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ABSTRACT. We give some further answers to the open problem posed in the article [Feng
Qi, Several integral inequalities,J. Inequal. Pure and Appl. Math.,1(2) (2000), Art. 19.
(http://jipam.vu.edu.au/article.php?sid=113]).] Being Qi’s inequality of moment type, we con-
sider the moments of uniformly distributed random variables and construct certain suitable prob-
ability measures to solve the posed problem. Moreover, reverse inequality to Qi’s and other
related results are deduced as well.
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1. I NTRODUCTION

The following problem was posed by F. Qi in his article:"Under what condition does the
inequality

(1.1)
∫ b

a

[f(x)]t dx ≥
(∫ b

a

f(x)dx

)t−1

hold for t > 1?", [9].

There are numerous answers and extension results to this open problem [1, 2, 3, 4, 5, 7, 8, 10,
11, 12]. These results were obtained via different approaches, such as, e.g. Jensen’s inequality,
the convexity method [12]; functional inequalities in abstract spaces [1, 2]; probability measures
techniques [4]; Hölder inequality and its reversed variants [2, 8]; analytical methods [7, 11] and
Cauchy’s mean value theorem [3, 10].

Here and in what follows we writeX ∼ U [a; b] for the random variable (r.v.)X which
possesses uniform distribution on the support interval[a, b], i.e., the probability density function
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of X is equal to(b − a)−1, x ∈ [a, b] and zero elsewhere. Accordingly, let us denoteEZ the
mathematical expectation of r.v.Z.

In this paper we obtain generalizations of (1.1) and extend some results of [1, 2, 4, 5, 7, 8,
9, 11, 12] using moment properties of uniformly distributed r.v.s and applying some moment
inequalities of suitably constructed probability measures. To do this we introduce the extension
of (1.1) by Pogány, [8]:"Under what conditions does the inequality

(1.2)
∫ b

a

[
f(x)

]α
dx ≥

(∫ b

a

f(x)dx

)β

, (α, β > 0)

hold?”
Indeed, specifyingα = β + 1 = t > 0 in (1.2) we arrive at (1.1).
We will consider moment type inequalities for a function of the r.v.X ∼ U [a, b]. In Section

2 we obtain results concerning the direct inequality (1.2) by taking the probability distribution
function for uniform distribution. In Section 3 we derive some inequalities reversed to (1.2)
relaxing the conditions uponf given in [8]. Finally, in Section 4 bounded and semi-bounded
integrands will be treated by constructing suitable probability measures for arriving at answers
to (1.2).

2. DIRECT I NEQUALITY

In this section we delineate two important cases for considering (1.2). First, letα > max{1, β},
then we takeα > 0, β > 1.

2.1. The caseα > max{1, β}. Firstly we introduce the following auxiliary inequality which
will be frequently needed in the sequel:

(2.1)

(∫ b

a

f(x)dx

)β−α

≤ (b− a)1−α.

Now, looking for the widest possible class of integrandsf such that (1.2) remains valid under
the constraintα > max{1, β}, we obtain the following result.

Theorem 2.1. Let f ∈ C[a, b], fα be integrable on[a, b]. When one of the following two
conditions holds

(R1) ((2.1) & f ≥ 0, β > 0) ;
(R2) ((2.1) & β ≥ 0, α = 2k/j > 1, j, k ∈ N) ;

then the inequality (1.2) also holds.

Proof. Let X ∼ U [a, b]. Then it is obvious that

(2.2)
∫ b

a

f(x)dx = (b− a)Ef(X) and
∫ b

a

[
f(x)

]α
dx = (b− a)E

[
f(X)

]α
.

Thus it is sufficient to show

(2.3) (b− a)E
[
f(X)

]α ≥
[
(b− a)Ef(X)

]β

.

Indeed, bearing in mind(R1), by Jensen’s inequality we conclude[
(b− a)Ef(X)

]β

= (b− a)β
[
Ef(X)

]α[
Ef(X)

]β−α
(2.4)

≤ (b− a)βE
[
f(X)

]α[
Ef(X)

]β−α

≤ (b− a)E
[
f(X)

]α
.
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QI-TYPE INTEGRAL INEQUALITY 3

The proof under(R1) is finished. To apply the condition(R2) it is enough to notice thatxα is
convex onR for all α = 2k/j > 1, j, k being positive integers. These considerations complete
the proof of the theorem. �

Remark 2.2.
(A) Yu and Qi [12] proved the inequality (1.1) forf ∈ C[a, b] under(R1). Then Mazouzi

and Qi [5] proved(1.1) by a functional inequality, which reads as follows,

|f(x)| ≥ k(x), a.e. x ∈ [a, b] and (b− a)
α−1
α−β ≤

∫ b

a

k(x)dx < ∞.

(B) Condition(R2) ensures the validity of the first inequality in (2.4). Assuming only (2.1)
without the conditionα = 2k/j > 1, j, k ∈ N, the first inequality in (2.4) could be
false. Indeed, the r.v.ξ ∼ U [−c, 0], c > 0 presents a simple counterexample to the
statement [

Ef(X)
]α ≤ E

[
f(X)

]α
,

since [
Eξ

]2κ−1
= −

( c

2

)2κ−1

≥ −c2κ−1

2κ
= Eξ2κ−1, κ ∈ N.

2.2. The caseα > 0, β > 1. In this case we will need the help of an auxiliary result, which we
clearly deduce by the Hölder inequality.

Lemma 2.3. Let Z, Y be two random variables withZ ≥ 0, Y ≥ 0, Z/Y ≥ 0 a.e. and
E(Z/Y )rp ≤ K for some constantK, 1/p + 1/q = 1. Then

(2.5) EZr ≤
[
E(Z/Y )rp

]1/p [
EY rq

]1/q ≤ K1/p
[
EY rq

]1/q
,

wherer > 0.

Theorem 2.4. Supposef is a positive continuous function on[a, b], fγ is integrable on[a, b],
whereγ := max{1, α}, and forα > 0, β > 1, the following condition is satisfied

(2.6)
∫ b

a

[
f(x)

](β−α)/(β−1)
dx ≤ 1.

Specifically, forα > β, lettingf(x) ≥ m > 0 and(b− a)/m
α−β
β−1 ≤ 1, then the inequality (1.2)

holds true.

Proof. Let the r.v.X ∼ U [a, b]. Thus, (2.2) holds. Therefore it is enough to prove that

(b− a)E
[
f(X)

]α ≥
[
(b− a)Ef(X)

]β

.

Let q = β > 1, p = β
β−1

, Zr = f(X) andY rβ =
[
f(X)

]α
, in the formula of Lemma 2.3. Then

(Z/Y )r =
[
f(X)

]1−α/β
readily follows, and consequently[

(b− a)Ef(X)
]β ≤

[
(b− a)

(
E

[
f(X)

]p−pα/β
)1/p(

E
[
f(X)

]α
)1/β]β

= (b− a)β−1
(
E

[
f(X)

]p−pα/β
)β/p

(b− a)
(
E

[
f(X)

]α
)

= (b− a)β−1
(
E

[
f(X)

](β−α)/(β−1)
)β−1

(b− a)
(
E

[
f(X)

]α
)

=

(∫ b

a

[
f(x)

](β−α)/(β−1)
dx

)β−1

(b− a)
(
E

[
f(X)

]α
)
.

Now, by (2.6) we conclude the desired inequality (1.2). �
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Remark 2.5. In fact, we do not need the conditionα > β, since supposing the converseα < β
and(β − α)/(β − 1) < 1, then the condition (2.6) can be replaced by the following condition
(from usingxγ, 0 < γ < 1, concave):∫ b

a

f(x)dx ≤ (b− a)
1−α
β−α ,

which is easier to check.

3. REVERSE QI -TYPE INEQUALITY

In this section, we mainly discuss reverse inequalities of the Qi-type inequality (1.2), and at
the same time we improve the results of Pogány [8]. For this purpose we list another auxiliary
inequality derived by Nehari [6], which is a reverse of the celebrated Hölder inequality.

Lemma 3.1(Nehari Inequality). Letf , g be nonnegative concave functions on[a, b]. Then, for
p, q > 0 such that1/p + 1/q = 1, we have

(3.1)

(∫ b

a

[
f(x)

]p
dx

) 1
p
(∫ b

a

[
g(x)

]q
dx

) 1
q

≤ N(p, q)

∫ b

a

f(x)g(x)dx,

where

(3.2) N(p, q) =
6

(1 + p)1/p(1 + q)1/q
.

Theorem 3.2.Letf(x) be nonnegative, concave and integrable on[a, b], β > 0 andmax{β, 1} <
α. Assume

(3.3)
∫ b

a

f(x)dx ≤ (b− a)

(
(1 + α)(2α− 1)α−1

6α(α− 1)α−1(b− a)1−β

) 1
α−β

.

Then the reverse inequality to (1.2), i.e.,

(3.4)
∫ b

a

[
f(x)

]α
dx ≤

[∫ b

a

f(x)dx

]β

holds true.

Proof. Let X ∼ U [a, b]. As (2.2) is valid, we are confronted with the proof of

(3.5) (b− a)E
[
f(X)

]α ≤
[
(b− a)Ef(X)

]β

.

The Nehari inequality (3.1) can be written in an equivalent form as

(3.6) (b− a)
(
E

[
f(X)

]p)1/p(E
[
g(X)

]q)1/q ≤ N(p, q)

∫ b

a

f(x)g(x)dx.

Takingg ≡ 1, p = α, then (3.6) becomes

(3.7)
(
E

[
f(X)

]α
)1/α

≤ N

(
α,

α

α− 1

)
Ef(X).

Thus by (3.7) and (3.3), we deduce

(b− a)E
[
f(X)

]α ≤ (b− a)Nα

(
α,

α

α− 1

) [
Ef(X)

]α

= (b− a)1−βNα

(
α,

α

α− 1

) [
Ef(X)

]α−β[
(b− a)Ef(X)

]β

=
[
(b− a)Ef(X)

]β
.
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This ends the proof of (3.4). �

Remark 3.3.
(A) Pogány [8] derived (3.4) for allf such that

(3.8) 0 ≤ f(x) ≤
(

(1 + α)(2α− 1)α−1

6α(α− 1)α−1(b− a)1−β

) 1
α−β

, x ∈ [a, b].

It is easy to see that our condition (3.3) relaxes (3.8).
(B) Csiszár and Móri [4] improved the results of Pogány [8] and obtained the inequality

(3.4) under the following condition

(3.9) f(x) ≤
(

1 + α

2α(b− a)1−β

) 1
α−β

, x ∈ [a, b].

The last constraint is obviously weaker than (3.8), but does not cover our integral con-
dition (3.3).

4. SOLVING (1.2) BY CONSTRUCTING SUITABLE PROBABILITY M EASURES

In this section we consider bounded and/or semi-bounded functions, and construct conve-
nient probability measures, different toU [a, b]. Then, considering certain relations between its
moments, we derive new Qi-type inequality results.

Theorem 4.1.Assume that0 < m ≤ f ≤ M < ∞, and forα > β > 1,

(4.1)
mα−1

Mβ−1(b− a)β−1
≥ 1,

then ∫ b

a

[
f(x)

]α
dx ≥

[∫ b

a

f(x)dx

]β

.

Moreover, the reverse inequality to (1.2) is valid when

(4.2)
Mα−1

mβ−1(b− a)β−1
≤ 1.

Proof. Define

µ(t) =

∫ t

a

f(x)∫ b

a
f(x)dx

dx, t ∈ [a, b].

It is easy to see thatµ(·) orders a probability measure on[a, b] and the following implications
follow ∫ b

a

[
f(x)

]α
dx[ ∫ b

a
f(x)dx

]β
=

∫ b

a

[
f(x)

]α−1 f(x)∫ b

a
f(x)dx

dx
1[ ∫ b

a
f(x)dx

]β−1
(4.3)

=

∫ b

a

[
f(x)

]α−1
µ(dx)[ ∫ b

a
f(x)dx

]β−1

≥ mα−1

Mβ−1(b− a)β−1
.

The remaining part of the proof is straightforward. �
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Remark 4.2.
(A) The direct use of the assumptionm ≤ f(x) ≤ M , m > 0 in the sharpness evaluation of

(4.1) results in

(4.4)

∫ b

a

[
f(x)

]α
dx[ ∫ b

a
f(x)dx

]β
≥ mα

Mβ(b− a)β−1
=: M1.

For our purposes we need the caseM1 ≥ 1. However, it is easy to check that

M1 ≤
mα−1

Mβ−1(b− a)β−1
;

hence, (4.1) generalizes the simplest possibleM1 ≥ 1.
(B) By similar arguments,

M2 :=
Mα

mβ(b− a)β−1
≤ 1

implies (4.2), so, when the considered integrand functions are bounded and positive, the
settings of Theorem 4.1 are optimal.

Corollary 4.3. Assume that0 < m ≤ f ≤ M < ∞, and for0 < β < α < 1,

(4.5)
Mα−1

mβ−1(b− a)β−1
≥ 1,

then the validity of the inequality (1.2) is confirmed.
Moreover, for0 < β < α < 1, if 0 < m ≤ f ≤ M < ∞ and

(4.6)
mα−1

Mβ−1(b− a)β−1
≤ 1,

there follows the inequality which is reversed to (1.2).

Corollary 4.4. Assume that0 < m ≤ f < ∞, 0 < β < 1 < α, let fα be integrable on[a, b]
and

(4.7) N1 :=
mα−β

(b− a)β−1
≥ 1.

Then (1.2) follows. Otherwise, when0 < β < α < 1, 0 < f ≤ M < ∞ and

(4.8) N2 :=
Mα−β

(b− a)β−1
≤ 1,

the reverse inequality to (1.2) is deduced.

Finally, let us construct an another probability measure

(4.9) µβ(x) :=

∫ x

a
[f(t)]βdt∫ b

a
[f(t)]βdt

, x ∈ [a, b], β 6= 1.

Taking into account the previous procedure for getting Qi-type inequalities and their reversed
variants, we arrive at the following results.

Theorem 4.5. Assume0 < m ≤ f < ∞, let fα be integrable on[a, b] and forα > β > 1, let
us supposeN1 ≥ 1. Then we have the inequality (1.2).

In addition, for0 < β < 1, α > β, 0 < f ≤ M < ∞ asx ∈ [a, b] andN2 ≤ 1, then the
reverse inequality to (1.2) holds true.
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Proof. Let us consider the probability measureµβ(x), x ∈ [a, b], β > 1:∫ b

a

[
f(x)

]α
dx[ ∫ b

a
f(x)dx

]β
=

∫ b

a

[
f(x)

]α
dx[

(b− a)Ef(X)
]β

≥
∫ b

a

[
f(x)

]α−β [f(x)]β

(b− a)β−1
∫ b

a
[f(x)]βdx

dx

= (b− a)1−β

∫ b

a

[
f(x)

]α−β
µ(dx)

≥ (b− a)1−βmα−β = N1.

This is equivalent to the assertion of Theorem 4.5.
The proof of the second case we leave to the interested reader. �

By a similar proof procedure as the previous theorem, we obtain the following interesting
result.

Theorem 4.6. Assume that0 < f ≤ M < ∞, let fα be integrable on[a, b] and for β >
max{1, α}, α > 0, we letN2 ≥ 1. Then we have the inequality (1.2).

Additionally, for0 < α < β < 1, 0 < m ≤ f < ∞ asx ∈ [a, b] andN1 ≤ 1, then the
reverse inequality to (1.2) holds true.

Because of the similarity of the proofs of last two theorems the proof of the last one is omitted.
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