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ABSTRACT. Recently obtained inequalities [12] between the Gaussian hypergeometric function
and the power mean are applied to establish new sharp inequalities involving the weighted iden-
tric, logartithmic, and power means.
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1. I NTRODUCTION

Forx, y > 0, theweighted power meanof orderλ is given by

Mλ(ω; x, y) ≡
[
(1− ω) xλ + ω yλ

] 1
λ

with ω ∈ (0, 1) andM0(ω; x, y) ≡ limλ→0Mλ(ω; x, y) = x1−ωyω. Sinceλ 7→ Mλ is increas-
ing, it follows that

G(x, y) ≤Mλ

(
1

2
; x, y

)
≤ A(x, y), for 0 ≤ λ ≤ 1,

whereG(x, y) ≡ M0

(
1
2
; x, y

)
andA(x, y) ≡ M1

(
1
2
; x, y

)
are the well-known geometric and

arithmetic means, respectively (e.g., see [4, p. 203]). Thus,Mλ provides a refinement of the
classical inequalityG ≤ A. It is natural to seek other bivariate means that separateG andA.
Two such means are thelogarithmic meanand theidentric mean. For distinctx, y > 0, the
logarithmic meanL is given by

L(x, y) ≡ x− y

ln(x)− ln(y)
,
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andL(x, x) ≡ x. The integral representation

(1.1) L(1, 1− r) =

(∫ 1

0

(1− rt)−1 dt

)−1

, r < 1

is due to Carlson [6]. Similarly, the identric meanI is defined by

I(x, y) ≡ 1

e

(
xx

yy

) 1
x−y

,

I(x, x) ≡ x, and has the integral representation

(1.2) I(1, 1− r) = exp

(∫ 1

0

ln(1− rt) dt

)
, r < 1.

The inequalityG ≤ L ≤ A was refined by Carlson [6] who showed thatL(x, y) ≤
M1/2

(
1
2
; x, y

)
. Lin [8] then sharpened this by provingL(x, y) ≤ M1/3

(
1
2
; x, y

)
. Shortly

thereafter, Stolarsky [14] introduced the generalized logarithmic mean which has since come to
bear his name. These and other efforts (e.g., [11, 15]) led to many interesting results, including
the following well-known inequalities:

(1.3) G ≤ L ≤M1/3 ≤M2/3 ≤ I ≤ A,

where each is evaluated at(x, y), and the power means have equal weightsω = 1−ω = 1/2. It
also should be noted that the indicated orders of the power means in (1.3), namely 1/3 and 2/3,
are sharp. Following the work of Leach and Sholander [7], Páles [10] gave a complete ordering
of the general Stolarsky mean which provides an elegant generalization of (1.3). (For a more
complete discussion of inequalites involving means, see [4].)

2. M AIN RESULTS

Our main objective is to present a generalization of (1.3) using theweightedlogarithmic and
identric means. Moreover, sharp power mean bounds are provided. This can be accomplished
using the Gaussian hypergeometric function2F1 which is given by

2F1(α, β; γ; r) ≡
∞∑

n=0

(α)n(β)n

(γ)nn!
rn, |r| < 1,

where(α)n is the Pochhammer symbol defined by(α)0 = 1, (α)1 = α, and(α)n+1 = (α)n(α+
n), for n ∈ N. Forγ > β > 0, 2F1 has the following integral representation due to Euler (see
[2]):

2F1(α, β; γ; r) =
Γ(γ)

Γ(γ − β)Γ(β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− rt)−α dt,

which, by continuation, extends the domain of2F1 to all r < 1. HereΓ(z) ≡
∫∞

0
tz−1e−t dt for

z > 0; Γ(n) = (n− 1)! for n ∈ N. Inequalities relating the Gaussian hypergeometric function
to various means have been widely studied (see [1, 2, 3, 5, 12]). Of particular use here is the
hypergeometric meanof ordera discussed by Carlson in [5] and defined by

Ha(ω; c; x, y) ≡
[

Γ(c)

Γ(c ω′)Γ(c ω)

∫ 1

0

tc ω−1(1− t)c ω′−1(x(1− t) + yt)a dt

] 1
a

= x ·
[

2F1

(
−a, c ω; c; 1− y

x

)] 1
a
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with the parameterc > 0 and weightsω, ω′ > 0 satisfyingω+ω′ = 1. ClearlyHa(ω; c; ρx, ρy) =
ρHa(ω; c; x, y) for ρ > 0, soHa is homogeneous. Euler’s integral representation and (1.1) to-
gether yield

H−1

(
1

2
; 2; 1, 1− r

)
=

(
Γ(2)

Γ(1)2

∫ 1

0

(1− rt)−1 dt

)−1

= L(1, 1− r).

Multiplying by x, with r = 1 − y/x, and applying homogeneity yieldsH−1

(
1
2
; 2; x, y

)
=

L(x, y). This naturally leads to theweighted logarithmic mean̂L which is defined as

L̂(ω; c; x, y) ≡ H−1(ω; c; x, y).

Weighted logarithmic means have been discussed by Pittenger [11] and Neuman [9], among
others (see also [4, p. 391-392]). Similarly, theweighted identric mean̂I is given by

Î(ω; c; x, y) ≡ H0(ω; c; x, y) ≡ lim
a→0

Ha(ω; c; x, y)

= exp

(
Γ(c)

Γ(c ω′)Γ(c ω)

∫ 1

0

tc ω−1(1− t)c ω′−1 ln[x(1− t) + yt] dt

)
(see [5], [13]). Thus,̂I

(
1
2
; 2; x, y

)
= I(x, y).

The following theorem establishes inequalities between the power means and the weighted
identric and logarithmic means.

Theorem 2.1.Supposex > y > 0 andc ≥ 1.
If 0 < ω ≤ 1/2, then the weighted identric mean̂I satisfies

(2.1) M c
c+1

(ω; x, y) ≤ Î(ω; c; x, y).

If 1/2 ≤ ω < 1 andc ≤ 3, then the weighted logarithmic mean̂L satisfies

(2.2) L̂(ω; c; x, y) ≤M c−1
c+1

(ω; x, y) .

Moreover, the power mean ordersc/(c + 1) and(c− 1)/(c + 1) are sharp.

A key step in the proof will be an application of the following recently obtained result:

Proposition 2.2. [12] Suppose1 ≥ a andc > b > 0. If c ≥ max{1− 2a, 2b}, then

(2.3) Mλ

(
b

c
; 1, 1− r

)
≤ [2F1(−a, b; c; r)]

1
a for all r ∈ (0, 1),

if and only ifλ ≤ (a + c)/(1 + c). If −a ≤ c ≤ min{1 − 2a, 2b}, then the inequality in (2.3)
reverses if and only ifλ ≥ (a + c)/(1 + c).

Proof of Theorem 2.1.Supposex > y > 0, c ≥ 1, ω ∈ (0, 1) and defineb ≡ c ω with r ≡
1 − y/x ∈ (0, 1). If ω ≤ 1/2 anda ∈ (0, 1), it follows thatc ≥ max{1 − 2a, 2b}. Hence the
previous proposition implies

(2.4) Ma+c
1+c

(ω; 1, 1− r) ≤ [2F1(−a, b; c; r)]
1
a .

Taking the limit of both sides of (2.4) asa → 0+ yields

(2.5) M c
c+1

(ω; 1, 1− r) ≤ H0(ω; c; 1, 1− r).

Now supposeω ≥ 1/2 andc ≤ 3. Thenc ≤ 2b and−a = 1 ≤ c ≤ 3 = 1 − 2a for a = −1.
Thus

(2.6) H−1(ω; c; 1, 1− r) = [2F1(1, b; c; r)]
−1 ≤M c−1

c+1
(ω; 1, 1− r) ,
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again by the above proposition. Multiplying both sides of the inequalities in (2.5) and (2.6) by
x and applying homogeneity yields the desired results. �

In the case thatω = 1/2, we have

Corollary 2.3. If x, y > 0, 1 ≤ c ≤ 3, andω = 1/2 then

(2.7) H−2 ≤ H−1 ≤M c−1
c+1

≤M c
c+1

≤ H0 ≤ H1.

Moreover,(c− 1)/(c + 1) andc/(c + 1) are sharp. Ifc = 2, then (2.7) reduces to (1.3).

Proof. Supposex > y > 0, 1 ≤ c ≤ 3, andω = 1/2. Hence (2.2) and (2.1), together with the
fact thatλ 7→ Mλ is increasing, imply

H−1

(
1

2
; c; x, y

)
≤M c−1

c+1

(
1

2
; x, y

)
≤M c

c+1

(
1

2
; x, y

)
≤ H0

(
1

2
; c; x, y

)
.

The remaining inequalities follow directly from Carlson’s observation [5] thata 7→ Ha is in-
creasing. The condition thatx > y can be relaxed by noting thatHa is symmetric in(x, y)
whenω = 1/2. This symmetry can be seen by making the substitutions = 1 − t in Euler’s
integral representation:

Ha

(
1

2
; c; x, y

)a

=
Γ(c)

Γ(c/2)2

∫ 1

0

[t(1− t)]c/2−1((1− t)x + ty)a dt

=
Γ(c)

Γ(c/2)2

∫ 1

0

[(1− s)s]c/2−1(sx + (1− s)y)a ds

= Ha

(
1

2
; c; y, x

)a

.

Finally, note thatM c−1
c+1

= M 1
3

andM c
c+1

= M 2
3

whenc = 2. Also,

H−2

(
1

2
; 2; 1, 1− r

)−2

= 2F1(2, 1; 2; r) =
1

1− r
,

for |r| < 1. It follows thatH−2

(
1
2
; 2; x, y

)
= (xy)

1
2 = G(x, y). Likewise,H1

(
1
2
; 2; x, y

)
=

x(1− (1− y/x)/2) = A(x, y). Thus (2.7) implies (1.3). �
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