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ABSTRACT. Letf be a2π periodic function inL1[0, 2π] and
∑∞

k=−∞ f̂(nk)einkx be its Fourier
series with ‘small’ gapsnk+1 − nk ≥ q ≥ 1. Here we have obtained sufficiency conditions for
the absolute convergence of such series iff is of

∧
BV (p) locally. We have also obtained a

beautiful interconnection between lacunary and non-lacunary Fourier series.
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1. I NTRODUCTION

Let f be a2π periodic function inL1[0, 2π] andf̂(n), n ∈ Z, be its Fourier coefficients. The
series

(1.1)
∑
k∈Z

f̂(nk)e
inkx,

wherein{nk}∞1 is a strictly increasing sequence of natural numbers andn−k = −nk, for all k,
satisfy an inequality

(1.2) (nk+1 − nk) ≥ q ≥ 1 for all k = 0, 1, 2, . . . ,

is called the Fourier series off with ‘small’ gaps.
Obviously, ifnk = k, for all k, (i.e. nk+1 − nk = q = 1, for all k), then we get non-lacunary

Fourier series and if{nk} is such that

(1.3) (nk+1 − nk) →∞ as k →∞,

then (1.1) is said to be the lacunary Fourier series.
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2 R.G. VYAS

By applying the Wiener-Ingham result [1, Vol. I, p. 222] for the finite trigonometric sums
with small gap (1.2) we have studied the sufficiency condition for the convergence of the series∑

k∈Z

∣∣∣f̂(nk)
∣∣∣β (0 < β ≤ 2) in terms of

∧
BV and the modulus of continuity [2, Theorem

3]. Here we have generalized this result and we have also obtained a sufficiency condition if
function f is of

∧
BV (p). In 1980 Shiba [4] generalized the class

∧
BV . He introduced the

class
∧

BV (p).

Definition 1.1. Given an intervalI, a sequence of non-decreasing positive real numbers
∧

=
{λm} (m = 1, 2, . . .) such that

∑
m

1
λm

diverges and1 ≤ p < ∞ we say thatf ∈
∧

BV (p) (that
is f is a function ofp−

∧
-bounded variation over (I)) if

VΛp(f, I) = sup
{Im}

{VΛp({Im}, f, I)} < ∞,

where

VΛp({Im}, f, I) =

(∑
m

|f(bm)− f(am)|p

λm

) 1
p

,

and{Im} is a sequence of non-overlapping subintervalsIm = [am, bm] ⊂ I = [a, b].

Note that, ifp = 1, one gets the class
∧

BV (I); if λm ≡ 1 for all m, one gets the class
BV (p); if p = 1 andλm ≡ m for all m, one gets the class HarmonicBV (I). if p = 1 and
λm ≡ 1 for all m, one gets the classBV (I).

Definition 1.2. For p ≥ 1, the p−integral modulus of continuityω(p)(δ, f, I) of f over I is
defined as

ω(p)(δ, f, I) = sup
0≤h≤δ

‖(Thf − f)(x)‖p,I ,

whereThf(x) = f(x + h) for all x and‖(·)‖p,I = ‖(·)χI‖p in which χI is the characteristic
function ofI and‖(·)‖p denotes theLp-norm.p = ∞ gives the modulus of continuityω(δ, f, I).

We prove the following theorems.

Theorem 1.1. Let f ∈ L[−π, π] possess a Fourier series with ‘small’ gaps (1.2) andI be a
subinterval of lengthδ1 > 2π

q
. If f ∈

∧
BV (I) and

∞∑
k=1

 ω( 1
nk

, f, I)

k
(∑nk

j=1
1
λj

)


β
2

< ∞,

then

(1.4)
∑
k∈Z

∣∣∣f̂(nk)
∣∣∣β < ∞ (0 < β ≤ 2).

Since{λj} is non-decreasing, one gets
∑nk

j=1
1
λj
≥ nk

λnk
and hence our earlier theorem [2,

Theorem 3] follows from Theorem 1.1.
Theorem 1.1 withβ = 1 andλn ≡ 1 shows that the Fourier series off with ‘small’ gaps

condition (1.2) (respectively (1.3)) converges absolutely if the hypothesis of the Stechkin theo-
rem [5, Vol. II, p. 196] is satisfied only in a subinterval of[0, 2π] of length> 2π

q
(respectively

of arbitrary positive length).
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Theorem 1.2. Let f andI be as in Theorem 1.1. Iff ∈
∧

BV (p)(I), 1 ≤ p < 2r, 1 < r < ∞
and

∞∑
k=1


(
ω((2−p)s+p)

(
1

nk
, f, I

))2−p/r

k
(∑nk

j=1

(
1
λj

)) 1
r


β
2

< ∞,

where1
r

+ 1
s

= 1, then (1.4) holds.

Theorem 1.2 withβ = 1 is a ‘small’ gaps analogue of the Schramm and Waterman result [3,
Theorem 1].

We need the following lemmas to prove the theorems.

Lemma 1.3([2, Lemma 4]). Letf andI be as in Theorem 1.1. Iff ∈ L2(I) then

(1.5)
∑
k∈Z

∣∣∣f̂(nk)
∣∣∣2 ≤ Aδ |I|−1 ‖f‖2

2,I ,

whereAδ depends only onδ.

Lemma 1.4. If |nk| > p then fort ∈ N one has∫ π
p

0

sin2t |nk|h dh ≥ π

2t+1p
.

Proof. Obvious. �

Lemma 1.5 (Stechkin, refer to [6]). If un ≥ 0 for n ∈ N, un 6= 0 and a functionF (u) is
concave, increasing, andF (0) = 0, then

∞∑
1

F (un) ≤ 2
∞∑
1

F

(
un + un+1 + · · ·

n

)
.

Lemma 1.6. If f ∈
∧

BV (p)(I) impliesf is bounded overI.

Proof. Observe that

|f(x)|p ≤ 2p

(
|f(a)|p + λ1

|f(x)− f(a)|p

λ1

+ λ2
|f(b)− f(x)|p

λ2

)
≤ 2p

(
|f(a)|p + λ2V∧p(f, I)

)
Hence the lemma follows. �

Proof of Theorem 1.1.Let I =
[
x0 − δ1

2
, x0 + δ1

2

]
for somex0 andδ2 be such that0 < 2π

q
<

δ2 < δ1. Putδ3 = δ1 − δ2 andJ =
[
x0 − δ2

2
, x0 + δ2

2

]
. Suppose integersT andj satisfy

(1.6) |nT | >
4π

δ3

and 0 ≤ j ≤ δ3 |nT |
4π

.

Sincef ∈
∧

BV (I) impliesf is bounded overI by Lemma 1.6 (forp = 1), we havef ∈ L2(I),
so that (1.5) holds andf ∈ L2[−π, π]. If we putfj = (T2jhf − T(2j−1)hf) thenfj ∈ L2(I) and
the Fourier series offj also possesses gaps (1.2). Hence by Lemma 1.3 we get

(1.7)
∑
k∈Z

∣∣∣f̂(nk)
∣∣∣2 sin2

(
nkh

2

)
= O

(
‖fj‖2

2,J

)
because

f̂j(nk) = 2if̂(nk)e
ink(2j− 1

2
h) sin

(
nkh

2

)
.
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Integrating both the sides of (1.7) over(0, π
nT

) with respect toh and using Lemma 1.4, we get

(1.8)
∞∑

|nk|≥nT

∣∣∣f̂(nk)
∣∣∣2 = O(nT )

∫ π
nT

0

(
‖ fj ‖2

2,J

)
dh.

Multiplying both the sides of the equation by1
λj

and then taking summation overj, we get

(1.9)

(∑
j

1

λj

) ∞∑
|nk|≥nT

∣∣∣f̂(nk)
∣∣∣2
 = O(nT )

∫ π
nT

0

∥∥∥∥∥∑
j

|fj|2

λj

∥∥∥∥∥
1,J

 dh.

Now, sincex ∈ J and h ∈ (0, π
nT

) we have|fj(x)| = O(ω( 1
nT

, f, I)), for eachj of the

summation; sincex ∈ J andf ∈
∧

BV (I) we have
∑

j
|fj(x)|

λj
= O(1) because for eachj the

pointsx + 2jh andx + (2j − 1)h lie in I for h ∈ (0, π
nT

) andx ∈ J ⊂ I. Therefore(∑
j

|fj(x)|2

λj

)
= O

(
ω

(
1

nT

, f, I

))(∑
j

|fj(x)|
λj

)

= O

(
ω

(
1

nT

, f, I

))
.

It follows now from (1.9) that

RnT
=
∑

|nk≥nT

∣∣∣f̂(nk)
∣∣∣2 = O

ω
(

1
nT

, f, I
)

∑nT

j=1
1
λj

 .

Finally, Lemma 1.5 withuk =
∣∣∣f̂(nk)

∣∣∣2 (k ∈ Z) andF (u) = uβ/2 gives

∞∑
|k|=1

∣∣∣f̂(nk)
∣∣∣β = 2

∞∑
k=1

F

(∣∣∣f̂(nk)
∣∣∣2)

≤ 4
∞∑

k=1

F

(
Rnk

k

)

≤ 4
∞∑

k=1

(
Rnk

k

)β/2

= O(1)

 ∞∑
k=1

(
ω( 1

nk
, f, I)

k(Σnk
j=1

1
λj

)

)(β/2)
 .

This proves the theorem. �

Proof of Theorem 1.2.Sincef ∈
∧

BV (p)(I), Lemma 1.6 impliesf is bounded overI. There-
foref ∈ L2(I), and hence (1.5) holds so thatf ∈ L2[−π, π]. Using the notations and procedure
of Theorem 1.1 we get (1.9). Since2 = (2−p)s+p

s
+ p

r
, by using Hölder’s inequality, we get from

J. Inequal. Pure and Appl. Math., 6(1) Art. 23, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ABSOLUTE CONVERGENCE OFSMALL GAPS FOURIER SERIES OFFUNCTIONS 5

(1.9) ∫
J

|fj(x)|2 dx ≤
(∫

J

|fj(x)|(2−p)s+p dx

) 1
s
(∫

J

|fj(x)|p dx

) 1
r

≤ Ω
1/r
h,J

(∫
J

|fj(x)|p dx

) 1
r

,

whereΩh,J = (ω(2−p)s+p(h, f, J))2r−p.
This together with (1.9) implies, putting

B =
∑
k∈Z

∣∣∣f̂(nk)
∣∣∣2 sin2

(
nkh

2

)
,

that

B ≤ Ω
1/r
h,J

(∫
J

|fj(x)|p dx

) 1
r

.

Thus

Br ≤ Ωh,J

(∫
J

|fj(x)|p dx

)
.

Now multiplying both the sides of the equation by1
λj

and then taking the summation overj = 1

to nT (T ∈ N) we get

Br ≤
Ωh,J

(∫
J

(∑
j
|fj(x)|p

λj

)
dx
)

∑
j

1
λj

.

Therefore

B ≤

(
Ωh,J∑

j
1
λj

) 1
r
(∫

J

(∑
j

|fj(x)|p

λj

)
dx

) 1
r

.

Substituting back the value ofB and then integrating both the sides of the equation with respect
to h over(0, π

nT
), we get

(1.10)
∑
k∈Z

∣∣∣f̂(nk)
∣∣∣2 ∫ π/nT

0

(
sin2

(
|nk|h

2

))
dh

= O

 Ω1/nT ,J(∑
j

1
λj

)
 1

r ∫ π/nT

0

(∫
J

(∑
j

|fj(x)|p

λj

)
dx

) 1
r

dh.

Observe that forx in J , h in (0, π
nT

) and for eachj of the summation the pointsx + 2jh and

x + (2j − 1)h lie in I; moreover,f ∈
∧

BV (p)(I) implies∑
j

|fj(x)|p

λj

= O(1).

Therefore, it follows from (1.10) and Lemma 1.4 that

RnT
≡

∑
|nk|≥nT

∣∣∣f̂(nk)
∣∣∣2 = O

(
Ω1/nT ,I∑nT

j=1
1
λj

) 1
r

.
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Thus

RnT
= O

ω(2−p)s+p
(

1
nT

, f, I
)2−p/r

(∑nT

j=1
1
λj

) 1
r

 .

Now proceeding as in the proof of Theorem 1.1, the theorem is proved using Lemma 1.5.�
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