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ABSTRACT. In the present note we establish two new integral inequalities similar to that of the
Grüss integral inequality via Pompeiu’s mean value theorem.
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1. I NTRODUCTION

In 1935 G. Grüss [4] proved the following integral inequality (see also [5, p. 296]):

(1.1)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx−
(

1

b− a

∫ b

a

f (x) dx

) (
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣
≤ 1

4
(P − p) (Q− q) ,

provided thatf andg are two integrable functions on[a, b] such that

p ≤ f (x) ≤ P, q ≤ g (x) ≤ Q,

for all x ∈ [a, b] , wherep, P, q, Q are constants.
The inequality (1.1) has evoked the interest of many researchers and numerous generaliza-

tions, variants and extensions have appeared in the literature, see [1], [3], [5] – [10] and the
references cited therein. The main aim of this note is to establish two new integral inequalities
similar to the inequality (1.1) by using a variant of Lagrange’s mean value theorem, now known
as the Pompeiu’s mean value theorem [11] (see also [12, p. 83] and [2]).
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2. STATEMENT OF RESULTS

In what follows,R and ′ denote the set of real numbers and derivative of a function respec-
tively. For continuous functionsp, q : [a, b] → R which are differentiable on(a, b), we use the
notations

G [p, q] =

∫ b

a

p (x) q (x) dx− 1

b2 − a2

[(∫ b

a

p (x) dx

) (∫ b

a

xq (x) dx

)
+

(∫ b

a

q (x) dx

) (∫ b

a

xp (x) dx

)]
,

H [p, q] =

∫ b

a

p (x) q (x) dx− 3

b3 − a3

(∫ b

a

xp (x) dx

) (∫ b

a

xq (x) dx

)
,

to simplify the details of presentation and define‖p‖∞ = supt∈[a,b] |p (t)| .
In the proofs of our results we make use of the following theorem, which is a variant of the

well known Lagrange’s mean value theorem given by Pompeiu in [11] (see also [2, 12]).

Theorem 2.1(Pompeiu). For every real valued functionf differentiable on an interval[a, b]
not containing0 and for all pairsx1 6= x2 in [a, b] there exists a pointc in (x1, x2) such that

x1f (x2)− x2f (x1)

x1 − x2

= f (c)− cf ′ (c) .

Our main result is given in the following theorem.

Theorem 2.2.Letf, g : [a, b] → R be continuous on[a, b] and differentiable on(a, b) with [a, b]
not containing0. Then

(2.1) |G [f, g]| ≤ ‖f − lf ′‖∞
∫ b

a

|g (x)|
∣∣∣∣12 − x

a + b

∣∣∣∣ dx

+ ‖g − lg′‖∞
∫ b

a

|f (x)|
∣∣∣∣12 − x

a + b

∣∣∣∣ dx,

wherel(t) = t, t ∈ [a, b].

A slight variant of Theorem 2.2 is embodied in the following theorem.

Theorem 2.3.Letf, g : [a, b] → R be continuous on[a, b] and differentiable on(a, b) with [a, b]
not containing0. Then

(2.2) |H [f, g]| ≤ ‖f − lf ′‖∞ ‖g − lg′‖∞ |M | ,
wherel(t) = t , t ∈ [a, b] and

(2.3) M = (b− a)

{
1− 3

4
· (a + b)2

a2 + ab + b2

}
.

3. PROOFS OF THEOREMS 2.2 AND 2.3

From the hypotheses of Theorems 2.2 and 2.3 and using Theorem 2.1 fort 6= x, x, t ∈ [a, b],
there exist pointsc andd betweenx andt such that

(3.1) t f (x)− x f (t) = [f (c)− cf ′ (c)] (t− x) ,

(3.2) t g (x)− x g (t) = [g (d)− dg′ (d)] (t− x) .
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Multiplying (3.1) and (3.2) byg(x) andf(x) respectively and adding the resulting identities we
have

(3.3) 2 t f (x) g (x)− x g (x) f (t)− x f (x) g (t)

= [f (c)− cf ′ (c)] (t− x) g (x) + [g (d)− dg′ (d)] (t− x) f (x) .

Integrating both sides of (3.3) with respect tot over [a, b] we have

(3.4)
(
b2 − a2

)
f (x) g (x)− x g (x)

∫ b

a

f (t) dt− x f (x)

∫ b

a

g (t) dt

= [f (c)− cf ′ (c)]

{
b2 − a2

2
g (x)− x g (x) (b− a)

}
+ [g (d)− dg′ (d)]

{
b2 − a2

2
f (x)− x f (x) (b− a)

}
.

Now, integrating both sides of (3.4) with respect tox over [a, b] we have

(3.5)
(
b2 − a2

) ∫ b

a

f (x) g (x) dx

−
(∫ b

a

f (t) dt

) (∫ b

a

xg (x) dx

)
−

(∫ b

a

g (t) dt

) (∫ b

a

xf (x) dx

)
= [f (c)− cf ′ (c)]

{
(b2 − a2)

2

∫ b

a

g (x) dx− (b− a)

∫ b

a

xg (x) dx

}
+ [g (d)− dg′ (d)]

{
(b2 − a2)

2

∫ b

a

f (x) dx− (b− a)

∫ b

a

xf (x) dx

}
.

Rewriting (3.5) we have

(3.6) G [f, g] = [f (c)− cf ′ (c)]

∫ b

a

g (x)

{
1

2
− x

a + b

}
dx

+ [g (d)− dg′ (d)]

∫ b

a

f (x)

{
1

2
− x

a + b

}
dx.

Using the properties of modulus, from (3.6) we have

|G [f, g]| ≤ ‖f − lf ′‖∞
∫ b

a

|g (x)|
∣∣∣∣12 − x

a + b

∣∣∣∣ dx

+ ‖g − lg′‖∞
∫ b

a

|f (x)|
∣∣∣∣12 − x

a + b

∣∣∣∣ dx.

This completes the proof of Theorem 2.2.
Multiplying the left sides and right sides of (3.1) and (3.2) we get

(3.7) t2f (x) g (x)− (xf (x)) (tg (t))− (xg (x)) (tf (t)) + x2f (t) g (t)

= [f (c)− cf ′ (c)] [g (d)− dg′ (d)] (t− x)2 .
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Integrating both sides of (3.7) with respect tot over [a, b] we have

(3.8)
(b3 − a3)

3
f (x) g (x)− xf (x)

∫ b

a

tg (t) dt− xg (x)

∫ b

a

tf (t) dt + x2

∫ b

a

f (t) g (t) dt

= [f (c)− cf ′ (c)] [g (d)− dg′ (d)]

{
(b3 − a3)

3
− x

(
b2 − a2

)
+ x2 (b− a)

}
.

Now, integrating both sides of (3.8) with respect tox over [a, b] we have

(3.9)
(b3 − a3)

3

∫ b

a

f (x) g (x) dx−
(∫ b

a

xf (x) dx

) (∫ b

a

tg (t) dt

)
−

(∫ b

a

xg (x) dx

) (∫ b

a

tf (t) dt

)
+

(b3 − a3)

3

∫ b

a

f (t) g (t) dt

= [f (c)− cf ′ (c)] [g (d)− dg′ (d)]

×
{

(b3 − a3)

3
(b− a)−

(
b2 − a2

) (b2 − a2)

2
+ (b− a)

(b3 − a3)

3

}
.

Rewriting (3.9) we have

(3.10) H [f, g] = [f (c)− cf ′ (c)] [g (d)− dg′ (d)] M.

Using the properties of modulus, from (3.10) we have

|H [f, g]| ≤ ‖f − lf ′‖∞ ‖g − lg′‖∞ |M | .
The proof of Theorem 2.3 is complete.
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