1 + q + q2)(1− aq)(1− aq3)(1− qn)(1− qn−1)(1− abqn+1)(1− abqn+2).

As observed earlier, with the help of (3.6) we should be able to derive corresponding inequalities
for zeros ofL(α)

n (x). If we then make the replacementsa → qα, b → −qβ in the modified (4.2)
and (4.3) we recover the inequalities (2.9) and (2.10) forL

(α)
n (x) by taking limitsq → 1−.

For the case0 < q, aq < 1, the bounds for the smallest zerox1(a; q) of the Wall polynomial

(4.7) Wn((1− q)x; a; q) = 2φ1(q
−n, 0; aq; q(1− q)x),

are obtained from (4.2) and (4.3) by substitutingb = 0.
Finally, we record the bounds for the smallest zerox1(α; q) for the q-Laguerre polynomial

L
(α)
n (x; q). This can be done either by a direct calculation from the1φ1 series in (3.3) or by

obtaining them as a limiting case of littleq-Jacobi polynomials, employing (3.7), (4.2) and
(4.3). We obtain, for0 < q < 1, α > −1:

(4.8)
1

1− qn
<

qα+1x1(α; q)

1− qα+1
<

(1 + q)(1− qα+2)

(1− q)R
,

whereR = 1 + 2q − qn+α+2 − qn − qα+2, and

(4.9)

[
(1 + q)(1− qα+2)

(1− q)(1− qn)R

] 1
2

<
qα+1x1(α; q)

1− qα+1
<

(1− qα+3)(1− q)(1 + q + q2)R

T

with

(4.10) T = 3q6(1− qn−1)(1− qn−2)(1− qα+1)2

+ (1− qn)(1− q)(1− qα+3)(1 + q + q2)R

− q2(1− qn)(1− qn−1)(1− qα+1)(1− qα+3)(1 + q + q2).

From (4.8) and (4.9) we can recover the bounds (2.9) and (2.10) for the smallest zerox1 of
Laguerre polynomialsL(α)

n (x) by taking limitsq → 1−.
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