Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 7, Issue 5, Article 188, 2006

A NOTE ON A WEIGHTED OSTROWSKI TYPE INEQUALITY FOR CUMULATIVE DISTRIBUTION FUNCTIONS

A. RAFIQ AND N.S. BARNETT
Comsats Institute of Information Technology
ISLAMABAD arafiq@comsats.edu.pk
School of Computer Science \& Mathematics
Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia.
neil@csm.vu.edu.au

Received 19 July, 2006; accepted 30 November, 2006
Communicated by S.S. Dragomir

AbStract. In this note, a weighted Ostrowski type inequality for the cumulative distribution function and expectation of a random variable is established.

Key words and phrases: Weight function, Ostrowski type inequality, Cumulative distribution functions.
2000 Mathematics Subject Classification Primary 65D10, Secondary 65D15.

1. Introduction

In [1], N. S. Barnett and S. S. Dragomir established the following Ostrowski type inequality for cumulative distribution functions.

Theorem 1.1. Let X be a random variable taking values in the finite interval $[a, b]$, with cumulative distribution function $F(x)=\operatorname{Pr}(X \leq x)$, then,

$$
\begin{align*}
\mid \operatorname{Pr}(X \leq & x) \left.-\frac{b-E(X)}{b-a} \right\rvert\, \\
& \leq \frac{1}{b-a}\left[[2 x-(a+b)] \operatorname{Pr}(X \leq x)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t\right] \\
& \left.\leq \frac{1}{b-a}[(b-x)) \operatorname{Pr}(X \geq x)+(x-a) \operatorname{Pr}(X \leq x)\right] \\
& \leq \frac{1}{2}+\frac{\left|x-\frac{a+b}{2}\right|}{(b-a)} \tag{1.1}
\end{align*}
$$

for all $x \in[a, b]$. All the inequalities in (1.1) are sharp and the constant $\frac{1}{2}$ the best possible.

[^0]In this paper, we establish a weighted version of this result using similar methods to those used in [1]. The results of [1] are then retrieved by taking the weight function to be 1 .

2. Main Results

We assume that the weight function $w:(a, b) \longrightarrow[0, \infty)$, is integrable, nonnegative and

$$
\int_{a}^{b} w(t) d t<\infty
$$

The domain of w may be finite or infinite and w may vanish at the boundary points. We denote

$$
m(a, b)=\int_{a}^{b} w(t) d t
$$

We also know that the expectation of any function $\varphi(X)$ of the random variable X is given by:

$$
\begin{equation*}
E[\varphi(X)]=\int_{a}^{b} \varphi(t) d F(t) \tag{2.1}
\end{equation*}
$$

Taking $\varphi(X)=\int w(X) d X$, then from 2.1) and integrating by parts, we get,

$$
\begin{align*}
E_{W} & =E\left[\int w(X) d X\right] \\
& =\int_{a}^{b}\left(\int w(t) d t\right) d F(t) \\
& =W(b)-\int_{a}^{b} w(t) F(t) d t \tag{2.2}
\end{align*}
$$

where $W(b)=\left[\int w(t) d t\right]_{t=b}$.
Theorem 2.1. Let X be a random variable taking values in the finite interval $[a, b]$, with cumulative distribution function $F(x)=\operatorname{Pr}(X \leq x)$, then,

$$
\begin{align*}
\mid \operatorname{Pr}(X \leq & x) \left.-\frac{W(b)-E_{W}}{m(a, b)} \right\rvert\, \\
& \leq \frac{1}{m(a, b)}\left[[m(a, x)-m(x, b)] \operatorname{Pr}(X \leq x)+\int_{a}^{b} \operatorname{sgn}(t-x) w(t) F(t) d t\right] \\
& \leq \frac{1}{m(a, b)}[m(a, x) \operatorname{Pr}(X \leq x)+m(x, b) \operatorname{Pr}(X \geq x)] \\
& \leq \frac{1}{2}+\frac{\left|\frac{m(x, b)-m(a, x)}{2}\right|}{m(a, b)} \tag{2.3}
\end{align*}
$$

for all $x \in[a, b]$. All the inequalities in 2.3 are sharp and the constant $\frac{1}{2}$ is the best possible.
Proof. Consider the Kernel $p:[a, b]^{2} \longrightarrow \mathbb{R}$ defined by

$$
p(x, t)= \begin{cases}\int_{a}^{t} w(u) d u & \text { if } t \in[a, x] \tag{2.4}\\ \int_{b}^{t} w(u) d u & \text { if } t \in(x, b]\end{cases}
$$

then the Riemann-Stieltjes integral $\int_{a}^{b} p(x, t) d F(t)$ exists for any $x \in[a, b]$ and the following identity holds:

$$
\begin{equation*}
\int_{a}^{b} p(x, t) d F(t)=m(a, b) F(x)-\int_{a}^{b} w(t) F(t) d t \tag{2.5}
\end{equation*}
$$

Using (2.2) and (2.5], we get (see [2, p. 452]),

$$
\begin{equation*}
m(a, b) F(x)+E_{W}-W(b)=\int_{a}^{b} p(x, t) d F(t) \tag{2.6}
\end{equation*}
$$

As shown in [1], if $p:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and $\nu:[a, b] \rightarrow \mathbb{R}$ is monotonic non-decreasing, then the Riemann -Stieltjes integral $\int_{a}^{b} p(x) d \nu(x)$ exists and

$$
\begin{equation*}
\left|\int_{a}^{b} p(x) d \nu(x)\right| \leq \int_{a}^{b}|p(x)| d \nu(x) \tag{2.7}
\end{equation*}
$$

Using (2.7) we have

$$
\begin{align*}
\left|\int_{a}^{b} p(x, t) d F(t)\right|= & \left|\int_{a}^{x}\left(\int_{a}^{t} w(u) d u\right) d F(t)+\int_{x}^{b}\left(\int_{b}^{t} w(u) d u\right) d F(t)\right| \\
\leq & \int_{a}^{x}\left|\int_{a}^{t} w(u) d u\right| d F(t)+\int_{x}^{b}\left|\int_{b}^{t} w(u) d u\right| d F(t) \\
= & \left.\left(\int_{a}^{t} w(u) d u\right) F(t)\right|_{a} ^{x}-\int_{a}^{x} F(t) \frac{d}{d t}\left(\int_{a}^{t} w(u) d u\right) d t \\
& \quad+\left.\left(\int_{t}^{b} w(u) d u\right) F(t)\right|_{x} ^{b}-\int_{x}^{b} F(t) \frac{d}{d t}\left(\int_{t}^{b} w(u) d u\right) d t \\
= & {[m(a, x)-m(x, b)] F(x)+\int_{a}^{b} \operatorname{sgn}(t-x) w(t) F(t) d t } \tag{2.8}
\end{align*}
$$

Using the identity (2.6) and the inequality (2.8), we deduce the first part of (2.3).
We know that

$$
\int_{a}^{b} \operatorname{sgn}(t-x) w(t) F(t) d t=-\int_{a}^{x} w(t) F(t) d t+\int_{x}^{b} w(t) F(t) d t
$$

As $F(\cdot)$ is monotonic non-decreasing on $[a, b]$,

$$
\begin{gathered}
\int_{a}^{x} w(t) F(t) d t \geq m(a, x) F(a)=0 \\
\int_{x}^{b} w(t) F(t) d t \leq m(x, b) F(b)=m(x, b)
\end{gathered}
$$

and

$$
\int_{a}^{b} \operatorname{sgn}(t-x) w(t) F(t) d t \leq m(x, b) \text { for all } x \in[a, b]
$$

Consequently,

$$
\begin{aligned}
{[m(a, x)-m(x, b)] } & \operatorname{Pr}(X \leq x)+\int_{a}^{b} \operatorname{sgn}(t-x) w(t) F(t) d t \\
& \leq[m(a, x)-m(x, b)] \operatorname{Pr}(X \leq x)+m(x, b) \\
& =m(a, x) \operatorname{Pr}(X \leq x)+m(x, b) \operatorname{Pr}(X \geq x)
\end{aligned}
$$

and the second part of (2.3) is proved.

Finally,

$$
\begin{aligned}
m(a, x) \operatorname{Pr}(X & \leq x)+m(x, b) \operatorname{Pr}(X \geq x) \\
& \leq \max \{m(a, x), m(x, b)\}[\operatorname{Pr}(X \leq x)+\operatorname{Pr}(X \geq x)] \\
& =\frac{m(a, b)+|m(x, b)-m(a, x)|}{2}
\end{aligned}
$$

and the last part of (2.3) follows.
Remark 2.2. Since

$$
\operatorname{Pr}(X \geq x)=1-\operatorname{Pr}(X \leq x)
$$

we can obtain an equivalent to (2.3) for

$$
\left|\operatorname{Pr}(X \geq x)-\frac{E_{W}+m(a, b)-W(b)}{m(a, b)}\right|
$$

Following the same style of argument as in Remark 2.3 and Corollary 2.4 of [1], we have the following two corollaries.
Corollary 2.3.

$$
\begin{aligned}
\mid \operatorname{Pr}(X \leq & \left.\frac{a+b}{2}\right) \left.-\frac{W(b)-E_{W}}{m(a, b)} \right\rvert\, \\
\leq & \frac{1}{m(a, b)}\left[\left[m\left(a, \frac{a+b}{2}\right)-m\left(\frac{a+b}{2}, b\right)\right] \operatorname{Pr}(X \leq x)\right. \\
& \left.\quad+\int_{a}^{b} \operatorname{sgn}\left(t-\frac{a+b}{2}\right) w(t) F(t) d t\right] \\
\leq & \frac{1}{2}+\frac{\left|\frac{m\left(\frac{a+b}{2}, b\right)-m\left(a, \frac{a+b}{2}\right)}{2}\right|}{m(a, b)}
\end{aligned}
$$

and

$$
\begin{aligned}
\mid \operatorname{Pr}(X \geq & \left.\frac{a+b}{2}\right)- \\
\leq & \left.\frac{E_{W}+m(a, b)-W(b)}{m(a, b)} \right\rvert\, \\
\leq(a, b) & {\left[\left[m\left(a, \frac{a+b}{2}\right)-m\left(\frac{a+b}{2}, b\right)\right] \operatorname{Pr}\left(X \leq \frac{a+b}{2}\right)\right.} \\
& \left.\quad+\int_{a}^{b} \operatorname{sgn}\left(t-\frac{a+b}{2}\right) w(t) F(t) d t\right] \\
\leq & \frac{1}{2}+\frac{\left|\frac{m\left(\frac{a+b}{2}, b\right)-m\left(a, \frac{a+b}{2}\right)}{2}\right|}{m(a, b)} .
\end{aligned}
$$

Corollary 2.4.

$$
\begin{aligned}
& \frac{1}{m(a, b)}\left[\frac{2 W(b)-m(a, b)-\left|m\left(\frac{a+b}{2}, b\right)-m\left(a, \frac{a+b}{2}\right)\right|}{2}-E_{W}\right] \\
& \leq \operatorname{Pr}\left(X \leq \frac{a+b}{2}\right) \\
& \leq 1+\frac{1}{m(a, b)}\left[\frac{2 W(b)-m(a, b)+\left|m\left(\frac{a+b}{2}, b\right)-m\left(a, \frac{a+b}{2}\right)\right|}{2}-E_{W}\right] .
\end{aligned}
$$

Additional inequalities for $\operatorname{Pr}[X \leq x]$ and $\operatorname{Pr}\left(X \leq \frac{a+b}{2}\right)$ are obtainable in the style of Corollary 2.6 and Remarks 2.5 and 2.7 of [1] using (2.3).

References

[1] N.S. BARNETT AND S.S. DRAGOMIR, An inequality of Ostrowski's type for cumulative distribution functions, Kyungpook Math. J., 39(2) (1999), 303-311.
[2] S.S. DRAGOMIR AND Th.M. RASSIAS (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, 2002.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 192-06

