Journal of Inequalities in Pure and Applied Mathematics

ON GRÜSS LIKE INTEGRAL INEQUALITIES VIA POMPEIU'S MEAN VALUE THEOREM

B.G. PACHPATTE
57 Shri Niketan Colony
Near Abhinay Talkies
Aurangabad 431001 (Maharashtra) India
bgpachpatte@hotmail.com

Received 21 November, 2004; accepted 27 June, 2005
Communicated by G.V. Milovanović

Abstract

In the present note we establish two new integral inequalities similar to that of the Grüss integral inequality via Pompeiu's mean value theorem.

> Key words and phrases: Grüss like integral inequalities, Pompeiu's mean value theorem, Lagrange's mean value theorem, Differentiable, Properties of modulus.

1. Introduction

In 1935 G. Grüss [4] proved the following integral inequality (see also [5, p. 296]):

$$
\begin{align*}
&\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} g(x) d x\right)\right| \tag{1.1}\\
& \leq \frac{1}{4}(P-p)(Q-q)
\end{align*}
$$

provided that f and g are two integrable functions on $[a, b]$ such that

$$
p \leq f(x) \leq P, \quad q \leq g(x) \leq Q,
$$

for all $x \in[a, b]$, where p, P, q, Q are constants.
The inequality (1.1) has evoked the interest of many researchers and numerous generalizations, variants and extensions have appeared in the literature, see [1], [3], [5] - [10] and the references cited therein. The main aim of this note is to establish two new integral inequalities similar to the inequality (1.1) by using a variant of Lagrange's mean value theorem, now known as the Pompeiu's mean value theorem [11] (see also [12, p. 83] and [2]).

[^0]
2. Statement of Results

In what follows, \mathbb{R} and ' denote the set of real numbers and derivative of a function respectively. For continuous functions $p, q:[a, b] \rightarrow \mathbb{R}$ which are differentiable on (a, b), we use the notations

$$
\begin{aligned}
& G[p, q]= \int_{a}^{b} p(x) q(x) d x-\frac{1}{b^{2}-a^{2}}\left[\left(\int_{a}^{b} p(x) d x\right)\right. \\
&\left(\int_{a}^{b} x q(x) d x\right) \\
&\left.+\left(\int_{a}^{b} q(x) d x\right)\left(\int_{a}^{b} x p(x) d x\right)\right], \\
& H[p, q]=\int_{a}^{b} p(x) q(x) d x-\frac{3}{b^{3}-a^{3}}\left(\int_{a}^{b} x p(x) d x\right)\left(\int_{a}^{b} x q(x) d x\right),
\end{aligned}
$$

to simplify the details of presentation and define $\|p\|_{\infty}=\sup _{t \in[a, b]}|p(t)|$.
In the proofs of our results we make use of the following theorem, which is a variant of the well known Lagrange's mean value theorem given by Pompeiu in [11] (see also [2, 12]).

Theorem 2.1 (Pompeiu). For every real valued function f differentiable on an interval $[a, b]$ not containing 0 and for all pairs $x_{1} \neq x_{2}$ in $[a, b]$ there exists a point c in $\left(x_{1}, x_{2}\right)$ such that

$$
\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{x_{1}-x_{2}}=f(c)-c f^{\prime}(c) .
$$

Our main result is given in the following theorem.
Theorem 2.2. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) with $[a, b]$ not containing 0 . Then

$$
\begin{align*}
|G[f, g]| \leq\left\|f-l f^{\prime}\right\|_{\infty} \int_{a}^{b}|g(x)| \left\lvert\, \frac{1}{2}\right. & \left.-\frac{x}{a+b} \right\rvert\, d x \tag{2.1}\\
& +\left\|g-l g^{\prime}\right\|_{\infty} \int_{a}^{b}|f(x)|\left|\frac{1}{2}-\frac{x}{a+b}\right| d x
\end{align*}
$$

where $l(t)=t, t \in[a, b]$.
A slight variant of Theorem 2.2 is embodied in the following theorem.
Theorem 2.3. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) with $[a, b]$ not containing 0 . Then

$$
\begin{equation*}
|H[f, g]| \leq\left\|f-l f^{\prime}\right\|_{\infty}\left\|g-l g^{\prime}\right\|_{\infty}|M| \tag{2.2}
\end{equation*}
$$

where $l(t)=t, t \in[a, b]$ and

$$
\begin{equation*}
M=(b-a)\left\{1-\frac{3}{4} \cdot \frac{(a+b)^{2}}{a^{2}+a b+b^{2}}\right\} \tag{2.3}
\end{equation*}
$$

3. Proofs of Theorems 2.2 and 2.3

From the hypotheses of Theorems 2.2 and 2.3 and using Theorem 2.1 for $t \neq x, x, t \in[a, b]$, there exist points c and d between x and t such that

$$
\begin{align*}
& t f(x)-x f(t)=\left[f(c)-c f^{\prime}(c)\right](t-x) \tag{3.1}\\
& t g(x)-x g(t)=\left[g(d)-d g^{\prime}(d)\right](t-x) \tag{3.2}
\end{align*}
$$

Multiplying $\sqrt{3.1}$ and $\sqrt{3.2)}$ by $g(x)$ and $f(x)$ respectively and adding the resulting identities we have

$$
\begin{align*}
2 t f(x) g(x)-x g & (x) f(t)-x f(x) g(t) \tag{3.3}\\
= & {\left[f(c)-c f^{\prime}(c)\right](t-x) g(x)+\left[g(d)-d g^{\prime}(d)\right](t-x) f(x) }
\end{align*}
$$

Integrating both sides of (3.3) with respect to t over $[a, b]$ we have

$$
\begin{align*}
\left(b^{2}-a^{2}\right) f(x) g(x)-x g(x) & \int_{a}^{b} f(t) d t-x f(x) \int_{a}^{b} g(t) d t \tag{3.4}\\
=\left[f(c)-c f^{\prime}(c)\right] & \left\{\frac{b^{2}-a^{2}}{2} g(x)-x g(x)(b-a)\right\} \\
& +\left[g(d)-d g^{\prime}(d)\right]\left\{\frac{b^{2}-a^{2}}{2} f(x)-x f(x)(b-a)\right\}
\end{align*}
$$

Now, integrating both sides of (3.4) with respect to x over $[a, b]$ we have

$$
\begin{align*}
& \left(b^{2}-a^{2}\right) \int_{a}^{b} f(x) g(x) d x \tag{3.5}\\
& \quad-\left(\int_{a}^{b} f(t) d t\right)\left(\int_{a}^{b} x g(x) d x\right)-\left(\int_{a}^{b} g(t) d t\right)\left(\int_{a}^{b} x f(x) d x\right) \\
& = \\
& \quad\left[f(c)-c f^{\prime}(c)\right]\left\{\frac{\left(b^{2}-a^{2}\right)}{2} \int_{a}^{b} g(x) d x-(b-a) \int_{a}^{b} x g(x) d x\right\} \\
& \quad+\left[g(d)-d g^{\prime}(d)\right]\left\{\frac{\left(b^{2}-a^{2}\right)}{2} \int_{a}^{b} f(x) d x-(b-a) \int_{a}^{b} x f(x) d x\right\}
\end{align*}
$$

Rewriting (3.5) we have

$$
\begin{align*}
G[f, g]=\left[f(c)-c f^{\prime}(c)\right] \int_{a}^{b} g(x)\{ & \left.\frac{1}{2}-\frac{x}{a+b}\right\} d x \tag{3.6}\\
& +\left[g(d)-d g^{\prime}(d)\right] \int_{a}^{b} f(x)\left\{\frac{1}{2}-\frac{x}{a+b}\right\} d x
\end{align*}
$$

Using the properties of modulus, from (3.6) we have

$$
\begin{aligned}
|G[f, g]| \leq\left\|f-l f^{\prime}\right\|_{\infty} \int_{a}^{b}|g(x)|\left|\frac{1}{2}-\frac{x}{a+b}\right| & \mid d x \\
& +\left\|g-l g^{\prime}\right\|_{\infty} \int_{a}^{b}|f(x)|\left|\frac{1}{2}-\frac{x}{a+b}\right| d x
\end{aligned}
$$

This completes the proof of Theorem 2.2.
Multiplying the left sides and right sides of (3.1) and (3.2) we get

$$
\begin{align*}
t^{2} f(x) g(x)-(x f(x))(t g(t))-(x g(x)) & (t f(t))+x^{2} f(t) g(t) \tag{3.7}\\
= & {\left[f(c)-c f^{\prime}(c)\right]\left[g(d)-d g^{\prime}(d)\right](t-x)^{2} }
\end{align*}
$$

Integrating both sides of (3.7) with respect to t over $[a, b]$ we have

$$
\begin{align*}
& \frac{\left(b^{3}-a^{3}\right)}{3} f(x) g(x)-x f(x) \int_{a}^{b} t g(t) d t-x g(x) \int_{a}^{b} t f(t) d t+x^{2} \int_{a}^{b} f(t) g(t) d t \tag{3.8}\\
& \quad=\left[f(c)-c f^{\prime}(c)\right]\left[g(d)-d g^{\prime}(d)\right]\left\{\frac{\left(b^{3}-a^{3}\right)}{3}-x\left(b^{2}-a^{2}\right)+x^{2}(b-a)\right\}
\end{align*}
$$

Now, integrating both sides of (3.8) with respect to x over $[a, b]$ we have

$$
\begin{align*}
& \frac{\left(b^{3}-a^{3}\right)}{3} \int_{a}^{b} f(x) g(x) d x-\left(\int_{a}^{b} x f(x) d x\right)\left(\int_{a}^{b} t g(t) d t\right) \tag{3.9}\\
& \quad-\left(\int_{a}^{b} x g(x) d x\right)\left(\int_{a}^{b} t f(t) d t\right)+\frac{\left(b^{3}-a^{3}\right)}{3} \int_{a}^{b} f(t) g(t) d t \\
& \quad=\left[f(c)-c f^{\prime}(c)\right]\left[g(d)-d g^{\prime}(d)\right] \\
& \quad \times\left\{\frac{\left(b^{3}-a^{3}\right)}{3}(b-a)-\left(b^{2}-a^{2}\right) \frac{\left(b^{2}-a^{2}\right)}{2}+(b-a) \frac{\left(b^{3}-a^{3}\right)}{3}\right\}
\end{align*}
$$

Rewriting (3.9) we have

$$
\begin{equation*}
H[f, g]=\left[f(c)-c f^{\prime}(c)\right]\left[g(d)-d g^{\prime}(d)\right] M . \tag{3.10}
\end{equation*}
$$

Using the properties of modulus, from (3.10) we have

$$
|H[f, g]| \leq\left\|f-l f^{\prime}\right\|_{\infty}\left\|g-l g^{\prime}\right\|_{\infty}|M| .
$$

The proof of Theorem 2.3 is complete.

References

[1] S.S. DRAGOMIR, Some integral inequalities of Grüss type, Indian J.Pure and Appl.Math., 31 (2000), 379-415.
[2] S.S. DRAGOMIR, An inequality of Ostrowski type via Pompeiu's mean value theorem, RGMIA Res. Rep. Coll., 6(suppl.)(2003), Art. 11.
[3] A.M. FINK, A treatise on Grüss inequality, Analytic and Geometric Inequalities and Applications, Th.M. Rassias and H.M. Srivastava (eds.), Kluwer Academic Publishers, Dordrecht 1999, 93-113.
[4] G. GRÜSS, Über das maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x$ $-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) \int_{a}^{b} g(x) d x$, Math. Z., 39 (1935), 215-226.
[5] D.S. MITRINOVIĆ, J.E.PEČARIĆ AND A.M.FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[6] B.G. PACHPATTE, On Grüss type integral inequalities, J. Inequal.Pure and Appl. Math., 3(1) (2002), Art. 11.
[7] B.G. PACHPATTE, On Trapezoid and Grüss like integral inequalities, Tamkang J. Math., 34(4) (2003), 365-369.
[8] B.G. PACHPATTE, New weighted multivariate Grüss type inequalities, J. Inequal. Pure and Appl. Math., 4(5) (2003), Art. 108.
[9] B.G. PACHPATTE, A note on Ostrowski and Grüss type discrete inequalities, Tamkang J.Math., 35(1) (2004), 61-65.
[10] B.G. PACHPATTE, On Grüss type discrete inequalities, Math. Ineq. and Applics., 7(1) (2004), 13-17.
[11] D. POMPEIU, Sur une proposition analogue au théorème des accroissements finis, Mathematica (Cluj, Romania), 22 (1946), 143-146.
[12] P.K. SAHOO AND T. RIEDEL, Mean Value Theorems and Functional Equations, World Scientific, Singapore, New Jersey, London, Hong Kong, 2000.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 193-05

