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ABSTRACT. In the present note we establish two new integral inequalities similar to that of the
Gruss integral inequality via Pompeiu’s mean value theorem.
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1. INTRODUCTION

In 1935 G. Griiss [|4] proved the following integral inequality (see also [5, p. 296]):

@y [ [rwswe- (7 i) (G e w)

<= (P—-p)(Q—1q),

~—

=

provided thatf andg are two integrable functions dn, b| such that

p<fle) <P, q=<g(x)<Q,

for all z € [a,b] , wherep, P, ¢, (Q are constants.

The inequality[(1.ll) has evoked the interest of many researchers and numerous generaliza-
tions, variants and extensions have appeared in the literature,!see [1]/ [3],.[S] — [10] and the
references cited therein. The main aim of this note is to establish two new integral inequalities
similar to the inequality[ (1]1) by using a variant of Lagrange’s mean value theorem, now known
as the Pompeiu’s mean value theorém [11] (see &also [12, p. 83]and [2]).
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2 B.G. FACHPATTE

2. STATEMENT OF RESULTS

In what follows,R and’ denote the set of real numbers and derivative of a function respec-
tively. For continuous functiong, ¢ : [a,b] — R which are differentiable ofu, b), we use the
notations

o= [ e it ([ p@ ) ([ w)
—i—(/abq(x)dx) (/abxp(x)dx)},
H[p,Q]Z/abp(x)q(x)dx—ﬁ(/abfcp(x)dx) (/abe(l’)dx>,

to simplify the details of presentation and defipgl , = sup,cq4 [P ()]
In the proofs of our results we make use of the following theorem, which is a variant of the
well known Lagrange’s mean value theorem given by Pompeiu.in [11] (se€ also [2, 12]).

Theorem 2.1(Pompeiu) For every real valued functioyf differentiable on an intervala, b|
not containing) and for all pairsz; # x5 in [a, b] there exists a pointin (z;, x2) such that

w1 f (w2) — o f (1) fe)—cf'(c).

Ty — X2
Our main result is given in the following theorem.

Theorem 2.2.Let f, g : [a,b] — R be continuous ofu, b] and differentiable oria, b) with |a, b]
not containing). Then

xr
a+b

b
1) [Glf.g)l < Hf—lf'Hoo/ l9(2) '% -

‘dw

T
a+b

b
1
Hlo=1g'l [ 17 @3- 255

wherel(t) =t,t € [a, b].
A slight variant of Theorerp 2|2 is embodied in the following theorem.

Theorem 2.3.Let f, g : [a,b] — R be continuous ofu, b] and differentiable oria, b) with [a, b|
not containing). Then

(2.2) [H[f,gll < =11 lg = 19l [M]
wherel(t) =t ,t € [a,b] and
B 3 (a+0)’

3. PROOFS OF THEOREMS [Z.2AND 2.3

From the hypotheses of Theorems|2.2[andl 2.3 and using Theorem 2. forz, ¢ € [a, b],
there exist points andd between: andt¢ such that

(3.1) tf(x)—zft)=1[f(c)—cf (O t—2),

(3.2) tg(x) —xg(t)=[g(d)—dg (d)](t—=x).
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Multiplying (8.1)) and[(3.R) by(x) and f () respectively and adding the resulting identities we
have

(3.3) 2tf(x)g(x) —zg(x) f(t)—af(x)g(t)
=[f(e) —cf' (Ot —x) g (x) + [g(d) — dg' (d)] (t — ) f (x).
Integrating both sides of (3.3) with respecttover a, b] we have

b b
(3.9) (62—a2)f(x)g(x)—xg(m)/ f(t)dt—xf(w)/ g (1) dt

b? — a?

- O e a9 @) -0}

b? — a?

2

+[g<d>—dg'<d>]{ f(x)—wf(x)(b—a)}-

Now, integrating both sides df (3.4) with respect:tover [a, b] we have

(3.5) (b2 — az) / f(x)g(z)dx

AEDIVEEDRIXIDIVEED

1@ -ef {5 [o@te—0-a) [ agta)ar)

rio@—af @ { 5D [ @i -0-a [erwal.

Rewriting (3.%) we have

@6 Glral =@ —er' 0] [ 9 {3~ b
+[9(d)—dg’(d)]/bf(x){%— ~

“ a+b

Using the properties of modulus, from (B.6) we have

xr
a+b

b
lg-igl. [ 1f @)

dx

b
G [f,q] < Hf—lf’Hoo/ 9 ()] B ~

X

dx.
a+b o

1
2

This completes the proof of Theor¢gm[2.2.
Multiplying the left sides and right sides ¢f (3.1) and {3.2) we get

B.7) t*f(2)g(x) — (af (2)) (tg (1)) — (zg (2)) (tf (1)) + 2*f () g (¢)
=[f(e) = cf () lg(d) — dg' ()] (t —2)*.
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Integrating both sides of (3.7) with respecttover [a, b] we have

@8 "5 we ) [t [t @aa [rwea

~ (0~ ef @l @) - dy' (@] { 5

Now, integrating both sides df (3.8) with respect:tover [a, b] we have

(3.9) (bg;ﬁ/abf(x)g@)dx— (/abxf(x)dx> (/abtg(t)dt)
- (/abxg(x)dx> (/abtf(t)dt> +L3“3)/abf<t)g(t)dt

= [f(c) = cf ()] g (d) — dg (d)]

(b* — a’) 2 oy (VP —a?) (b* — a’)
X{T(b_CL)_(b —a)——i—(b—a)—}.

—x(b2—a2)+x2(b—a)}.

Rewriting (3.9) we have
(3.10) H[f. gl =[f(c) = cf' ()] g (d) — dg' (d)] M.
Using the properties of modulus, from (3/10) we have

[HIf, gl < IIf = 1Ml g = Ug'll o 1M1
The proof of Theorer 2]3 is complete.
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