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ABSTRACT. Making use of a linear operator, which is defined here by means of the Hadamard
product (or convolution), we introduce a classQp(a, c;h) of analytic and multivalent functions
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1. I NTRODUCTION AND PRELIMINARIES

Let the functions

f(z) =
∞∑

k=0

akz
p+k and g(z) =

∞∑
k=0

bkz
p+k (p ∈ N = {1, 2, 3, . . . })

be analytic in the open unit diskU = {z : |z| < 1}. Then the Hadamard product (or convolu-
tion) (f ∗ g)(z) of f(z) andg(z) is defined by

(1.1) (f ∗ g)(z) =
∞∑

k=0

akbkz
p+k = (g ∗ f)(z).
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Let Ap denote the class of functionsf(z) normalized by

(1.2) f(z) = zp +
∞∑

k=1

akz
p+k (p ∈ N),

which are analytic inU . A functionf(z) ∈ Ap is said to be in the classS∗
p(α) if it satisfies

(1.3) Re
zf ′(z)

f(z)
> pα (z ∈ U)

for someα(α < 1). When0 ≤ α < 1, S∗
p(α) is the class ofp-valently starlike functions of

orderα in U . Also we writeA1 = A andS∗
1(α) = S∗(α). A function f(z) ∈ A is said to be

prestarlike of orderα(α < 1) in U if

(1.4)
z

(1− z)2(1−α)
∗ f(z) ∈ S∗(α).

We denote this class byR(α) (see [9]). It is clear that a functionf(z) ∈ A is in the classR(0)
if and only if f(z) is convex univalent inU and

R

(
1

2

)
= S∗

(
1

2

)
.

We now define the functionϕp(a, c; z) by

(1.5) ϕp(a, c; z) = zp +
∞∑

k=1

(a)k

(c)k

zp+k (z ∈ U),

where
c /∈ {0,−1,−2, . . . } and (x)k = x(x + 1) · · · (x + k − 1) (k ∈ N).

Corresponding to the functionϕp(a, c; z), Saitoh [10] introduced and studied a linear operator
Lp(a, c) onAp by the following Hadamard product (or convolution):

(1.6) Lp(a, c)f(z) = ϕp(a, c; z) ∗ f(z) (f(z) ∈ Ap).

Forp = 1, L1(a, c) onA was first defined by Carlson and Shaffer [1]. We remark in passing that
a much more general convolution operator than the operatorLp(a, c) was introduced by Dziok
and Srivastava [2].

It is known [10] that

(1.7) z(Lp(a, c)f(z))′ = aLp(a + 1, c)f(z)− (a− p)Lp(a, c)f(z) (f(z) ∈ Ap).

Settinga = n + p > 0 andc = 1 in (1.6), we have

(1.8) Lp(n + p, 1)f(z) =
zp

(1− z)n+p
∗ f(z) = Dn+p−1f(z) (f(z) ∈ Ap).

The operatorDn+p−1 whenp = 1 was first introduced by Ruscheweyh [8], andDn+p−1 was
introduced by Goel and Sohi [3]. Thus we nameDn+p−1 as the Ruscheweyh derivative of
(n + p− 1)th order.

For functionsf(z) andg(z) analytic inU , we say thatf(z) is subordinate tog(z) in U , and
write f(z) ≺ g(z), if there exists an analytic functionw(z) in U such that

|w(z)| ≤ |z| and f(z) = g(w(z)) (z ∈ U).

Furthermore, if the functiong(z) is univalent inU , then

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).
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Let P be the class of analytic functionsh(z) with h(0) = p, which are convex univalent inU
and for which

Re h(z) > 0 (z ∈ U).

In this paper we introduce and investigate the following subclass ofAp.

Definition 1.1. A functionf(z) ∈ Ap is said to be in the classQp(a, c; h) if it satisfies

(1.9)
Lp(a + 1, c)f(z)

Lp(a, c)f(z)
≺ 1− p

a
+

h(z)

a
,

where

(1.10) a 6= 0, c /∈ {0,−1,−2, . . . } and h(z) ∈ P.

It is easy to see that, iff(z) ∈ Qp(a, c; h), thenLp(a, c)f(z) ∈ S∗
p(0).

Fora = n + p (n > −p), c = 1 and

(1.11) h(z) = p +
(A−B)z

1 + Bz
(−1 ≤ B < A ≤ 1),

Yang [12] introduced and studied the class

Qp(n + p, 1; h) = Sn,p(A, B).

Forh(z) given by (1.11), the class

(1.12) Qp(a, c; h) = Ha,c,p(A, B)

has been considered by Liu and Owa [5].
Forp = 1, A = 1− 2α (0 ≤ α < 1) andB = −1, Kim and Srivastava [4] have shown some

properties of the classHa,c,1(1− 2α,−1).
In the present paper, we shall establish an inclusion relation and a convolution property for the

classQp(a, c; h). Integral transforms of functions in this class are also discussed. We observe
that the proof of each of the results in [5] is much akin to that of the corresponding assertion
made by Yang [12] in the case ofa = n + p andc = 1. However, the methods used in [5, 12]
do not work for the general function classQp(a, c; h).

We need the following lemmas in order to derive our main results for the classQp(a, c; h).

Lemma 1.1 (Ruscheweyh [9]). Let α < 1, f(z) ∈ S∗(α) and g(z) ∈ R(α). Then, for any
analytic functionF (z) in U ,

g ∗ (fF )

g ∗ f
(U) ⊂ co(F (U)),

whereco(F (U)) denotes the closed convex hull ofF (U).

Lemma 1.2(Miller and Mocanu [6]). Let β (β 6= 0) andγ be complex numbers and leth(z)
be analytic and convex univalent inU with

Re(βh(z) + γ) > 0 (z ∈ U).

If q(z) is analytic inU with q(0) = h(0), then the subordination

q(z) +
zq′(z)

βq(z) + γ
≺ h(z)

implies thatq(z) ≺ h(z).

J. Inequal. Pure and Appl. Math., 9(2) (2008), Art. 50, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 DING-GONG YANG, N-ENG XU, AND SHIGEYOSHI OWA

2. M AIN RESULTS

Theorem 2.1.Leth(z) ∈ P and

(2.1) Re h(z) > β (z ∈ U ; 0 ≤ β < p).

If

(2.2) 0 < a1 < a2 and a2 ≥ 2(p− β),

then
Qp(a2, c; h) ⊂ Qp(a1, c; h).

Proof. Define

g(z) = z +
∞∑

k=1

(a1)k

(a2)k

zk+1 (z ∈ U ; 0 < a1 < a2).

Then

(2.3)
ϕp(a1, a2; z)

zp−1
= g(z) ∈ A,

whereϕp(a1, a2; z) is defined as in (1.5), and

(2.4)
z

(1− z)a2
∗ g(z) =

z

(1− z)a1
.

From (2.4) we have
z

(1− z)a2
∗ g(z) ∈ S∗

(
1− a1

2

)
⊂ S∗

(
1− a2

2

)
for 0 < a1 < a2, which implies that

(2.5) g(z) ∈ R
(
1− a2

2

)
.

Since

(2.6) Lp(a1, c)f(z) = ϕp(a1, a2; z) ∗ Lp(a2, c)f(z) (f(z) ∈ Ap),

we deduce from (1.7) and (2.6) that

a1Lp(a1 + 1, c)f(z) = z (Lp(a1, c)f(z))′ + (a1 − p)Lp(a1, c)f(z)

= ϕp(a1, a2; z) ∗ (z(Lp(a2, c)f(z))′ + (a1 − p)Lp(a2, c)f(z))

= ϕp(a1, a2; z) ∗ (a2Lp(a2 + 1, c)f(z) + (a1 − a2)Lp(a2, c)f(z)).(2.7)

By using (2.3), (2.6) and (2.7), we find that

Lp(a1 + 1, c)f(z)

Lp(a1, c)f(z)
=

(zp−1g(z)) ∗
(

a2

a1
Lp(a2 + 1, c)f(z) +

(
1− a2

a1

)
Lp(a2, c)f(z)

)
(zp−1g(z)) ∗ Lp(a2, c)f(z)

=
g(z) ∗

(
a2

a1

Lp(a2+1,c)f(z)

zp−1 +
(
1− a2

a1

)
Lp(a2,c)f(z)

zp−1

)
g(z) ∗ Lp(a2,c)f(z)

zp−1

=
g(z) ∗ (q(z)F (z))

g(z) ∗ q(z)
(f(z) ∈ Ap),(2.8)

where

q(z) =
Lp(a2, c)f(z)

zp−1
∈ A
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and

F (z) =
a2Lp(a2 + 1, c)f(z)

a1Lp(a2, c)f(z)
+ 1− a2

a1

.

Let f(z) ∈ Qp(a2, c; h). Then

F (z) ≺ a2

a1

(
1− p

a2

+
h(z)

a2

)
+ 1− a2

a1

= 1− p

a1

+
h(z)

a1

= h1(z) (say),(2.9)

whereh1(z) is convex univalent inU , and, by (1.7),

zq′(z)

q(z)
=

z(Lp(a2, c)f(z))′

Lp(a2, c)f(z)
+ 1− p

= a2
Lp(a2 + 1, c)f(z)

Lp(a2, c)f(z)
+ 1− a2

≺ 1− p + h(z).(2.10)

By using (2.1), (2.2) and (2.10), we get

Re
zq′(z)

q(z)
> 1− p + β ≥ 1− a2

2
(z ∈ U),

that is,

(2.11) q(z) ∈ S∗
(
1− a2

2

)
.

Consequently, in view of (2.5), (2.8), (2.9) and (2.11), an application of Lemma 1.1 yields

Lp(a1 + 1, c)f(z)

Lp(a1, c)f(z)
≺ h1(z).

Thusf(z) ∈ Qp(a1, c; h) and the proof of Theorem 2.1 is completed. �

By carefully selecting the functionh(z) involved in Theorem 2.1, we can obtain a number of
useful consequences.

Corollary 2.2. Let

(2.12) h(z) = p− 1 +

(
1 + Az

1 + Bz

)γ

(z ∈ U ; 0 < γ ≤ 1; −1 ≤ B < A ≤ 1).

If

0 < a1 < a2 and a2 ≥ 2

(
1−

(
1− A

1−B

)γ)
,

then
Qp(a2, c; h) ⊂ Qp(a1, c; h).

Proof. The analytic functionh(z) defined by (2.12) is convex univalent inU (cf. [11]), h(0) =
p, andh(U) is symmetric with respect to the real axis. Thush(z) ∈ P and

Re h(z) > β = h(−1) = p− 1 +

(
1− A

1−B

)γ

≥ 0 (z ∈ U).

Hence the desired result follows from Theorem 2.1 at once. �

If we let γ = 1, then Corollary 2.2 yields the following.

Corollary 2.3. Leth(z) be given by (1.11). Ifa, A andB(−1 ≤ B < A ≤ 1) satisfy either
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(i) a ≥ 1− 2
(

1−A
1−B

)
> 0

or

(ii) a > 0 ≥ 1− 2
(

1−A
1−B

)
,

then
Qp(a + 1, c; h) ⊂ Qp(a, c; h).

Using Jack’s Lemma, Liu and Owa [5, Theorem 1] proved that, ifa ≥ A−B
1−B

, then

Ha+1,c,p(A, B) ⊂ Ha,c,p(A, B).

Since
A−B

1−B
≥ 1− 2

(
1− A

1−B

)
(−1 ≤ B < A ≤ 1)

and the equality occurs only whenA = 1, we see that Corollary 2.3 is better than the result of
[5].

Corollary 2.4. Let

(2.13) h(z) = p +
∞∑

k=1

(
γ + 1

γ + k

)
δkzk (z ∈ U ; 0 < δ ≤ 1; γ ≥ 0).

If

0 < a1 < a2 and a2 ≥ 2
∞∑

k=1

(−1)k+1

(
γ + 1

γ + k

)
δk,

then
Qp(a2, c; h) ⊂ Qp(a1, c; h).

Proof. The functionh(z) defined by (2.13) is in the classP (cf. [8]) and satisfiesh(z) = h(z).
Thus

Re h(z) > β = h(−1) = p +
∞∑

k=1

(−1)k

(
γ + 1

γ + k

)
δk > p− δ ≥ 0 (z ∈ U).

Therefore we have the corollary by using Theorem 2.1. �

Corollary 2.5. Let

(2.14) h(z) = p +
2

π2

(
log

(
1 +

√
γz

1−√
γz

))2

(z ∈ U ; 0 < γ ≤ 1).

If

0 < a1 < a2 and a2 ≥
16

π2
(arctan

√
γ)2 ,

then
Qp(a2, c; h) ⊂ Qp(a1, c; h).

Proof. The functionh(z) defined by (2.14) belongs to the classP (cf. [7]) and satisfiesh(z) =

h(z). Thus

Re h(z) > β = h(−1) = p− 8

π2
(arctan

√
γ)2 ≥ p− 1

2
> 0 (z ∈ U).

Hence an application of Theorem 2.1 yields the desired result. �

Forγ = 1, Corollary 2.5 leads to
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Corollary 2.6. Let

h(z) = p +
2

π2

(
log

(
1 +

√
z

1−
√

z

))2

(z ∈ U).

Then, fora > 0,

Qp(a + 1, c; h) ⊂ Qp(a, c; h).

Theorem 2.7.Leth(z) ∈ P and

(2.15) Re h(z) > p− 1 + α (z ∈ U ; α < 1).

If f(z) ∈ Qp(a, c; h),

(2.16) g(z) ∈ Ap and
g(z)

zp−1
∈ R(α) (α < 1),

then
(f ∗ g)(z) ∈ Qp(a, c; h).

Proof. Let f(z) ∈ Qp(a, c; h) and suppose that

(2.17) q(z) =
Lp(a, c)f(z)

zp−1
.

Then

(2.18) F (z) =
Lp(a + 1, c)f(z)

Lp(a, c)f(z)
≺ 1− p

a
+

h(z)

a
,

q(z) ∈ A and

(2.19)
zq′(z)

q(z)
≺ 1− p + h(z)

(see (2.10) used in the proof of Theorem 2.1). By (2.15) and (2.19), we see that

(2.20) q(z) ∈ S∗(α).

Forg(z) ∈ Ap, it follows from (2.17) and (2.18) that

Lp(a + 1, c)(f ∗ g)(z)

Lp(a, c)(f ∗ g)(z)
=

g(z) ∗ Lp(a + 1, c)f(z)

g(z) ∗ Lp(a, c)f(z)

=
g(z)
zp−1 ∗ (q(z)F (z))

g(z)
zp−1 ∗ q(z)

(z ∈ U).(2.21)

Now, by using (2.16), (2.18), (2.20) and (2.21), an application of Lemma 1.1 leads to

Lp(a + 1, c)(f ∗ g)(z)

Lp(a, c)(f ∗ g)(z)
≺ 1− p

a
+

h(z)

a
.

This shows that(f ∗ g)(z) ∈ Qp(a, c; h). �

Forα = 0 andα = 1
2
, Theorem 2.7 reduces to

Corollary 2.8. Leth(z) ∈ P andg(z) ∈ Ap satisfy either

(i) g(z)
zp−1 is convex univalent inU and

Re h(z) > p− 1 (z ∈ U)

or
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(ii) g(z)
zp−1 ∈ S∗(1

2
) and

Re h(z) > p− 1

2
(z ∈ U).

If f(z) ∈ Qp(a, c; h), then

(f ∗ g)(z) ∈ Qp(a, c; h).

Theorem 2.9.Leth(z) ∈ P and

(2.22) Re h(z) > −Re λ (z ∈ U),

whereλ is a complex number such thatRe λ > −p. If f(z) ∈ Qp(a, c; h), then the function

(2.23) g(z) =
λ + p

zλ

∫ z

0

tλ−1f(t)dt

is also in the classQp(a, c; h).

Proof. Forf(z) ∈ Ap andRe λ > −p, it follows from (1.7) and (2.23) thatg(z) ∈ Ap and

(λ + p)Lp(a, c)f(z) = λLp(a, c)g(z) + z(Lp(a, c)g(z))′

= aLp(a + 1, c)g(z) + (λ + p− a)Lp(a, c)g(z).(2.24)

If we let

(2.25) q(z) =
Lp(a + 1, c)g(z)

Lp(a, c)g(z)
,

then (2.24) and (2.25) lead to

(2.26) aq(z) + λ + p− a = (λ + p)
Lp(a, c)f(z)

Lp(a, c)g(z)
.

Differentiating both sides of (2.26) logarithmically and using (1.7) and (2.25), we obtain

zq′(z)

aq(z) + λ + p− a
=

1

a

(
z(Lp(a, c)f(z))′

Lp(a, c)f(z)
− z(Lp(a, c)g(z))′

Lp(a, c)g(z)

)
=

Lp(a + 1, c)f(z)

Lp(a, c)f(z)
− q(z).(2.27)

Let f(z) ∈ Qp(a, c; h). Then it follows from (2.27) that

(2.28) q(z) +
zq′(z)

aq(z) + λ + p− a
≺ 1− p

a
+

h(z)

a
.

Also, in view of (2.22), we have

(2.29) Re

{
a

(
1− p

a
+

h(z)

a

)
+ λ + p− a

}
= Re h(z) + Reλ > 0 (z ∈ U).

Therefore, it follows from (2.28), (2.29) and Lemma 1.2 that

q(z) ≺ 1− p

a
+

h(z)

a
.

This proves thatg(z) ∈ Qp(a, c; h). �

From Theorem 2.9 we have the following corollaries.
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Corollary 2.10. Leth(z) be defined as in Corollary 2.2. Iff(z) ∈ Qp(a, c; h) and

Reλ ≥ 1− p−
(

1− A

1−B

)γ

(0 < γ ≤ 1;−1 ≤ B < A ≤ 1),

then the functiong(z) given by (2.23) is also in the classQp(a, c; h).

In the special case whenγ = 1, Corollary 2.10 was obtained by Liu and Owa [5, Theorem 2]
using Jack’s Lemma.

Corollary 2.11. Leth(z) be defined as in Corollary 2.4. Iff(z) ∈ Qp(a, c; h) and

Reλ ≥
∞∑

k=1

(−1)k+1

(
γ + 1

γ + k

)
δk − p (0 < δ ≤ 1; γ ≥ 0),

then the functiong(z) given by (2.23) is also in the classQp(a, c; h).

Corollary 2.12. Leth(z) be defined as in Corollary 2.5. Iff(z) ∈ Qp(a, c; h) and

Reλ ≥ 8

π2
(arctan

√
γ)2 − p (0 < γ ≤ 1),

then the functiong(z) given by (2.23) is also in the classQp(a, c; h).

Theorem 2.13.Leth(z) ∈ P and

(2.30) Re h(z) > −Reλ

β
(z ∈ U),

whereβ > 0 andλ is a complex number such thatRe λ > −pβ. If f(z) ∈ Qp(a, c; h), then the
functiong(z) ∈ Ap defined by

(2.31) Lp(a, c)g(z) =

(
λ + pβ

zλ

∫ z

0

tλ−1 (Lp(a, c)f(t))β dt

) 1
β

is also in the classQp(a, c; h).

Proof. Let f(z) ∈ Qp(a, c; h). From the definition ofg(z) we have

(2.32) zλ(Lp(a, c)g(z))β = (λ + pβ)

∫ z

0

tλ−1(Lp(a, c)f(t))βdt.

Differentiating both sides of (2.32) logarithmically and using (1.7), we get

(2.33) λ + β(aq(z) + p− a) = (λ + pβ)

(
Lp(a, c)f(z)

Lp(a, c)g(z)

)β

,

where

(2.34) q(z) =
Lp(a + 1, c)g(z)

Lp(a, c)g(z)
.

Also, differentiating both sides of (2.33) logarithmically and using (1.7), we arrive at

(2.35) q(z) +
zq′(z)

aβq(z) + λ + β(p− a)
=

Lp(a + 1, c)f(z)

Lp(a, c)f(z)
≺ 1− p

a
+

h(z)

a
.

Noting that (2.30) andβ > 0, we see that

(2.36) Re

{
aβ

(
1− p

a
+

h(z)

a

)
+ λ + β(p− a)

}
= β Re h(z) + Reλ > 0 (z ∈ U).
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Now, in view of (2.34), (2.35) and (2.36), an application of Lemma 1.2 yields

Lp(a + 1, c)g(z)

Lp(a, c)g(z)
≺ 1− p

a
+

h(z)

a
,

that is,g(z) ∈ Qp(a, c; h). �

Corollary 2.14. Leth(z) be defined as in Corollary 2.2. Iff(z) ∈ Qp(a, c; h) and

Reλ ≥ β

(
1− p−

(
1− A

1−B

)γ)
(0 < γ ≤ 1;−1 ≤ B < A ≤ 1; β > 0),

then the functiong(z) ∈ Ap defined by (2.31) is also in the classQp(a, c; h).
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