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ABSTRACT. In this paper we consider the given linear positive operatdrs),,>1 and with

their help, we construct linear positive operatfts, ) ,,>1. We study the convergence, the eval-
uation for the rate of convergence in terms of the first modulus of smoothness for the operators
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1. INTRODUCTION

In this section, we recall some notions and operators which we will use in this article.
Let N be the set of positive integers abld = NU {0}. Form € N, let B,,, : C([0,1]) —
C(]0, 1]) be Bernstein operators, defined for any functfoa C([0, 1]) by

(1.1) (Bu0)e) =3 pmalo)f (1)),

wherep,, ,(x) are the fundamental polyn(l;rgials of Bernstein, defined as follows

2) pma(o) = (3 )1 =

foranyz € [0,1] and anyk € {0, 1,...,m} (seel[5] or[24]). For the following construction,

see|[[15]. Define the natural numbey by

B max(1,—[g]), if BeR-1Z
MO max(1,1-9), if fez

where|z|, {z} denote the integer and fractional parts respectively of a real number

(1.3)
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For the real numbe#, we have that
(1.4) m+ 32>
for any natural numbet:, m > mg, where

max (1 +3,{B}), if feR-Z;

(1.5) Ve = o+ = { max(1+4,1), if BeZ

For the real numbers, 3, o > 0, we note

. .
(1.6) ple? = 5 toash
1+%, if a>p.

For the real numbers and3, a > 0, we have that < u(*% and

k+ «
(1.7) “m+0 T a
for any natural numbert:, m > mg and for anyk € {0, 1,...,m}.

For the real numbers andg, a > 0, mo andu(? defined by|(1.8) 4 (1]6), let the operators
B o([0, A1) — C([0,1]), defined for any functior € C/([0, u?]) by

(L8) (PO F) () = ple) f ( kia ) ,

m+ (3

for any natural numberm, m > m, and for anyx € [0, 1]. These operators are called Stancu
operators, and were introduced and studied in 1969 by D.D. Stancu in the [paper [23]. In [23],
the domain of definition of Stancu’s operatorsJ§/0, 1]) and the numbers and g verify the
condition0 < o < 3.

In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduced in [4] a sequence of linear positive
operatorg L,,)m>1, Lm : Cp([0,00)) — Cp([0,00)), defined for any functiorf € C([0, 0))
by

(1.9 (Luf)@) = 77 Zm? (0)=r (ers)

for anyz € [0,00) and anym € N, whereCp([0,00)) = {f|f : [0,00) — R, f is bounded
and continuous ofv, co) }.

Form € N, consider the operators, : C; ([0,00)) — C'([0, 00)) defined for any function
[ el ([07 OO)) by

(1.10) (S 0) (2) = e 30 0L (ﬁ) |

m
k=0

for anyz € [0, c0), where

Cs ([0,50)) = {f c C(0.50) : i L@

z—oo | + 2

exists and is finite} .
The operator$s,,),,, are called Mirakjan-Favard-Szasz operators and were introduced in

1941 by G. M. Mirakjan in[[12].
They were intensively studied by J. Favard in 1944 in [8] and O. Szasz in 1950 in [25].
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Form € N, the operatolV,, : C, ([0,00)) — C (]0,00)) is defined for any functiorf €
C2 ([0, 00)) by

(1.11) (Vinf) () = (1 + $>_m§: (m+: . 1) (1—taz>kf (%) ’

k=0

foranyz € [0, 00).

The operatorgV,, ), -, are named Baskakov operators and they were introduced in 1957 by
V. A. Baskakov in[[2].

W. Meyer-Konig and K. Zeller have introduced In [11] a sequence of linear and positive op-
erators. After a slight adjustment, given by E.W. Cheney and A. Sharma in [6], these operators
take the form7,, : B ([0,1)) — C (][0, 1)), defined for any functiorf € B ([0, 1)) by

(1.12) (Znf) (@) :i <m2k> (1 =™ xkf( k >

pr m+k

for anym € N and for anyz € [0, 1).
These operators are called the Meyer-Kénig and Zeller operators.
Observe that,, : C ([0,1]) — C ([0,1]), m € N.
In [10], M. Ismail and C.P. May consider the operatoks,),,>1.
Form e N, R,, : C([0,00)) — C(]0, 00)) is defined for any functiorf € C([0, c0)) by

o0

_ome m(m + k)1 z \" e k
(1.13) (o)) = 5532 P (1”) : f(E)

foranyz € [0, 00).

We consider/ C R, I an interval and we shall use the following function s€i§7), F'(I)
which are subsets of the set of real functions defined,d®(I) = {f| f : I — R, f bounded
onl}, C(I)={f|f:1— R, fcontinuouson } andCy(I) = B(I)nC(I).

If f € B(I), then the first order modulus of smoothnessfois the functionw(f; -) :
[0,00) — R defined for any) > 0 by

(1.14) w(f;6) = sup{|f(«') — fa")] : asa" € I, |2 — o < 6}

2. PRELIMINARIES

For the following construction and result seel[16] and [18], whgre= m for anym € N
or p,, = oo foranym € N. LetI,J C [0,00) be intervals withl N J # (). For anym € N
andk €{0,1,...,pn} NNy consider the nodes,, , € I and the functions,,  : J — R with
the property thap,, ,(x) > 0 for anyz € J. Let E(I) andF'(J) be subsets of the set of real
functions defined od, respectively/ so that the sum

Pm

Z Prn o () f (T )

k=0

exists for anyf € E(I), z € J andm € N. For anyz € I consider the functiong, : I — R,
.(t) =t —xande; : I — R, e(t) = t' foranyt € I, € {0,1,2}. In the following, we
suppose that for any € I we havey, € E(I) ande; € E(I),i € {0,1,2}.

Form € N, let the given operatak,, : E(I) — F(J) defined by

2.1) Lonh) ) = 3 () F ()
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with the property that the convergence

(2.2) lim (L, f)(x) = f(x)

m—00

is uniform on any compadk’ C I nJ, foranyf € E(I)NC(I).

Remark 1. From (2.2), for the operatofd.,.,),,>1 we have that the following convergences

(2.3) i (Lye)(2) = (2,
i€{0,1,2} and
(2.4) T}LE%o(Lmlbi)(x) =0

are uniform on any compaét C 7N J.

Remark 2. From Remark[L it results that for any compacic 1n.J the sequencesi,, (K))m>1,
(U (K))m>1, (Wi (K))m>1 depending or exist, so that the convergences

(2.5) lim u,(K) = lim v,(K)= lim w,(K)=0

are uniform onkX and

(2.6) |(Lmeo)(x) = 1] < um(K),
(2.7) |(Lmer)(x) — ] < vm(K),
(2.8) (Lnt3) () < wm(K),

foranyz € K and anym € N.

In the following, form € Nandk € {0,1,...,p,»} NNy we consider the nodeg, . € I SO
that

(29) Oy, = sup ’mm,k - ym,k’ <
ke{0,1,....,pm }NNg

foranym € N and

(2.10) lim o, =0.

m—0o0

Form € Nandk € {0,1,...,p,} NNy we note thatv,, x = Ty kx — Ym k-

Definition 2.1. Form € N, define the operatdc,, : E(I) — F(J) by

(2.11) (on &) = 3 D) F ),

foranyz € I and anyf € E(I).

Remark 3. Similar ideas to the construction above can be found in the recent papers [9] and
[13].
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3. MAIN RESULTS
In this section, we study the operators defined by (2.11).
Theorem 3.1.Forany f € E(I) N C(I) we have that the convergence
(3.1) Tim (K f) () = f(x)
is uniform on any compact C I N J.

Proof. Forz € K andm € N we have that
(Kmth2)(2) = (Kmea) () — 22(Kper) (z) + 22 (Kineo) (z)

Pm Pm Pm
= Z @m,k(m)yi,k — 2z Z ©m,k (‘T)ym,k: + ZE2 Z @m,k(l’)
k=0 k=0

k=0

Pm
= Z (pme(x) (Im,k - am,k)2
k=0

Pm

Pm
=22 Q@) (@ — Cnge) + 22D P(2)
k=0

k=0

Pm Pm
= Z (pmyk<x)x$n,k: -2 Z @m,k(x)xm,kam,k
k=0 k=0
Pm
+ (@)t =22 ()T
k=0

Pm Pm
+22) P p(@) g + 27 Y Pmr(@)
k=0 k=0

< (Lnh2) () + 20 (Limer ) () + (a2, + 220) (Limeo) (7).
Taking Remark]l and Remdrk 2 into account, it results fhat (3.1) holds. O

Theorem 3.2.1f f € E(INJ)NC(INJ),thenforanyr € K = [a,b] C I N .J and any
m € N, we have that

(3.2) (K f)(@) = f(2)] < [f(@)||(Lmeo(x)) — 1| + ((Lmeo)(x) + D)w(f; 0m.z)
< My (K) 4 (2 + un (K))w(f; 6m),
where
Om,z =\ (Lne€o) (€)[(Lm2)(x) + 200 (Limer) (€) + (02, + 2x00m) (Lmeo) (1)),
Om = /(1 + Uy () [ (K) 4 200 (b 4 0 (K) + (a2, + 200, ) (1 4ty (K))]

and
M =sup{|f(z)|: z € K}.

Proof. We apply the Shisha-Mond Theorem (se€ [22] of [24]) for the opeiatoand taking the
inequality from the proof of the Theorgm B.1 into account verified/Gy,1)?)(z) and Remark
[2, the inequality[(3]2) follows. O

Corollary 3.3. If

(3.3) ngmk(x) =1
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foranyz € J, thenforanyf € E(INJ)NnC(INJ),anyr € K = [a,b] C I N J and any
m € N we have that

(3.4) (Ko f) () = f(2)] < 20(f; 0ma) < 2w(f36,,)

whered!, = \/w,(K) + 20,0, (K) + a2, + 4bay,.

Proof. It results from Theorern 3.2, becaugk,,¢)(z) = 1, foranym € N andz € J, so
um(K) =0, foranym € N. O
Remark 4. From the conditions of Theorelm 8.2 we have that

(K f)(2) = f(@)] < Mug (K) 4 (2 + umn (K))w(f; m)
and becausdim J,, = 0, it results that the convergendem (K,,f)(z) = f(z) is uniform on
Kl m—0o0 m—0o0
In the following, by particularisation of the sequenge,, m € N, k € {0,1,...,pn} NNy
and applying Theorein 3.1 and Coroll@ry]3.3, we can obtain a convergence and approximation

theorem for the new operators. In Applicati@s — 2plet=m, pni(x) = pmi(z), where
meN, ke {0,1,...,m}andK = [0,1].

Application 1. If I = J = [0,1], E(I) = F(J) = C([0,1]), s = £, m € N, k €
{0,1,...,m}, we obtain the Bernstein operators. We have ﬁh@([ 1]) = 0, v([0,1]) =
0 and w,,([0,1]) = 4, m € N. We consider the nodes,; = kf:m, m € N, k €
{0,1,...,m}. Then itis verified immediately that,, = ﬁ m € Nand lim «,, =

0. In this case, the operatofC,,,),,>1 have the form

“ k(k+1)
S e
2" 0

/ 5 2 3
feC(0,1]),z €[0,1],m € Nandd’, < \/4m S re=r i N.

Application 2. We study a particular case of the Stancu operators.dLet 10 and 5 = —
We obtain/ = [0, 22] and for anyf € C([0,22]), z € [0,1] andm € N

2k 4 20
P(10 1/2) . _
( ) ( Zp K S

o 4k+40 m

1
3

We consider the nodes, . In this case, the operato(gC,, ),,>1 have the form

S ()

wheref € C((0,22]), z € [0, 1], m € N andg, < ¥3mi220mi-somisl & b _ m e N,

Application 3. If I = J = [0,00), E(I) = Cy([0,00)), F(J) = C([0,00)), K = [0,b],
Pm = 00, Ty jp = % omr(r) =e —ma (m k,)k m € N, k € Ny, we obtain the erakjan Favard-
Szész operators and we have that(K) = 0, v, (K) = 0 andw,,(K) = £, m € N. We

consider the nodesg,, . = %(212111)) m € N, k € Ny and we have that,, = 5, m € N. In this

case, the operatorsC,, ),,>1 have the form

e = (ma)F L 2k(k 41
(Kmf)(2) = € ;< k!) f(m(2k:+1)))’
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wheref € C5([0,00)), z € [0,00), m € Nandd,, = /22 + L5, m e N.
Application 4. Let] = J = [0,00), E(I) = Cy(]0, OO)Z, F(J) = C([0,00)), K = [0,],

P = 00, T = £, opi(z) = (1+2) "™ (™) (%)", m € N, k € No. In this case, we

obtain the Baskakov operators and we have thatK') = 0, v,,,(K) = 0 andw,,,(K) = @
m € N. We consider the nodes, , = —“““*4’“* ,m €N, k € Nyand we have that,, L

= e
The operatorgK,,),>1 have the form

(Kmf)(x):(1+$)_m§:(m+k—1> ( x )kf<\/4k2+4k+2>’

— k 1+z 2m

wheref € Cs([0,50)), @ € [0,00), m € Nanda, = /X523 1y e |,
Appllcatlon 5. f I = J =1[0,00), E(I) = F(J) = C(]0,00)), K = [0,b], p = 00,

T,k =

ml

m(m + k)1 T ko htm)e
Omi(T) = ( X ) (1—i—x> e THe m e N,k € Ny,

we obtain the Ismail-May operators and we have thatK') = 0, v,,(K) = 0 andw,,(K) =

3
BB ) € N. We consider the nodes, , — YU ;e N, k € N, and we have that
QU = ?%m In this case, the operato(&C,,,),,>1 have the form

—mz - k k=1 F kx Y ]{72 k 1
(lcmf)(x) = e itz Z m(m _]; ) (1f_$> eimf (#) )

k=0

wheref € C(]0,)), m € N andd/, = \/WJrg ;,m e N.

3m

Application 6. We consided = J = [0,00), E(I) = F(J) = Cp([0,0)), K = [0,b], p, =
M, Ty = ﬁ Omr(r) = (1+1x)m( Ja*,m € N, k € {0,1,...,m}. In this case we obtain
the Bleimann-Butzer-Hahn operators and we have thatk') = 0, v,,,(K) = b (1+b) and
W (K) = 27 1 € N. We consider the nodeg, . = -5, m e N, k € {0,1,...,m},
where(3,,)m>1 IS @ sequence of positive real numbers such that m(1 — 3,,) = 0 and we

havea,, = m|l — (3,,|, m € N. The operator§k,,),,>1 have the form

uf)a) = (a3 (7)ot (22,

k=0

wherex € [0,00), m € N, f € Cg([0,0)).
Application 7. If I = J = [0,1], E(I) = B([0,1]), F'(J) = C(]0,1]), K = [0,1], p, = 00,

T = m%k Omi(T) = (m,j’“)(l — )™tk m € N, k € Ny, we obtain the Meyer-Konig

and Zeller operators and we have that ([0, 1]) = 0, v,,,([0, 1]) = 0 andw,, ([0, 1]) = m
m € N. We consider the nodeg,, = %, m € N, k € Ny, where(8,,)m>1 IS a

sequence of positive real numbers so that mﬁ— = (0. Then it is verified immediately that

m—o0 +Bm

= —2n— m € N and the operator$kC,, ),.>, have the form

5
k@) =3 (") mytaty (A,

k=0
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wheref € B([0,1]), z € [0,1], m € Nandd/, = \/4(ml+1) + @’Efﬁgfj)ﬁ;”), m € N.
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