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1. The Inequality

The purpose of this contribution is to prove the following.

Theorem 1.1. Letψ be a real-valued smooth localized function with non-zero inte-
gral,

(1.1)
∫

R
ψ(x) dx = M 6= 0,

satisfying

(1.2)
∫

R
|xi∂jψ(x)| dx ≤ C, for all i, j ≥ 0.

Then there exists a uniform constantC∗ > 0 such that

(1.3) sup
x
|u(x)| ≤ C∗ ‖u‖1/2

L2 ‖ux − αψ‖1/2

L2 ,

for all u ∈ H1(R) and allα ∈ R.

Clearly, this result is an extension of the classical Sobolev inequality

‖u‖2
∞ ≤ 2‖u‖L2‖ux‖L2 .

Assumingψ satisfies (1.1) and (1.2), inequality (1.3) is valid for anyu ∈ H1(R)
and allα ∈ R; here the constantC∗ > 0 is independent ofu andα, but depends on
ψ. This result may be useful while studying the asymptotic behavior of solutions to
evolution equations that decay to a manifold spanned by a certain functionψ (see
Section2 below). It is somewhat surprising that the result holds for allα ∈ R. The
crucial fact is that the antiderivative ofψ cannot be inL2, thanks to hypothesis (1.1).
In this fashion we avoid the caseux ∈ span{ψ}.
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We would like to establish (1.3) by extremal functions. Since the solution to
the minimization problem associated with (1.3) may not exist, our approach will
consist of studying a parametrized family of inequalities for which we can explicitly
compute extremal functions for each parameter value.

Theorem 1.2.Under the assumptions of Theorem1.1, there exists a constantc∗ > 0
such that

(1.4) c∗ ≤ ρ−1‖u‖2
L2 + ρ‖ux − αψ‖2

L2 ,

for all ρ > 0, α ∈ R, andu in a dense subset ofH1(R) with u(0) = 1. Moreover,
c∗ is also uniform under translatioñψ(·) = ψ(· + y), wherey ∈ R (even though
hypothesis(1.2) is not uniform by translation).

Proposition 1.3. Theorem1.2 implies Theorem1.1.

Proof. It suffices to show that

(1.5) |u(0)| ≤ C∗‖u‖1/2

L2 ‖ux − αψ‖1/2

L2 ,

with uniformC∗ > 0, also by translation. Indeed, we can always take, for anyy ∈ R,
ũ(x) := u(x+ y), ψ̃(x) := ψ(x+ y), yielding

|u(y)| = |ũ(0)| ≤ C∗‖ũ‖1/2

L2 ‖ũx − αψ̃‖1/2

L2

= C∗‖u(·+ y)‖1/2

L2 ‖ux(·+ y)− αψ(·+ y)‖1/2

L2

= C∗‖u‖1/2

L2 ‖ux − αψ‖1/2

L2 , ∀y ∈ R,

by uniformity ofC∗ and by translation invariance ofLp norms. This shows (1.3).
Now assume Theorem1.2 holds. If u(0) = 0 then (1.5) holds trivially. In the

caseu(0) 6= 0, consider̃u = u/u(0), α̃ = α/u(0) and apply (1.4),

c∗u(0)2 ≤ ρ−1‖u‖2
L2 + ρ‖ux − αψ‖2

L2 .
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Minimizing overρ yieldsρ = ‖u‖L2/‖ux − αψ‖L2 , so that

c∗u(0)2 ≤ 2‖u‖L2‖ux − αψ‖L2 .

This proves (1.5) with C∗ =
√

2/c∗.

Therefore, we are left to prove Theorem1.2.

1.1. Proof of Theorem1.2

Without loss of generality assume that

(1.6) ‖ψ‖L2 = 1.

Sinceu ∈ H1, we may use the Fourier transform, and the constraintu(0) = 1
becomes

(1.7)
∫

R
û(ξ) dξ = 1,

up to a constant involvingπ. Note that the expression on the right of (1.4) defines a
family of functionals parametrized byρ > 0,

(1.8) J ρ[u] := ρ−1

∫
R
|û(ξ)|2 dξ + ρ

∫
R
|iξû(ξ)− αψ̂(ξ)|2 dξ.

We shall see by direct computation that the minimizeru exists and is unique (given
by a simple formula) for eachρ andα. Denoteû = v + iw, ψ̂ = η + iθ (real and
imaginary parts). Then each functional (1.8) can be written as

(1.9) J ρ[u] = ρ−1

∫
R
(v2 + w2) dξ

+ ρ

∫
R
(ξ2(v2 + w2) + 2αξ(wη − vθ) + α2(η2 + θ2)) dξ.
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The constraint (1.7) splits into
∫
v dξ = 1 and

∫
w dξ = 0. Hence, we have the

following minimization problem

min
u∈H1(R)

J ρ[(v, w)]

subject to

I1[(v, w)] =

∫
R
v dξ − 1 = 0,

I2[(v, w)] =

∫
R
w dξ = 0,

for eachρ > 0 andα ∈ R. The Lagrange multiplier conditions

1
2
D(h1,0)J [(v, w)] = µD(h1,0)I1[(v, w)],

1
2
D(0,h2)J [(v, w)] = νD(0,h2)I2[(v, w)],

yield ∫
R
(ρ−1v + ρξ2v − ραθξ)h1 dξ = µ

∫
R
h1 dξ,∫

R
(ρ−1w + ρξ2w + ραηξ)h2 dξ = ν

∫
R
h2 dξ,

for some(µ, ν) ∈ R2 and for all test functions(h1, h2). Therefore

ρ−1v + ρξ2v − ραξθ = µ,

ρ−1w + ρξ2w + ραξη = ν.
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Denoteλ = µ + iν. Multiply the second equation byi, and solve forv andw to
obtain

(1.10) û =
ρλ− iαρ2ξψ̂(ξ)

1 + ρ2ξ2 .

Equation (1.10) is, in fact, the expression for the minimizer. Whence, we can com-
pute the minimum value ofJ ρ for eachρ > 0, in terms ofλ andα. Substituting
(1.10) one obtains (after some computations),

ρ−1|û|2 + ρ|iξû− αψ̂|2 =
ρ(|λ|2 + α2|ψ̂|2)

1 + ρ2ξ2 .

Hence we easily find that the minimum value ofJ ρ is given by

J ρ
min = |λ|2

∫
R

ρdξ

1 + ρ2ξ2 + α2ρ

∫
R

|ψ̂(ξ)|2

1 + ρ2ξ2 dξ

= π|λ|2 + α2Γ(ρ),(1.11)

where

(1.12) Γ(ρ) := ρ

∫
R

|ψ̂(ξ)|2

1 + ρ2ξ2 dξ.

Now we find the Lagrange multiplierλ in terms ofα using the constraint (1.7),
which implies

1 = λ

∫
R

ρdξ

1 + ρ2ξ2 − αρ2

∫
R

iξψ̂(ξ)

1 + ρ2ξ2 dξ = λπ + αΘ(ρ),

where

(1.13) Θ(ρ) := −ρ2

∫
R

iξψ̂(ξ)

1 + ρ2ξ2 dξ.
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Solving forλ we find,

(1.14) λ =
1

π
(1− αΘ(ρ)).

Observe that sinceψ is real, then̂ψ(ξ) = ψ̂(−ξ) and thereforeΘ(ρ) ∈ R for all
ρ > 0. This readily implies thatλ ∈ R and, upon substitution in (1.11), that

(1.15) J ρ
min =

1

π
(1− αΘ(ρ))2 + α2Γ(ρ).

The latter expression is a real quadratic polynomial inα ∈ R. Minimizing overα
we get

(1.16) α =
Θ(ρ)

πΓ(ρ) + Θ(ρ)2
∈ R.

Thus, we can substitute (1.16) in (1.15), obtaining in this fashion the lower bound

J ρ
min ≥ I(ρ) :=

Γ(ρ)

πΓ(ρ) + Θ(ρ)2
> 0.

Remark1. The choice (1.16) corresponds to takingα =
∫
iξûψ̂dξ ∈ R, as the

reader may easily verify using (1.10). Intuitively, the most we can do withα in (1.8)
is to remove thêψ-component of̂u. In other words, if we minimize‖ux − αψ‖L2

overα we obtainα =
∫
uxψ dx

/ ∫
ψ2 dx =

∫
iξû

¯̂
ψdξ (recall‖ψ‖L2 = 1). We can

substitute its value in the expression of the minimizer to compute the lower bound
I(ρ).

We do not need to show that (1.10) is the actual minimizer. The variational for-
mulation simply helps us to compute a lower bound for the functional in terms of
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ρ. Next, we study the behavior ofΘ(ρ) andΓ(ρ) for all ρ > 0. We are particularly
interested in what happens for largeρ. In addition, we have to prove that the lower
bound is uniform iny ∈ R if we substituteψ(·) by ψ(· + y), a property that was
required in the proof of Proposition1.3.

Lemma 1.4. There holds

(i) Γ(ρ) ∈ R+ for all ρ > 0 and it is invariant under translationψ(·) → ψ(· + y)
for anyy ∈ R,

(ii) C−1ρ ≤ Γ(ρ) ≤ Cρ for ρ ∼ 0+, and someC > 0,

(iii) Γ(ρ) → πM2 asρ→ +∞,

(iv) Θ(ρ) ≤ Cρ2 for ρ ∼ 0+, and

(v) Θ(ρ) is uniformly bounded under translationψ(·) → ψ(· + y) with y ∈ R, as
ρ→ +∞.

Proof. (i) is obvious, as| ̂ψ(·+ y)(ξ)| = |eiξyψ̂(ξ)| = |ψ̂(ξ)|; also by (1.1), it is clear
thatΓ(ρ) > 0, for all ρ > 0.

(ii) follows directly fromΓ(ρ) ≤ ρ
∫
|ψ̂|2dξ = ρ for all ρ > 0, because of (1.6), and

from noticing that

Γ(ρ) =

∫
R

|ψ̂(ζ/ρ)|2

ζ2 + 1
dζ

=

∫
|ζ|≤1

+

∫
|ζ|≥1

≥ 1

2

∫
|ζ|≤1

|ψ̂(ζ/ρ)|2 dζ =
ρ

2

∫
|ξ|≤1/ρ

|ψ̂(ξ)|2 dξ.
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Since‖ψ‖L2 = 1, we have forρ sufficiently small,∫
|ξ|≤1/ρ

|ψ̂(ξ)|2 dξ ≥ 1

2
,

and thusΓ(ρ) ≥ 1
4
ρ = C−1ρ for ρ ∼ 0+.

(iii) to prove (iii), notice that|ψ̂| is bounded,̂ψ(ζ/ρ) → ψ̂(0) asρ→ +∞ pointwise,
and(ζ2 + 1)−1 is integrable; therefore we clearly have

Γ(ρ) =

∫
R

|ψ̂(ζ/ρ)|2

ζ2 + 1
dζ −→

∫
R

|ψ̂(0)|2

1 + ζ2 dζ = π|ψ̂(0)|2 = πM2 > 0,

asρ→ +∞.

(iv) follows directly from hypothesis (1.2), as

|Θ(ρ)| ≤ ρ2

∫
R

|ξψ̂(ξ)|
1 + ρ2ξ2 dξ ≤ ρ2

∫
R
|ξψ̂(ξ)| dξ ≤ Cρ2.

Note that this estimate is valid also by translation, even thoughψ(· + y) may not
satisfy (1.2).

(v) in order to prove (v), we first assume thatψ itself satisfies (1.1) and (1.2). Split
the integral into two parts,

Θ(ρ) = −
∫
|ξ|≤1

iξψ̂(ξ)

ξ2 + 1/ρ2
dξ −

∫
|ξ|≥1

iξψ̂(ξ)

ξ2 + 1/ρ2
dξ := I1 + I2.

I2 is clearly bounded asρ→ +∞ by hypothesis (1.2),

|I2| ≤
∫
|ξ|≥1

|ξψ̂(ξ)|
ξ2 + 1/ρ2

dξ ≤
∫

R
|ξψ̂(ξ)| dξ ≤ C.
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Denote

φ(ξ) :=


1
ξ
(ψ̂(ξ)− ψ̂(0)) for ξ 6= 0,

dψ̂
dξ

(0) for ξ = 0.

φ is continuous. Then,I1 can be further decomposed into

I1 = −ψ̂(0)

∫
|ξ|≤1

iξ dξ

ξ2 + 1/ρ2
dξ −

∫
|ξ|≤1

iξ2φ(ξ)

ξ2 + 1/ρ2
dξ.

The first integral is clearly zero for allρ > 0, and the second is clearly bounded as∫
|ξ|≤1

ξ2|φ(ξ)|
ξ2 + 1/ρ2

dξ ≤
∫
|ξ|≤1

|φ(ξ)| dξ ≤ C.

Therefore,Θ(ρ) is bounded asρ→ +∞.
Now, let us suppose thatψ(·) = ψ0(·+ y) for some fixedy ∈ R, y 6= 0, whereψ0

satisfies (1.1) and (1.2). Then clearlŷψ(ξ) = eiξyψ̂0(ξ) and

Θ(ρ) = −
∫

R

iξeiξyψ̂0(ξ)

ξ2 + 1/ρ2
dξ.

Assume thaty > 0 (the casey < 0 is analogous); then consider the function

g(z) =
izeizyψ̂0(z)

z2 + 1/ρ2
,

for z in Im z > 0, and take the upper contour

C = [−R,R] ∪ {z = Reiθ; θ ∈ [0, π]},
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for someR > 0 large. Theng(z) is analytic insideC except at the simple polez =
i/ρ. (Wheny < 0 one takes the lower contour that encloses the pole atz = −i/ρ.)
By complex integration ofg alongC in the counterclockwise direction, and by the
residue theorem, one gets∫

C
g(z) dz = 2πiResz=i/ρ g(z) = −πe−y/ρψ̂0(i/ρ).

Therefore it is easy to see that the valueΘ(ρ) is uniformly bounded iny ∈ R as

|Θ(ρ)| ≤ π|ψ̂0(i/ρ)| → π|M | > 0

whenρ→ +∞. This completes the proof of the lemma.

Remark2. If we consider the solutionuρ to

(1.17) −uxx +
1

ρ2
u = ψx,

then, after taking Fourier transform, one finds

ûρ(ξ) =
iξψ̂(ξ)

ξ2 + 1/ρ2
,

so thatuρ(0) =
∫
ûρdξ = −Θ(ρ). The claim thatuρ(0) is bounded asρ → +∞ is

plausible because in the limit (formally) we have−uρxx = ψx or uρx = −ψ. Sinceψ
is integrable,uρ should be bounded. The boundΘ(ρ) ∼ e−|y|/ρ represents the (slow)
exponential decay of the Green’s function solution to (1.17).

In Lemma1.4, we have shown thatΘ(ρ) andΓ(ρ) are uniformly bounded forρ
large and iny ∈ R. The same applies toI(ρ). Forρ near0, since both tend to zero
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asρ→ 0+, by L’Hôpital’s rule we get

lim
ρ→0+

I(ρ) = lim
ρ→0+

dΓ
dρ

π dΓ
dρ

+ 2ΘdΘ
dρ

= π−1 > 0,

because (ii) implies(dΓ/dρ)|ρ=0+ ≥ C−1 > 0, anddΘ/dρ is bounded asρ→ 0+ by
(iv).

Therefore, the constantI(ρ) is uniformly bounded from above and below for all
ρ > 0, in particular forρ → +∞. This implies the uniform boundedness from
below ofJ ρ

min and ofJ ρ[u] for all u in the constrained class of functions considered
in Theorem1.2. Furthermore, the lower bound is uniform by translation as well.
This completes the proof.

Remark3. The corresponding FourierL1 estimate

‖û‖L1 ≤ C‖û‖1/2

L2 ‖iξû− αψ̂‖1/2

L2 ,

(from which the result can be directly deduced), does not hold. Here it is a coun-
terexample: letψ be a nonnegative function with compact support and letΨ be its
antiderivative. Set

u(x) := Ψ(x)−Ψ(x/L),

whereL > 0 is large. Then there isR > 0 such thatu vanishes outside|x| ≤
RL. Henceforth‖u‖L2 ≤ CL for someC > 0. Moreover, we also haveux −
ψ = ψ(x)/L, and consequently‖ux − ψ‖L2 ≤ C/L. This implies that the product
‖u‖L2‖ux − ψ‖L2 remains uniformly bounded inL. Now, the Fourier transform of
u is

û(ξ) = Ψ̂(ξ)− LΨ̂(Lξ) =
i

ξ

(
ψ̂(Lξ)− ψ̂(ξ)

)
.
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Sinceψ̂ has compact support, it vanishes outside|ξ| ≤ R̃, for someR̃ > 0. Now,
|ψ̂(0)| = M > 0 implies that|ψ̂(ξ)| > 0 nearξ = 0, and we can chooseL suffi-
ciently large such that|ψ̂(ξ)| ≥ c0 for R̃/L ≤ |ξ| ≤ δ∗/2, whereδ∗ = sup {δ >
0 ; |ψ̂(ξ)| > 0 for 0 ≤ |ξ| < δ}, andc0 is independent ofL. Therefore

|û(ξ)| = |ψ̂(ξ)|
|ξ|

≥ c0
|ξ|
,

for all R̃/L ≤ |ξ| ≤ δ∗/2, and theL1 norm ofû behaves like

‖û‖L1 ≥ c0

∫
R̃/L≤|ξ|≤δ∗/2

dξ

|ξ|
∼ c0 lnL → +∞,

asL→ +∞.
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2. Applications to Viscous Shock Waves

To illustrate an application of uniform inequality (1.3), consider a scalar conservation
law with second order viscosity,

(2.1) ut + f(u)x = uxx,

where(x, t) ∈ R× [ 0,+∞), f is smooth, andf ′′ ≥ a > 0 (convex mode). Assume
the triple (u−, u+, s) (with u+ < u−) is a classical shock front [5] satisfying the
Rankine-Hugoniot jump condition1 −s[u] + [f(u)] = 0, and Lax entropy condition
f ′(u+) < s < f ′(u−). A shock profile [1] is a traveling wave solution to (2.1) of
form u(x, t) = ū(x − st), whereū satisfiesū′′ = f(ū)x − sū′, with ′ = d/dz,
z = x − st, andū → u± asz → ±∞. Without loss of generality we can assume
s = 0 by normalizingf (see e. g. [3]), so thatf(u±) = 0, f ′(u+) < 0 < f ′(u−) and
the profile equation becomes

(2.2) ūx = f(ū).

Such a profile solution exists, and under the assumptions, it is both monotoneūx < 0
and exponentially decaying up to two derivatives

|∂jx(ū(x)− u±)| . e−c|x|,

for all 0 ≤ j ≤ 2 and some constantc > 0 (see [7, 8, 1] and the references therein)2.
We will show that the following consequence of Theorem1.1 is useful to obtain

decay rates for solutions to the linearized equations for the perturbed problem.

Lemma 2.1. Let ū be the shock profile solution to(2.2). Then

(2.3) ‖u‖2
L∞ . ‖u‖L2‖ux − αūx‖L2 ,

1Here[g] denotes the jumpg(u+)− g(u−) for anyg.
2In the sequel “.” means “≤” modulo a harmless positive constant.
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for all u ∈ H1(R) and allα ∈ R.

Proof. Follows immediately from Theorem1.1 with ψ = ūx, which satisfies hy-
potheses (1.1) and (1.2), asūx is exponentially decaying and has non-zero integral
[u] 6= 0.

Consider a solution to (2.1) of the formu+ ū, u being a perturbation; linearizing
the resulting equation around the profile we obtain

(2.4) ut = Lu := uxx − (f ′(ū)u)x,

whereL is a densely defined linear operator in, say,L2. In [4], Goodman introduced
theflux transformF : W 1,p → Lp, whereFu := uxx− f ′(ū)ux as a way to cure the
negative sign off ′′(ū)ūx < 0. That is, ifu solves (2.4) then clearly its flux variable
v := Fu satisfies the “integrated” equation [2],

(2.5) ut = Lu := uxx − f ′(ū)ux,

which leads to better energy estimates. Another feature of the flux transform formu-
lation is the following inequality (see [4] for details, or [6] – Chapter 4, Proposition
4.6 – for the proof).

Lemma 2.2 (Poincaré-type inequality).There exists a constantC > 0 such that
for all 1 ≤ p ≤ +∞ andu ∈ Lp,

(2.6) ‖u− δūx‖Lp ≤ C‖Fu‖Lp ,

whereδ is given by

(2.7) δ =
1

Z

∫
R
uūx dx,

andZ =
∫

R ū
2
x dx > 0 is a constant.
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Here we illustrate an application of the uniform estimate (2.3) to obtain sharp
decay rates for solutions to the linearized perturbation equation, using the flux for-
mulation due to Goodman.

Proposition 2.3 (Goodman [4]). For all global solutions tout = Lu, with suitable
initial conditions, there holds

(2.8) ‖u(t)− δ(t)ūx‖L∞ . t−1/2‖u(0)‖W 1,1 ,

whereδ(t) is given by(2.7).

Remark4. This is a linear stability result with a sharp decay rate (the powert−1/2 is
that of the heat equation, and therefore, optimal). Notice also thatδ(t) depends on
t, corresponding (at least at this linear level) to an instantaneous projection onto the
manifold spanned bȳu. The need of a uniform inequality for allδ ∈ R such as (2.3)
is thus clear. For a very comprehensive discussion on (nonlinear) “wave tracking”
and stronger results, see Zumbrun [9].
Remark5. The formal adjoint of the integrated operator is given by

L∗u := uxx + (f ′(ū)u)x.

Note that ifv andw are solutions tovt = Lv andwt = −L∗w, respectively, then

d

dt

∫
R
v(t)w(t) dx =

∫
R
(wLv − vL∗w) dx = 0,

and hence ∫
R
v(t)w(t) dx =

∫
R
v(0)w(0) dx, for all t ≥ 0.

In the sequel, we will gloss over many details, such as global existence of the
solutions to the linear equations, or the correct assumptions for initial conditions in
suitable spaces (which are standard and can be found elsewhere [2, 9]), and concen-
trate on filling out the details of the proof of Proposition2.3sketched in [4].
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2.1. Energy Estimates

We start with the basic energy estimate.

Lemma 2.4. Let v be a solution to eithervt = Lv or vt = L∗v. Then for all
t ≥ s ≥ 0 we have the basic energy estimate

(2.9)
1

2

d

dt
‖v(t)‖2

L2 ≤ −‖vx(t)‖2
L2 −

1

2

∫
R
f ′′(ū)|ūx|v(t)2 dx < 0,

and,

‖v(t)‖2
L2 ≤ ‖v(s)‖2

L2 ,(2.10) ∫ t

s

‖vx(τ)‖2
L2 dτ ≤

1

2
‖v(s)‖2

L2 ,(2.11) ∫ t

s

∫
R
f ′′(ū)|ūx|v(τ)2 dxdτ ≤ ‖v(s)‖2

L2 .(2.12)

Proof. Follows by standard arguments. Multiplyvt = Lv by v and integrate by
parts once to get (2.9). Likewise, multiplyvt = L∗v by v and integrate by parts
twice to arrive at the same estimate. The negative sign in (2.9) is a consequence of
compressivity of the wavef ′′(ū)ūx < 0. Estimates (2.10) – (2.12) follow directly
from (2.9).

Next, we establish decay rates forvt andw, and solutions tovt = Lv andwt =
L∗w.

Lemma 2.5. Letv be a solution tovt = Lv. Then the following decay rate holds

(2.13) ‖vt(t)‖L2 . t−1/2‖v(0)‖L2 .
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Proof. First observe thatvt = Fvx, and thereforevtt = (Fvx)t = Fvtx = Lvt, that
is, vt solves the integrated equation as well, and hence, the estimates (2.9) – (2.12)
hold for vt also. In particular, theL2 norm of vt is decreasing. To show (2.13) it
suffices to prove

(2.14) ‖vt(t)‖2
L2 . ‖vx(s)‖2

L2 ,

for all t > s+ 1, s ≥ 0. Integrate (2.14) in s ∈ [0, t− 1] and use (2.11) to obtain

‖vt(t)‖2
L2 . (t− 1)−1

∫ t

0

‖vx(s)‖2
L2 ds . (t− 1)−1‖v(0)‖2

L2 . t−1‖v(0)‖2
L2 ,

for all t ≥ 2, yielding (2.13). To show (2.14) differentiatevt = Lu with respect to
x, multiply by vx and integrate by parts to obtain

(2.15)
1

2

d

dt
‖vx(t)‖2

L2 = −‖vxx(t)‖2
L2 −

1

2

∫
R
f ′(ū)xv

2
x dx ≤M‖vx(t)‖2

L2 ,

whereM := sup |f ′(ū)x|. By Gronwall’s inequality

(2.16) ‖vx(T + t)‖2
L2 ≤ eMt‖vx(T )‖2

L2 ,

for all t, T ≥ 0. Integrating (2.15) in t ∈ [s, T ],

(2.17) ‖vx(T )‖2
L2 ≤ ‖vx(s)‖2

L2 −
∫ T

s

‖vxx(τ)‖2
L2 dτ

− 1

2

∫ T

s

∫
R
f ′(ū)xvx(τ)

2 dxdτ .

Estimate the last integral using (2.16), to obtain∣∣∣∣∫ T

s

∫
R
f ′(ū)xv

2
x dxdτ

∣∣∣∣ ≤M

∫ T−s

0

eMτ‖vx(τ)‖2
L2 dτ ≤ eM(T−s)‖vx(s)‖2

L2 .
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Upon substitution in (2.17),∫ T

s

‖vxx(τ)‖2
L2 dτ ≤ 1

2
(1 + eM(T−s))‖vx(s)‖2

L2 .

Likewise, from (2.16) it is easy to show that∫ T

s

∫
R
|f ′(ū)|vx(τ)2 dxdτ ≤ m

M
eM(T−s)‖vx(s)‖2

L2 ,

wherem := sup |f ′(ū)|. Denotingµ(t) := max
{

1
2
(1 + eMt), m

N
eMt

}
, we see that

both ∫ T

s

‖vxx(τ)‖2
L2dτ , and

∫ T

s

∫
R
|f ′(ū)|vx(τ)2 dxdτ ,

are bounded byµ(T−s)‖vx(s)‖2
L2. Since theL2 norm ofvt is decreasing, integrating

inequality (2.10) for vt we obtain

(T − s)‖vt(T )‖2
L2 ≤

∫ T

s

‖vt(τ)‖2
L2 dτ

=

∫ T

s

‖(Lv)(τ)‖2
L2 dτ

.
∫ T

s

‖vxx(τ)‖2
L2 dτ +

∫ T

s

∫
R
|f ′(ū)|vx(τ)2 dxdτ

. µ(T − s)‖vx(s)‖2
L2 .

ChooseT − s ≡ 1 to finally arrive at

‖vt(t)‖2
L2 ≤ ‖vt(1 + s)‖2

L2 . µ(1)‖vx(s)‖2
L2 ,

for all t > 1 + s, establishing (2.14). This proves the lemma.
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Lemma 2.6. Letw be a solution towt = L∗w. Then the following decay rate holds

(2.18) ‖w(t)‖L∞ . t−1/4‖w(0)‖L2 .

Proof. Recall that (2.9) – (2.12) hold forw. In particular, by convexityf ′′ ≥ a > 0
and (2.12), we have

(2.19)
∫ t

0

∫
R
|ūx|w(τ)2 dxdτ ≤ a−1‖w(0)‖2

L2 ,

for all t ≥ 0. Differentiatewt = L∗w with respect tox, multiply bywx and integrate
by parts to obtain, for allt ≥ 0,

1

2

d

dt
‖wx(t)‖2

L2 = −‖wxx(t)‖2
L2−

3

2

∫
R
f ′′(ū)|ūx|wx(t)2 dx− 1

2

∫
R
f ′(ū)xxxw(t)2 dx.

The first two terms on the right hand side have the right sign for decay. We must
control the term−

∫
f ′(ū)xxxw

2 dx. For that purpose, use the equation forw and the
profile equation to compute

1

2

d

dt

∫
R
|ūx|w(t)2 dx = −

∫
R
|ūx|wx(t)2 dx−

∫
R
f ′′(ū)|ūx|2w(t)2 dx.

This provides the cancellation we need, as the decreasingL2 norm we seek will
be that ofwx plus a multiple of|ūx|1/2w. First note by the smoothness off and
convexity that there existsA > 0 such that

|f ′(ū)xxx| ≤ A|ūx|2.
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This implies

d

dt

(
1

2
‖wx(t)‖2

L2 +
1

2
Aa−1

∫
R
|ūx|w(t)2 dx

)
= −‖wxx(t)‖2

L2 −
3

2

∫
R
f ′′(ū)|ūx|wx(t)2 dx − 1

2

∫
R
f ′(ū)xxxw(t)2 dx+

− Aa−1

∫
R
|ūx|wx(t)2 dx− Aa−1

∫
R
f ′′(ū)|ūx|2w(t)2 dx

≤ J(t)− A

2

∫
R
|ūx|2w(t)2 dx,

where

J(t) := −‖wxx(t)‖2
L2 −

3

2

∫
R
f ′′(ū)|ūx|wx(t)2 dx− Aa−1

∫
R
|ūx|wx(t)2 dx ≤ 0,

for all t ≥ 0. DenotingĀ = Aa−1 and defining

R(t) := ‖wx(t)‖2
L2 + Ā

∫
R
|ūx|w(t)2 dx,

we have thus shown thatR(t) is the decaying norm we were looking for, asdR/dt ≤
0. IntegratingR(t) ≤ R(τ) according to custom with respect toτ ∈ [0, t], for fixed
t ≥ 0, and using (2.11) and (2.19), one can estimate

tR(t) ≤
∫ t

0

R(τ) dτ ≤ 1
2
‖w(0)‖2

L2 + Āa−1‖w(0)‖2
L2 . ‖w(0)‖2

L2 .

Therefore,
‖wx(t)‖L2 . t−1/2‖w(0)‖L2 ,
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for all t > 0 large. By the classical Sobolev inequality and (2.10) we obtain

‖w(t)‖L∞ . ‖wx(t)‖1/2

L2 ‖w(t)‖1/2

L2 . t−1/4‖w(0)‖L2 ,

as claimed.

2.2. Proof of Proposition 2.3

If u solvesut = Lu, then its flux transformv = Fu is a solution tovt = Lv. Apply
the uniform Sobolev-type inequality (2.3) to v, substituting3 α by

δ̃(t) =
1

Z

∫
R
vx(t)ūx dx,

(withZ =
∫

R |ūx|
2 dx), and the Poincaré-type inequality (2.6) (with p = 2), to obtain

‖v(t)‖2
L∞ . ‖v(t)‖L2‖vx − δ̃(t)ūx‖L2

. ‖v(t)‖L2‖(Fvx)(t)‖L2 = ‖v(t)‖L2‖vt(t)‖L2 .

Then, using the estimate (2.13), we arrive at

(2.20) ‖v(t)‖2
L∞ . (t− s)−1/2‖v(s)‖2

L2 ,

for all t ≥ s+ 2. For fixedT > 0 define the linear functionalA : L2 → R as

Ag :=

∫
R
v(T )g dx,

for all g ∈ L2, with norm

‖A‖ = sup
‖g‖L2=1

∣∣∣∣∫
R
v(T )g dx

∣∣∣∣ .
3Here the uniformity of inequality (2.3) in α ∈ R plays a crucial role.
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For everyg ∈ L2 with ‖g‖L2 = 1, we can always solve the equationwt = −L∗w =
−wxx − (f ′(ū)w)x on t ∈ [0, T ] “backwards” in time, withw(T ) = g. Thus, by
Remark5∣∣∣∣∫

R
v(T )g dx

∣∣∣∣ =

∣∣∣∣∫
R
v(T )w(T ) dx

∣∣∣∣ =

∣∣∣∣∫
R
v(0)w(0) dx

∣∣∣∣ ≤ ‖v(0)‖L1‖w(0)‖L∞ ,

for all T > 0. Making the change of variables̃w(x, t) = w(x, T − t) we readily see
thatw̃ satisfiesw̃t = L∗w̃ with w̃(0) = g, and we can use estimate (2.18), yielding

‖w(0)‖L∞ = ‖w̃(T )‖L∞ . T−1/4‖g‖L2 .

Thus,

‖v(T )‖L2 = sup
‖g‖L2=1

∣∣∣∣∫
R
v(T )g dx

∣∣∣∣ ≤ ‖v(0)‖L1‖w(0)‖L∞ . T−1/4‖v(0)‖L1 ,

for all T > 0. Chooses = t/2 in (2.20), and apply the last estimate withT = t/2,
to get

(2.21) ‖v(t)‖L∞ . (t/2)−1/4‖v(t/2)‖L2 . t−1/2‖v(0)‖L1 ,

which corresponds to the optimal decay rate for solutions to the integrated equation.
To prove the decay rate (2.8) for the original solution to the unintegrated equation

ut = Lu, apply the Poincaré-type inequality again (now withp = ∞) together with
(2.21),

‖u(t)− δ(t)ūx‖L∞ . ‖v(t)‖L∞ . t−1/2‖v(0)‖L1 . t−1/2‖u(0)‖W 1,1 .

This completes the proof. �

http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au


Sobolev-Type Inequality

Ramón G. Plaza

vol. 8, iss. 1, art. 2, 2007

Title Page

Contents

JJ II

J I

Page 25 of 26

Go Back

Full Screen

Close

Acknowledgements

The motivation to prove inequality (1.3) originated during my research on viscous
shock waves towards my doctoral dissertation [6], written under the direction of
Prof. Jonathan Goodman. I thank him for many illuminating discussions, useful
observations, and his encouragement. I am also grateful to Prof. Stefan Müller for
suggesting the counterexample in Remark3.

http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au


Sobolev-Type Inequality

Ramón G. Plaza

vol. 8, iss. 1, art. 2, 2007

Title Page

Contents

JJ II

J I

Page 26 of 26

Go Back

Full Screen

Close

References

[1] I.M. GELFAND, Some problems in the theory of quasi-linear equations,Amer.
Math. Soc. Transl., 29(2) (1963), 295–381.

[2] J. GOODMAN, Nonlinear asymptotic stability of viscous shock profiles for
conservation laws,Arch. Rational Mech. Anal., 95 (1986), 325–344.

[3] J. GOODMAN, Stability of viscous scalar shock fronts in several dimensions,
Trans. Amer. Math. Soc., 311(2) (1989), 683–695.

[4] J. GOODMAN, Remarks on the stability of viscous shock waves, inViscous
Profiles and Numerical Methods for Shock Waves, M. Shearer, ed., SIAM,
Philadelphia, PA, 1991, 66–72.

[5] P.D. LAX, Hyperbolic systems of conservation laws II,Comm. Pure Appl.
Math., 10 (1957), 537–566.

[6] R.G. PLAZA, On the Stability of Shock Profiles, PhD thesis, New York Uni-
versity, 2003.

[7] D. SERRE,Systems of Conservation Laws 1: Hyperbolicity, entropies, shock
waves, Cambridge University Press, 1999.

[8] J. SMOLLER, Shock Waves and Reaction-Diffusion Equations, Springer-
Verlag, New York, Second ed., 1994.

[9] K. ZUMBRUN, Refined wave-tracking and nonlinear stability of viscous Lax
shocks,Methods Appl. Anal., 7(4) (2000), 747–768.

http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au

	The Inequality
	Proof of Theorem 1.2

	Applications to Viscous Shock Waves
	Energy Estimates
	Proof of Proposition 2.3


