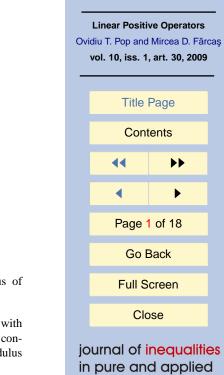
ABOUT A CLASS OF LINEAR POSITIVE OPERATORS OBTAINED BY CHOOSING THE NODES



in pure and applied mathematics

issn: 1443-5756

OVIDIU T. POP AND	MIRCEA D	FĂRCAȘ

National College "Mihai Eminescu" 5 Mihai Eminescu Street Satu Mare 440014, Romania EMail: {ovidiutiberiu, mirceafarcas2005}@yahoo.com

Received:	15 June, 2007
Accepted:	18 March, 2009
Communicated by:	S.S. Dragomir
2000 AMS Sub. Class.:	41A10, 41A25, 41A35, 41A36.
Key words:	Linear positive operators, convergence theorem, the first order modulus smoothness, approximation theorem.
Abstract:	In this paper we consider the given linear positive operators $(L_m)_{m\geq 1}$ and we their help, we construct linear positive operators $(\mathcal{K}_m)_{m\geq 1}$. We study the covergence, the evaluation for the rate of convergence in terms of the first mode of smoothness for the operators $(\mathcal{K}_m)_{m\geq 1}$.

NODES

© 2007 Victoria University. All rights reserved.

Contents

1	Introduction	3
2	Preliminaries	7
3	Main Results	10

journal of inequalities in pure and applied mathematics

1. Introduction

In this section, we recall some notions and operators which we will use in this article.

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For $m \in \mathbb{N}$, let $B_m : C([0,1]) \to C([0,1])$ be Bernstein operators, defined for any function $f \in C([0,1])$ by

(1.1)
$$(B_m f)(x) = \sum_{k=0}^m p_{m,k}(x) f\left(\frac{k}{m}\right),$$

where $p_{m,k}(x)$ are the fundamental polynomials of Bernstein, defined as follows

(1.2)
$$p_{m,k}(x) = \binom{m}{k} x^k (1-x)^{m-k},$$

for any $x \in [0, 1]$ and any $k \in \{0, 1, ..., m\}$ (see [5] or [24]). For the following construction, see [15]. Define the natural number m_0 by

(1.3)
$$m_0 = \begin{cases} \max(1, -[\beta]), & \text{if } \beta \in \mathbb{R} - \mathbb{Z}; \\ \max(1, 1 - \beta), & \text{if } \beta \in \mathbb{Z}, \end{cases}$$

where [x], $\{x\}$ denote the integer and fractional parts respectively of a real number x.

For the real number β , we have that

(1.4)
$$m + \beta \ge \gamma_{\beta}$$

for any natural number $m, m \ge m_0$, where

(1.5)
$$\gamma_{\beta} = m_0 + \beta = \begin{cases} \max(1+\beta, \{\beta\}), & \text{if } \beta \in \mathbb{R} - \mathbb{Z}, \\ \max(1+\beta, 1), & \text{if } \beta \in \mathbb{Z}. \end{cases}$$

journal of inequalities in pure and applied mathematics

For the real numbers $\alpha, \beta, \alpha \ge 0$, we note

(1.6)
$$\mu^{(\alpha,\beta)} = \begin{cases} 1, & \text{if } \alpha \leq \beta; \\ 1 + \frac{\alpha - \beta}{\gamma_{\beta}}, & \text{if } \alpha > \beta. \end{cases}$$

For the real numbers α and β , $\alpha \geq 0$, we have that $1 \leq \mu^{(\alpha,\beta)}$ and

(1.7)
$$0 \le \frac{k+\alpha}{m+\beta} \le \mu^{(\alpha,\beta)}$$

for any natural number $m, m \ge m_0$ and for any $k \in \{0, 1, \dots, m\}$.

For the real numbers α and β , $\alpha \geq 0$, m_0 and $\mu^{(\alpha,\beta)}$ defined by (1.3) – (1.6), let the operators $P_m^{(\alpha,\beta)} : C([0,\mu^{(\alpha,\beta)}]) \to C([0,1])$, defined for any function $f \in C([0,\mu^{(\alpha,\beta)}])$ by

,

(1.8)
$$\left(P_m^{(\alpha,\beta)}f\right)(x) = \sum_{k=0}^m p_{m,k}(x)f\left(\frac{k+\alpha}{m+\beta}\right)$$

for any natural number $m, m \ge m_0$ and for any $x \in [0, 1]$. These operators are called Stancu operators, and were introduced and studied in 1969 by D.D. Stancu in the paper [23]. In [23], the domain of definition of Stancu's operators is C([0, 1]) and the numbers α and β verify the condition $0 \le \alpha \le \beta$.

In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduced in [4] a sequence of linear positive operators $(L_m)_{m\geq 1}$, $L_m : C_B([0,\infty)) \to C_B([0,\infty))$, defined for any function $f \in C_B([0,\infty))$ by

(1.9)
$$(L_m f)(x) = \frac{1}{(1+x)^m} \sum_{k=0}^m \binom{m}{k} x^k f\left(\frac{k}{m+1-k}\right),$$

journal of inequalities in pure and applied mathematics

for any $x \in [0, \infty)$ and any $m \in \mathbb{N}$, where $C_B([0, \infty)) = \{f \mid f : [0, \infty) \to \mathbb{R}, f \text{ is bounded and continuous on } [0, \infty)\}.$

For $m \in \mathbb{N}$, consider the operators $S_m : C_2([0,\infty)) \to C([0,\infty))$ defined for any function $f \in C_2([0,\infty))$ by

(1.10)
$$(S_m f)(x) = e^{-mx} \sum_{k=0}^{\infty} \frac{(mx)^k}{k!} f\left(\frac{k}{m}\right),$$

for any $x \in [0, \infty)$, where

$$C_2\left([0,\infty)\right) = \left\{ f \in C\left([0,\infty)\right) : \lim_{x \to \infty} \frac{f(x)}{1+x^2} \text{ exists and is finite } \right\}.$$

The operators $(S_m)_{m\geq 1}$ are called Mirakjan-Favard-Szász operators and were introduced in 1941 by G. M. Mirakjan in [12].

They were intensively studied by J. Favard in 1944 in [8] and O. Szász in 1950 in [25].

For $m \in \mathbb{N}$, the operator $V_m : C_2([0,\infty)) \to C([0,\infty))$ is defined for any function $f \in C_2([0,\infty))$ by

(1.11)
$$(V_m f)(x) = (1+x)^{-m} \sum_{k=0}^{\infty} {m+k-1 \choose k} \left(\frac{x}{1+x}\right)^k f\left(\frac{k}{m}\right),$$

for any $x \in [0, \infty)$.

The operators $(V_m)_{m\geq 1}$ are named Baskakov operators and they were introduced in 1957 by V. A. Baskakov in [2].

W. Meyer-König and K. Zeller have introduced in [11] a sequence of linear and positive operators. After a slight adjustment, given by E.W. Cheney and A. Sharma

journal of inequalities in pure and applied mathematics

© 2007 Victoria University. All rights reserved.

in [6], these operators take the form $Z_m : B([0,1)) \to C([0,1))$, defined for any function $f \in B([0,1))$ by

(1.12)
$$(Z_m f)(x) = \sum_{k=0}^{\infty} {\binom{m+k}{k}} (1-x)^{m+1} x^k f\left(\frac{k}{m+k}\right),$$

for any $m \in \mathbb{N}$ and for any $x \in [0, 1)$.

These operators are called the Meyer-König and Zeller operators. Observe that $Z_m : C([0,1]) \to C([0,1]), m \in \mathbb{N}$.

In [10], M. Ismail and C.P. May consider the operators $(R_m)_{m>1}$.

For $m \in \mathbb{N}$, $R_m : C([0,\infty)) \to C([0,\infty))$ is defined for any function $f \in C([0,\infty))$ by

(1.13)
$$(R_m f)(x) = e^{-\frac{mx}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!} \left(\frac{x}{1+x}\right)^k e^{-\frac{kx}{1+x}} f\left(\frac{k}{m}\right)$$

for any $x \in [0, \infty)$.

We consider $I \subset \mathbb{R}$, I an interval and we shall use the following function sets: E(I), F(I) which are subsets of the set of real functions defined on I, $B(I) = \{f | f : I \to \mathbb{R}, f \text{ bounded on } I\}$, $C(I) = \{f | f : I \to \mathbb{R}, f \text{ continuous on } I\}$ and $C_B(I) = B(I) \cap C(I)$.

If $f \in B(I)$, then the first order modulus of smoothness of f is the function $\omega(f; \cdot) : [0, \infty) \to \mathbb{R}$ defined for any $\delta \ge 0$ by

(1.14)
$$\omega(f;\delta) = \sup\left\{ |f(x') - f(x'')| : x', x'' \in I, |x' - x''| \le \delta \right\}.$$

Linear Positive Operators Ovidiu T. Pop and Mircea D. Fărcaş vol. 10, iss. 1, art. 30, 2009

journal of inequalities in pure and applied mathematics

2. Preliminaries

For the following construction and result see [16] and [18], where $p_m = m$ for any $m \in \mathbb{N}$ or $p_m = \infty$ for any $m \in \mathbb{N}$. Let $I, J \subset [0, \infty)$ be intervals with $I \cap J \neq \emptyset$. For any $m \in \mathbb{N}$ and $k \in \{0, 1, ..., p_m\} \cap \mathbb{N}_0$ consider the nodes $x_{m,k} \in I$ and the functions $\varphi_{m,k} : J \to \mathbb{R}$ with the property that $\varphi_{m,k}(x) \ge 0$ for any $x \in J$. Let E(I) and F(J) be subsets of the set of real functions defined on I, respectively J so that the sum

$$\sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k})$$

exists for any $f \in E(I)$, $x \in J$ and $m \in \mathbb{N}$. For any $x \in I$ consider the functions $\psi_x : I \to \mathbb{R}$, $\psi_x(t) = t - x$ and $e_i : I \to \mathbb{R}$, $e_i(t) = t^i$ for any $t \in I$, $i \in \{0, 1, 2\}$. In the following, we suppose that for any $x \in I$ we have $\psi_x \in E(I)$ and $e_i \in E(I)$, $i \in \{0, 1, 2\}$.

For $m \in \mathbb{N}$, let the given operator $L_m : E(I) \to F(J)$ defined by

(2.1)
$$(L_m f)(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k})$$

with the property that the convergence

(2.2)
$$\lim_{m \to \infty} (L_m f)(x) = f(x)$$

is uniform on any compact $K \subset I \cap J$, for any $f \in E(I) \cap C(I)$.

Remark 1. From (2.2), for the operators $(L_m)_{m\geq 1}$ we have that the following convergences

(2.3)
$$\lim_{m \to \infty} (L_m e_i)(x) = e_i(x),$$

 $i \in \{0, 1, 2\}$ and

(2.4)
$$\lim_{m \to \infty} (L_m \psi_x^2)(x) = 0$$

are uniform on any compact $K \subset I \cap J$.

Remark 2. From Remark 1 it results that for any compact $K \subset I \cap J$ the sequences $(u_m(K))_{m \ge 1}, (v_m(K))_{m \ge 1}, (w_m(K))_{m \ge 1}$ depending on K exist, so that the convergences

(2.5)
$$\lim_{m \to \infty} u_m(K) = \lim_{m \to \infty} v_m(K) = \lim_{m \to \infty} w_m(K) = 0$$

are uniform on \boldsymbol{K} and

(2.6)
$$|(L_m e_0)(x) - 1| \le u_m(K)$$

(2.7)
$$|(L_m e_1)(x) - x| \le v_m(K)$$

$$(2.8) (L_m\psi_x^2)(x) \le w_m(K),$$

for any $x \in K$ and any $m \in \mathbb{N}$.

In the following, for $m \in \mathbb{N}$ and $k \in \{0, 1, \dots, p_m\} \cap \mathbb{N}_0$ we consider the nodes $y_{m,k} \in I$ so that

(2.9)
$$\alpha_m = \sup_{k \in \{0, 1, \dots, p_m\} \cap \mathbb{N}_0} |x_{m,k} - y_{m,k}| < \infty$$

for any $m \in \mathbb{N}$ and

(2.10)
$$\lim_{m \to \infty} \alpha_m = 0.$$

For $m \in \mathbb{N}$ and $k \in \{0, 1, \dots, p_m\} \cap \mathbb{N}_0$ we note that $\alpha_{m,k} = x_{m,k} - y_{m,k}$.

Ovidiu T. Pop and Mircea D. Fărcaş vol. 10, iss. 1, art. 30, 2009

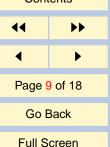
	Title	Page	_
	Contents		
	44	••	
	•	►	
	Page 8 of 18		
	Go Back		
	Full Screen		
	Clo	ose	
journal of inequalities in pure and applied mathematics			

Definition 2.1. For $m \in \mathbb{N}$, define the operator $\mathcal{K}_m : E(I) \to F(J)$ by

(2.11)
$$(\mathcal{K}_m f)(x) = \sum_{k=0}^{p_m} \varphi_{m,k}(x) f(y_{m,k}),$$

for any $x \in I$ and any $f \in E(I)$.

Remark 3. Similar ideas to the construction above can be found in the recent papers [9] and [13].



Close

journal of inequalities in pure and applied mathematics

3. Main Results

In this section, we study the operators defined by (2.11).

Theorem 3.1. For any $f \in E(I) \cap C(I)$ we have that the convergence

(3.1)
$$\lim_{m \to \infty} (\mathcal{K}_m f)(x) = f(x)$$

is uniform on any compact $K \subset I \cap J$.

Proof. For $x \in K$ and $m \in \mathbb{N}$ we have that

$$\begin{aligned} (\mathcal{K}_{m}\psi_{x}^{2})(x) &= (\mathcal{K}_{m}e_{2})(x) - 2x(\mathcal{K}_{m}e_{1})(x) + x^{2}(\mathcal{K}_{m}e_{0})(x) \\ &= \sum_{k=0}^{p_{m}} \varphi_{m,k}(x)y_{m,k}^{2} - 2x\sum_{k=0}^{p_{m}} \varphi_{m,k}(x)y_{m,k} + x^{2}\sum_{k=0}^{p_{m}} \varphi_{m,k}(x) \\ &= \sum_{k=0}^{p_{m}} \varphi_{m,k}(x)(x_{m,k} - \alpha_{m,k})^{2} \\ &- 2x\sum_{k=0}^{p_{m}} \varphi_{m,k}(x)(x_{m,k} - \alpha_{m,k}) + x^{2}\sum_{k=0}^{p_{m}} \varphi_{m,k}(x) \\ &= \sum_{k=0}^{p_{m}} \varphi_{m,k}(x)x_{m,k}^{2} - 2\sum_{k=0}^{p_{m}} \varphi_{m,k}(x)x_{m,k}\alpha_{m,k} \\ &+ \sum_{k=0}^{p_{m}} \varphi_{m,k}(x)\alpha_{m,k}^{2} - 2x\sum_{k=0}^{p_{m}} \varphi_{m,k}(x)x_{m,k}\alpha_{m,k} \\ &+ 2x\sum_{k=0}^{p_{m}} \varphi_{m,k}(x)\alpha_{m,k} + x^{2}\sum_{k=0}^{p_{m}} \varphi_{m,k}(x) \end{aligned}$$

journal of inequalities in pure and applied mathematics

$$\leq (L_m \psi_x^2)(x) + 2\alpha_m (L_m e_1)(x) + (\alpha_m^2 + 2x\alpha_m)(L_m e_0)(x).$$

Taking Remark 1 and Remark 2 into account, it results that (3.1) holds.

Theorem 3.2. If $f \in E(I \cap J) \cap C(I \cap J)$, then for any $x \in K = [a, b] \subset I \cap J$ and any $m \in \mathbb{N}$, we have that

(3.2)
$$|(\mathcal{K}_m f)(x) - f(x)| \leq |f(x)| |(L_m e_0(x)) - 1| + ((L_m e_0)(x) + 1)\omega(f; \delta_{m,x})$$

 $\leq M u_m(K) + (2 + u_m(K))\omega(f; \delta_m),$

where

$$\delta_{m,x} = \sqrt{(L_m e_0)(x)[(L_m \psi_x^2)(x) + 2\alpha_m (L_m e_1)(x) + (\alpha_m^2 + 2x\alpha_m)(L_m e_0)(x)]},$$

$$\delta_m = \sqrt{(1 + u_m(K))[w_m(K) + 2\alpha_m (b + v_m(K) + (\alpha_m^2 + 2b\alpha_m)(1 + u_m(K))]}$$

and

$$M = \sup\{|f(x)| : x \in K\}.$$

Proof. We apply the Shisha-Mond Theorem (see [22] or [24]) for the operator \mathcal{K}_m and taking the inequality from the proof of the Theorem 3.1 into account verified by $(\mathcal{K}_m \psi_x^2)(x)$ and Remark 2, the inequality (3.2) follows.

Corollary 3.3. If

$$\sum_{k=0}^{p_m} \varphi_{m,k}(x) = 1$$

for any $x \in J$, then for any $f \in E(I \cap J) \cap C(I \cap J)$, any $x \in K = [a, b] \subset I \cap J$ and any $m \in \mathbb{N}$ we have that

(3.4)
$$|(\mathcal{K}_m f)(x) - f(x)| \le 2\omega(f; \delta_{m,x}) \le 2\omega(f; \delta'_m)$$

where $\delta'_m = \sqrt{w_m(K) + 2\alpha_m v_m(K) + \alpha_m^2 + 4b\alpha_m}$.

mathematics

Proof. It results from Theorem 3.2, because $(L_m e_0)(x) = 1$, for any $m \in \mathbb{N}$ and $x \in J$, so $u_m(K) = 0$, for any $m \in \mathbb{N}$.

Remark 4. From the conditions of Theorem 3.2 we have that

 $|(\mathcal{K}_m f)(x) - f(x)| \le M u_m(K) + (2 + u_m(K))\omega(f;\delta_m)$

and because $\lim_{m\to\infty} \delta_m = 0$, it results that the convergence $\lim_{m\to\infty} (K_m f)(x) = f(x)$ is uniform on K.

In the following, by particularisation of the sequence $y_{m,k}$, $m \in \mathbb{N}$, $k \in \{0, 1, \dots, p_m\} \cap \mathbb{N}_0$ and applying Theorem 3.1 and Corollary 3.3, we can obtain a convergence and approximation theorem for the new operators. In Applications 1 - 2, let $p_m = m$, $\varphi_{m,k}(x) = p_{m,k}(x)$, where $m \in \mathbb{N}$, $k \in \{0, 1, \dots, m\}$ and K = [0, 1].

Application 1. If I = J = [0, 1], E(I) = F(J) = C([0, 1]), $x_{m,k} = \frac{k}{m}$, $m \in \mathbb{N}$, $k \in \{0, 1, \ldots, m\}$, we obtain the Bernstein operators. We have that $u_m([0, 1]) = 0$, $v_m([0, 1]) = 0$ and $w_m([0, 1]) = \frac{1}{4m}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{\sqrt{k(k+1)}}{m}$, $m \in \mathbb{N}$, $k \in \{0, 1, \ldots, m\}$. Then it is verified immediately that $\alpha_m = \frac{1}{m+\sqrt{m(m+1)}}$, $m \in \mathbb{N}$ and $\lim_{m \to \infty} \alpha_m = 0$. In this case, the operators $(\mathcal{K}_m)_{m \geq 1}$ have the form

$$(\mathcal{K}_m f)(x) = \sum_{k=0}^m p_{m,k}(x) f\left(\frac{\sqrt{k(k+1)}}{m}\right),$$

 $f \in C([0,1]), x \in [0,1], m \in \mathbb{N} \text{ and } \delta'_m < \sqrt{\frac{5}{4m} + \frac{2}{m + \sqrt{m(m+1)}}} < \frac{3}{2\sqrt{m}}, m \in \mathbb{N}.$

journal of inequalities in pure and applied mathematics

Application 2. We study a particular case of the Stancu operators. Let $\alpha = 10$ and $\beta = -\frac{1}{2}$. We obtain I = [0, 22] and for any $f \in C([0, 22])$, $x \in [0, 1]$ and $m \in \mathbb{N}$

$$\left(P_m^{(10,-1/2)}f\right)(x) = \sum_{k=0}^m p_{m,k}(x)f\left(\frac{2k+20}{2m-1}\right)$$

We consider the nodes $y_{m,k} = \frac{(4k+40)m}{(2m-1)^2}$. In this case, the operators $(\mathcal{K}_m)_{m\geq 1}$ have the form

$$(\mathcal{K}_m f)(x) = \sum_{k=0}^m p_{m,k}(x) f\left(\frac{m(4k+40)}{(2m-1)^2}\right),$$

where $f \in C([0, 22])$, $x \in [0, 1]$, $m \in \mathbb{N}$ and $\delta'_m < \frac{\sqrt{36m^3 + 2220m^2 - 399m + 81}}{(2m-1)^2} < \frac{45}{\sqrt{2m-1}}$, $m \in \mathbb{N}$.

Application 3. If $I = J = [0, \infty)$, $E(I) = C_2([0, \infty))$, $F(J) = C([0, \infty))$, K = [0, b], $p_m = \infty$, $x_{m,k} = \frac{k}{m}$, $\varphi_{m,k}(x) = e^{-mx} \frac{(mx)^k}{k!}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, we obtain the Mirakjan-Favard-Szász operators and we have that $u_m(K) = 0$, $v_m(K) = 0$ and $w_m(K) = \frac{b}{m}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{2k(k+1)}{m(2k+1)}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$ and we have that $\alpha_m = \frac{1}{2m}$, $m \in \mathbb{N}$. In this case, the operators $(\mathcal{K}_m)_{m\geq 1}$ have the form

$$(\mathcal{K}_m f)(x) = e^{-mx} \sum_{k=0}^{\infty} \frac{(mx)^k}{k!} f\left(\frac{2k(k+1)}{m(2k+1)}\right)$$

where $f \in C_2([0,\infty))$, $x \in [0,\infty)$, $m \in \mathbb{N}$ and $\delta'_m = \sqrt{\frac{3b}{m} + \frac{1}{4m^2}}$, $m \in \mathbb{N}$.

Application 4. Let $I = J = [0, \infty)$, $E(I) = C_2([0, \infty))$, $F(J) = C([0, \infty))$, K = [0, b], $p_m = \infty$, $x_{m,k} = \frac{k}{m}$, $\varphi_{m,k}(x) = (1 + x)^{-m} {m+k-1 \choose k} \left(\frac{x}{1+x}\right)^k$, $m \in \mathbb{N}$, $k \in \mathbb{N}$



journal of inequalities in pure and applied mathematics

 \mathbb{N}_0 . In this case, we obtain the Baskakov operators and we have that $u_m(K) = 0$, $v_m(K) = 0$ and $w_m(K) = \frac{b(1+b)}{2m}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{\sqrt{4k^2+4k+2}}{2m}$, $m \in \mathbb{N}, k \in \mathbb{N}_0$ and we have that $\alpha_m = \frac{1}{m\sqrt{2}}$. The operators $(\mathcal{K}_m)_{m\geq 1}$ have the form

$$(\mathcal{K}_m f)(x) = (1+x)^{-m} \sum_{k=0}^{\infty} \binom{m+k-1}{k} \left(\frac{x}{1+x}\right)^k f\left(\frac{\sqrt{4k^2+4k+2}}{2m}\right),$$

where $f \in C_2([0,\infty))$, $x \in [0,\infty)$, $m \in \mathbb{N}$ and $\delta'_m = \sqrt{\frac{b(b+1+2\sqrt{2})}{m}} + \frac{1}{2m^2}$, $m \in \mathbb{N}$.

Application 5. If $I = J = [0, \infty)$, $E(I) = F(J) = C([0, \infty))$, K = [0, b], $p_m =$ ∞ , $x_{m,k} = \frac{k}{m}$,

$$\varphi_{m,k}(x) = \frac{m(m+k)^{k-1}}{k!} \left(\frac{x}{1+x}\right)^k e^{\frac{-(k+m)x}{1+x}}, \qquad m \in \mathbb{N}, k \in \mathbb{N}_0,$$

we obtain the Ismail-May operators and we have that $u_m(K) = 0$, $v_m(K) = 0$ and $w_m(K) = \frac{b(1+b)^2}{m}, m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{\sqrt[3]{k^2(k+1)}}{m}, m \in \mathbb{N}, k \in \mathbb{N}_0$ and we have that $\alpha_m = \frac{1}{3m}$. In this case, the operators $(\mathcal{K}_m)_{m\geq 1}$ have the form

$$(\mathcal{K}_m f)(x) = e^{\frac{-mx}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!} \left(\frac{x}{1+x}\right)^k e^{-\frac{kx}{1+x}} f\left(\frac{\sqrt[3]{k^2(k+1)}}{m}\right),$$

where $f \in C([0,\infty))$, $m \in \mathbb{N}$ and $\delta'_m = \sqrt{\frac{b(7+6b+3b^2)}{3m} + \frac{1}{9m^2}}$, $m \in \mathbb{N}$.

Application 6. We consider $I = J = [0, \infty), E(I) = F(J) = C_B([0, \infty)),$ $K = [0, b], p_m = m, x_{m,k} = \frac{k}{m+1-k}, \varphi_{m,k}(x) = \frac{1}{(1+x)^m} {m \choose k} x^k, m \in \mathbb{N}, k \in \mathbb{N}$ $\{0, 1, \ldots, m\}$. In this case we obtain the Bleimann-Butzer-Hahn operators and we

mathematics

have that $u_m(K) = 0$, $v_m(K) = b\left(\frac{b}{1+b}\right)^m$ and $w_m(K) = \frac{4b(1+b)^2}{m+2}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{\beta_m k}{m+1-k}$, $m \in \mathbb{N}$, $k \in \{0, 1, \dots, m\}$, where $(\beta_m)_{m\geq 1}$ is a sequence of positive real numbers such that $\lim_{m\to\infty} m(1-\beta_m) = 0$ and we have $\alpha_m = m|1-\beta_m|$, $m \in \mathbb{N}$. The operators $(\mathcal{K}_m)_{m\geq 1}$ have the form

$$(\mathcal{K}_m f)(x) = (1+x)^{-m} \sum_{k=0}^m \binom{m}{k} x^k f\left(\frac{\beta_m k}{m+1-k}\right),$$

where $x \in [0, \infty)$, $m \in \mathbb{N}$, $f \in C_B([0, \infty))$.

Application 7. If I = J = [0, 1], E(I) = B([0, 1]), F(J) = C([0, 1]), K = [0, 1], $p_m = \infty$, $x_{m,k} = \frac{k}{m+k}$, $\varphi_{m,k}(x) = \binom{m+k}{k}(1-x)^{m+1}x^k$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, we obtain the Meyer-König and Zeller operators and we have that $u_m([0, 1]) = 0$, $v_m([0, 1]) = 0$ and $w_m([0, 1]) = \frac{1}{4(m+1)}$, $m \in \mathbb{N}$. We consider the nodes $y_{m,k} = \frac{k+\beta_m}{m+k+\beta_m}$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, where $(\beta_m)_{m\geq 1}$ is a sequence of positive real numbers so that $\lim_{m\to\infty} \frac{\beta_m}{m+\beta_m} = 0$. Then it is verified immediately that $\alpha_m = \frac{\beta_m}{m+\beta_m}$, $m \in \mathbb{N}$ and the operators $(\mathcal{K}_m)_{m\geq 1}$ have the form

$$(\mathcal{K}_m f)(x) = \sum_{k=0}^{\infty} \binom{m+k}{k} (1-x)^{m+1} x^k f\left(\frac{k+\beta_m}{m+k+\beta_m}\right),$$

where $f \in B([0,1])$, $x \in [0,1]$, $m \in \mathbb{N}$ and $\delta'_m = \sqrt{\frac{1}{4(m+1)} + \frac{\beta_m(4m+5\beta_m)}{(m+\beta_m)^2}}$, $m \in \mathbb{N}$.

journal of inequalities in pure and applied mathematics

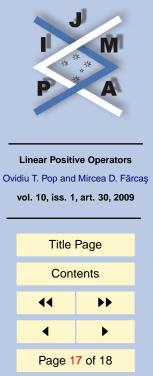
References

- [1] O. AGRATINI, Aproximare prin operatori liniari, *Presa Universitară Clujeană*, Cluj-Napoca, 2000 (Romanian).
- [2] V.A. BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, *Dokl. Acad. Nauk*, USSR, **113** (1957), 249–251.
- [3] M. BECKER AND R.J. NESSEL, A global approximation theorem for Meyer-König and Zeller operators, *Math. Zeitschr.*, **160** (1978), 195–206.
- [4] G. BLEIMANN, P.L. BUTZER AND L.A. HAHN, Bernstein-type operator approximating continuous functions on the semi-axis, *Indag. Math.*, 42 (1980), 255–262.
- [5] S.N. BERNSTEIN, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, *Commun. Soc. Math. Kharkow* (2), 13 (1912-1913), 1–2.
- [6] E.W. CHENEY AND A. SHARMA, Bernstein power series, Canadian J. Math., 16(2) (1964), 241–252.
- [7] Z. DITZIAN AND V. TOTIK, Moduli of Smoothness, *Springer Verlag*, Berlin, 1987.
- [8] J. FAVARD, Sur les multiplicateurs d'interpolation, *J. Math. Pures Appl.*, **23**(9) (1944), 219–247.
- [9] M. FĂRCAŞ, An extension for the Bernstein-Stancu operators, An. Univ. Oradea Fasc. Mat., Tom XV (2008), 23–27.
- [10] M. ISMAIL AND C.P. MAY, On a family of approximation operators, *J. Math. Anal. Appl.*, **63** (1978), 446–462.

Linear Positive Operators						
ovidiu T. Pop and Mircea D. Fărcaş vol. 10, iss. 1, art. 30, 2009						
	Title	Page				
	Contents					
	44	••				
	•	►				
	Page 16 of 18					
	Go Back					
	Full Screen					
	Close					
journal of inequalities						

in pure and applied mathematics

- [11] W. MEYER-KÖNIG AND K. Zeller, Bernsteinsche Potenzreihen, *Studia Math.*, 19 (1960), 89–94.
- [12] G.M. MIRAKJAN, Approximation of continuous functions with the aid of polynomials, *Dokl. Acad. Nauk SSSR*, **31** (1941), 201–205 (Russian).
- [13] C. MORTICI AND I. OANCEA, A nonsmooth extension for the Bernstein-Stancu operators and an application, *Studia Univ. "Babeş-Bolyai", Mathematica*, LI(2) (2006), 69–81.
- [14] M.W. MÜLLER, Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967.
- [15] O.T. POP, New properties of the Bernstein-Stancu operators, An. Univ. Oradea Fasc. Mat., Tom XI (2004), 51–60.
- [16] O.T. POP, The generalization of Voronovskaja's theorem for a class of linear and positive operators, *Rev. Anal. Num. Théor. Approx.*, 34(1) (2005), 79–91.
- [17] O.T. POP, About a class of linear and positive operators, *Carpathian J. Math.*, 21(1-2) (2005), 99–108.
- [18] O.T. POP, About some linear and positive operators defined by infinite sum, *Dem. Math.*, XXXIX(2) (2006), 377–388.
- [19] O.T. POP, On operators of the type Bleimann, Butzer and Hahn, Anal. Univ. Timişoara, XLIII(1) (2005), 115–124.
- [20] O.T. POP, The generalization of Voronovskaja's theorem for exponential operators, *Creative Math & Inf.*, **16** (2007), 54–62.
- [21] O.T. POP, About a general property for a class of linear positive operators and applications, *Rev. Anal. Num. Théor. Approx.*, **34**(2) (2005), 175–180.



journal of inequalities in pure and applied mathematics issn: 1443-5756

Go Back

Full Screen

Close

- [22] O. SHISHA AND B. MOND, The degree of convergence of linear positive operators, *Proc. Nat. Acad. Sci. USA*, **60** (1968), 1196–1200.
- [23] D.D. STANCU, Asupra unei generalizări a polinoamelor lui Bernstein, *Studia Univ. Babeş-Bolyai, Ser. Math.-Phys.*, **14** (1969), 31–45 (Romanian).
- [24] D.D. STANCU, GH. COMAN, O. AGRATINI AND R. TRÎMBIŢAŞ, Analiză numerică și teoria aproximării, I, *Presa Universitară Clujeană*, Cluj-Napoca, 2001 (Romanian).
- [25] O. SZÁSZ, Generalization of. S.N. Bernstein's polynomials to the infinite interval, *J. Research, National Bureau of Standards*, **45** (1950), 239–245.
- [26] A.F. TIMAN, *Theory of Approximation of Functions of Real Variable*, New York: Macmillan Co., 1963, MR22#8257.

journal of inequalities in pure and applied mathematics