SHARPENING ON MIRCEA'S INEQUALITY

YU-DONG WU

Xinchang High School Xinchang City, Zhejiang Province 312500 P. R. China. EMail: zjxcwyd@tom.com

ZHI-HUA ZHANG

Zixing Educational Research Section Chenzhou City, Hunan Province 423400 P. R. China. EMail: zxzh1234@163.com

V. LOKESHA

	Department of Mathematics Acharya Institute of Technology Soldevahnalli, Hesaragatta Road Karanataka Bangalore-90 INDIA EMail: lokiv@yahoo.com
Received:	20 June, 2007
Accepted:	11 October, 2007
Communicated by:	J. Sándor
2000 AMS Sub. Class.:	51M16, 52A40.
Key words:	Best constant, Mircea's inequality, Sylvester's resultant, Discriminant sequence, Nonlinear algebraic equation system.
Abstract:	In this paper, by using one of Chen's theorems, combining the method of math- ematical analysis and nonlinear algebraic equation system, Mircea's Inequality involving the area, circumradius and inradius of the triangle is sharpened.
Dedicatory:	Dedicated to Shi-Chang Shi on the occasion of his 50th birthday.

Mircea's Inequality Yu-dong Wu, Zhi-hua Zhang and V. Lokesha vol. 8, iss. 4, art. 116, 2007

journal of inequalities in pure and applied mathematics

Contents

1	Introduction and Main Results
2	Some Lemmas
3	The Proof of Theorem 1.1

3

5

7

Mircea's Inequality Yu-dong Wu, Zhi-hua Zhang and V. Lokesha vol. 8, iss. 4, art. 116, 2007

Title Page				
Contents				
44	••			
•	►			
Page 2 of 12				
Go Back				
Full Screen				
Close				

journal of inequalities in pure and applied mathematics

1. Introduction and Main Results

Let S be the area, R the circumradius, r the inradius and p the semi-perimeter of a triangle. The following laconic and beautiful inequality is the so-called Mircea inequality in [1]

$$R + \frac{r}{2} > \sqrt{S}.$$

In 1991, D. S. Mitrinović et al. [2] noted a Mircea-type inequality obtained by D.M. Milošević

(1.1)
$$R + \frac{r}{2} \ge \frac{5}{6} \sqrt[4]{3}\sqrt{S}.$$

In [4], L. Carliz and F. Leuenberger strengthened inequality (1.1) as follows (see also [3])

$$(1.2) R+r \ge \sqrt[4]{3}\sqrt{S}$$

since (1.2) can be written as

(1.3)
$$R + \frac{r}{2} \ge \frac{5}{6}\sqrt[4]{3}\sqrt{S} + \frac{1}{6}(R - 2r),$$

and from the well-known Euler inequality $R \ge 2r$.

The main purpose of this article is to give a generalization of inequalities (1.1) and (1.2) or (1.3).

Theorem 1.1. If $k \leq k_0$, then for any triangle, we have

(1.4)
$$R + \frac{r}{2} \ge \frac{5}{6}\sqrt[4]{3}\sqrt{S} + k(R - 2r),$$

Mircea's Inequality Yu-dong Wu, Zhi-hua Zhang and V. Lokesha vol. 8, iss. 4, art. 116, 2007 Title Page Contents 44 ◀ Þ Page 3 of 12 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

where k_0 is the root on the interval $(\frac{11}{20}, \frac{4}{7})$ of the equation

$$(1.5) 2304k^4 - 896k^3 - 2336k^2 - 856k + 1159 = 0$$

The equality in (1.4) is valid if and only if the triangle is isosceles and the of ratio of its sides is $2 : x_0 : x_0$, where x_0 is the positive root of the following equation

(1.6)
$$x^4 + 28x^3 - 120x^2 + 80x - 16 = 0.$$

From Theorem 1.1, we can make the following remarks.

Remark 1. k_0 is the best constant which makes (1.4) hold, and $k_0 = 0.5660532114...$ *Remark* 2. The function

$$f(k) = R + \frac{r}{2} - \frac{5}{6}\sqrt[4]{3}\sqrt{S} - k(R - 2r)$$

is a monotone increasing function on $(-\infty, k_0]$. Remark 3. For $k = \frac{1}{2}$ in (1.4), the inequality

$$R + 3r \ge \frac{5}{3}\sqrt[4]{3}\sqrt{S}$$

holds.

Remark 4. $x_0 = 3.079485433...$

Mircea's Inequality Yu-dong Wu, Zhi-hua Zhang and V. Lokesha vol. 8, iss. 4, art. 116, 2007

journal of inequalities in pure and applied mathematics

2. Some Lemmas

In order to prove Theorem 1.1, we require several lemmas.

Lemma 2.1 ([5, 6], see also [12]).

- (i) If the homogeneous inequality $p \ge (>)f_1(R, r)$ holds for any isosceles triangle whose top angle is greater than or equal to 60°, then the inequality $p \ge (>)f_1(R, r)$ holds for any triangle.
- (ii) If the homogeneous inequality $p \leq (<)f_1(R, r)$ holds for any isosceles triangle whose top angle is less than or equal to 60°, then the inequality $p \leq (<)f_1(R, r)$ holds for any triangle.

Lemma 2.2 ([7]). Denote

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n,$$

and

$$g(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_m$$

If $a_0 \neq 0$ or $b_0 \neq 0$, then the polynomials f(x) and g(x) have common roots if and only if

mathematics

where R(f,g) is Sylvester's resultant of f(x) and g(x).

Lemma 2.3 ([7, 8]). For a given polynomial f(x) with real coefficients

 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n,$

if the number of sign changes of the revised sign list of its discriminant sequence

 $\{D_1(f), D_2(f), \dots, D_n(f)\}$

is v, then, the number of the pairs of distinct conjugate imaginary roots of f(x) equals v. Furthermore, if the number of non-vanishing members of the revised sign list is l, then, the number of the distinct real roots of f(x) equals l - 2v.

Mircea's Inequality

Yu-dong Wu, Zhi-hua Zhang

and V. Lokesha

vol. 8, iss. 4, art. 116, 2007

Title Page

Contents

Image: Imag

Close

journal of inequalities in pure and applied mathematics

3. The Proof of Theorem 1.1

Proof. It is not difficult to see that the form of the inequality (1.4) is equivalent to $p \leq (<)f_1(R, r)$ with the known identity S = rp. From Lemma 2.1, we easily see that inequality (1.4) holds if and only if this triangle is an isosceles triangle whose top angle is less than or equal to 60° .

Let a = 2, b = c = x ($x \ge 2$), then (1.4) is equivalent to

$$\frac{x^2}{2\sqrt{x^2-1}} + \frac{\sqrt{x^2-1}}{2(x+1)} \ge \frac{5}{6}\sqrt[4]{3(x^2-1)} + k\left(\frac{x^2}{2\sqrt{x^2-1}} - \frac{2\sqrt{x^2-1}}{x+1}\right),$$

or

(3.1)
$$x^{2} + x - 1 \ge \frac{5}{3} \sqrt[4]{3(x^{2} - 1)^{3}} + k(x - 2)^{2}.$$

For x = 2, (3.1) obviously holds. If x > 2, then (3.1) is equivalent to

$$k \le \frac{x^2 + x - 1 - \frac{5}{3}\sqrt[4]{3(x^2 - 1)^3}}{(x - 2)^2}.$$

Define a function

$$g(x) = \frac{x^2 + x - 1 - \frac{5}{3}\sqrt[4]{3(x^2 - 1)^3}}{(x - 2)^2} \qquad (x > 2).$$

Calculating the derivative for g(x), we get

$$g'(x) = \frac{5\left[\sqrt[4]{3}(x^2 + 6x - 4) - 6x\sqrt[4]{x^2 - 1}\right]}{6(x - 2)^3\sqrt[4]{x^2 - 1}}.$$

Let g'(x) = 0, we obtain

(3.2)
$$\sqrt[4]{3}(x^2+6x-4)-6x\sqrt[4]{x^2-1}=0.$$

journal of inequalities in pure and applied mathematics

It is easy to see that the roots of equation (3.2) must be the roots of the following equation

 $(x^4 + 28x^3 - 120x^2 + 80x - 16)(x+2)(x-2)^3 = 0.$

For the range of roots of equation (3.2) on $(2, +\infty)$, the roots of equation (3.2) must be the roots of equation (1.6).

It shows that equation (1.6) has only one positive real root on the open interval $(2, +\infty)$. Let x_0 be the positive real root of equation (1.6). Then $x_0 = 3.079485433...$, and

3.3)
$$g(x)_{\min} = g(x_0) = \frac{x_0^2 + x_0 - 1 - \frac{5}{3}\sqrt[4]{3(x_0^2 - 1)^3}}{(x_0 - 2)^2} = 0.5660532114 \dots \in \left(\frac{11}{20}, \frac{4}{7}\right).$$

Therefore, the maximum of k is $g(x_0)$.

Now we prove that $g(x_0)$ is the root of equation (1.5). Consider the nonlinear algebraic equation system as follows

(3.4)
$$\begin{cases} x_0^4 + 28x_0^3 - 120x_0^2 + 80x_0 - 16 = 0\\ u_0^4 - 3(x_0^2 - 1)^3 = 0\\ x_0^2 + x_0 - 1 - \frac{5}{3}u_0 - (x_0 - 2)^2 t = 0 \end{cases}$$

or

(3.5)
$$\begin{cases} F(x_0) = 0 \\ G(x_0) = 0 \end{cases},$$

where

$$F(x_0) = x_0^4 + 28x_0^3 - 120x_0^2 + 80x_0 - 16$$

journal of inequalities in pure and applied mathematics

and

$$\begin{split} G(x_0) &= 81 \, \left(-1+t\right)^4 x_0^8 - 324 \, \left(1+4 \, t\right) \left(-1+t\right)^3 x_0^7 \\ &+ \left(-1713+2592 \, t+3402 \, t^2-15228 \, t^3+9072 \, t^4\right) x_0^6 \\ &- 324 \, \left(-2+7 \, t\right) \left(-1+t\right) \left(1+4 \, t\right)^2 x_0^5 \\ &+ \left(5220-6480 \, t-26730 \, t^2-6480 \, t^3+90720 \, t^4\right) x_0^4 \\ &- 324 \, \left(-2+7 \, t\right) \left(1+4 \, t\right)^3 x_0^3 \\ &+ \left(-5463+4212 \, t+34992 \, t^2+119232 \, t^3+145152 \, t^4\right) x_0^2 \\ &- 324 \, \left(1+4 \, t\right)^4 x_0+1956+1296 \, t+7776 \, t^2+20736 \, t^3+20736 \, t^4. \end{split}$$

We have that $g(x_0)$ is also the solution of the nonlinear algebraic equation system (3.4) or (3.5). From Lemma 2.2, we get

$$R(F,G) = 44079842304p_1(t)p_2(t)p_3(t) = 0,$$

where

$$p_1(t) = 2304t^4 - 896t^3 - 2336t^2 - 856t + 1159,$$

$$p_2(t) = 2304t^4 - 46976t^3 + 51104t^2 - 35496t + 10939,$$

$$p_{3}(t) = 1327104t^{8} - 27574272t^{7} + 270856192t^{6} - 218763264t^{5} - 111704320t^{4} + 78507776t^{3} + 170893152t^{2} - 164410112t + 62195869.$$

The revised sign list of the discriminant sequence of $p_2(t)$ is

(3.6) [1,1,-1,-1].

The revised sign list of the discriminant sequence of $p_3(t)$ is

(3.7) [1,-1,-1,-1,1,-1].

Mircea's Inequality Yu-dong Wu, Zhi-hua Zhang and V. Lokesha vol. 8, iss. 4, art. 116, 2007

journal of inequalities in pure and applied mathematics

So the number of the sign changes of the revised sign list of (3.6) equals 1, then with Lemma 2.2, the equation $p_2(t) = 0$ has 2 distinct real roots. And by using the function "realroot()"[10, 11] in Maple 9.0, we can find that $p_2(t) = 0$ has 2 distinct real roots in the following intervals

1 17		[77	617]
$\overline{2}, \overline{32}$,	$\left\lfloor \frac{1}{4} \right\rangle$	$\overline{32}$

and no real root on the interval $(\frac{11}{20}, \frac{4}{7})$.

If the number of the sign changes of the revised sign list of (3.7) equals 4, then from Lemma 2.3, the equation $p_3(t) = 0$ has 4 pairs distinct conjugate imaginary roots. That is to say, $p_3(t) = 0$ has no real root.

From (3.3), we easily deduce that $g(x_0)$ is the root of the equation $p_1(t) = 0$. Namely, $g(x_0)$ is the root of equation (1.5).

Further, considering the proof above, we can easily obtain the required result in (1.4).

Thus, the proof of Theorem 1.1 is completed.

journal of inequalities in pure and applied mathematics

References

- [1] D.S. MITRINOVIĆ, J. E. PEČARIĆ AND V. VOLENEC, *Recent Advances in Geometric Inequalities*, Acad. Publ., Dordrecht, Boston, London, 1989, 166.
- [2] D.S. MITRINOVIĆ, J.E. PEČARIĆ, V. VOLENEC AND JI CHEN, The addendum to the monograph "Recent Advances in Geometric Inequalities", J. Ningbo Univ., 4(2) (1991), 85.
- [3] O. BOTTEMA, R.Z. DORDEVIC, R.R. JANIC AND D.S. MITRINOVIĆ, Geometric Inequality, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969, 80.
- [4] L. CARLIZ AND F. LEUENBERGER, Probleme E1454, *Amer. Math. Monthly*, **68** (1961), 177 and **68** (1961), 805–806.
- [5] SH.-L. CHEN, A new method to prove one kind of inequalities—Equate substitution method, *Fujian High-School Mathematics*, **3** (1993), 20–23. (in Chinese)
- [6] SH.-L. CHEN, The simplified method to prove inequalities in triangle, *Research in Inequalities*, Tibet People's Press, 2000, 3–8. (in Chinese)
- [7] L. YANG, J.-ZH. ZHANG AND X.-R. HOU, Nonlinear Algebraic Equation System and Automated Theorem Proving, Shanghai Scientific and Technological Education Press, 1996, 23–25. (in Chinese)
- [8] L. YANG, X.-R. HOU AND ZH.-B. ZENG, A complete discrimination system for polynomials, *Science in China* (Series E), **39**(6) (1996), 628–646.
- [9] L. YANG, *The symbolic algorithm for global optimization with finiteness principle, Mathematics and Mathematics-Mechanization, Shandong Education Press, Jinan, 2001, 210–220. (in Chinese)*

Mircea's Inequality Yu-dong Wu, Zhi-hua Zhang and V. Lokesha vol. 8, iss. 4, art. 116, 2007 Title Page Contents Contents A ↓ Page 11 of 12 Go Back Full Screen

Close

journal of inequalities in pure and applied mathematics

- [10] D.-M. WANG, *Selected Lectures in Symbolic Computation*, Tsinghua Univ. Press, Beijing, 2003, 110–114. (in Chinese)
- [11] D.-M. WANG AND B.-C. XIA, *Computer Algebra*, Tsinghua Univ. Press, Beijing, 2004. (in Chinese)
- [12] Y.-D. WU, The best constant for a geometric inequality, J. Ineq. Pure Appl. Math., 6(4) (2005), Art. 111. [ONLINE http://jipam.vu.edu.au/ article.php?sid=585].

Mircea's Inequality Yu-dong Wu, Zhi-hua Zhang and V. Lokesha vol. 8, iss. 4, art. 116, 2007 Title Page Contents 44 ◀ Page 12 of 12 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics