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ABSTRACT. The order structure of the set of six operators connected with quadrature rules is
established in the class of 5–convex functions. An error bound of the Lobatto quadrature rule
with five knots is given for less regular functions as in the classical result.
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1. I NTRODUCTION

For f : [−1, 1] → R we consider six operators approximating the integral mean value
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S(f) := 1
6
(f(−1) + f(1)) + 2

3
f(0).

All of them are connected with the very well known rules of approximate integration: Cheby-
shev quadrature, Gauss–Legendre quadrature with two and three knots, Lobatto quadrature with
four and five knots and Simpson’s Rule, respectively (see e.g. [4, 8, 9, 10, 11]).

In the paper [6] the order structure of the set of above operators was investigated in the class
of 3–convex functions. In this note we establish all possible inequalities between these operators
in the class of 5–convex functions. As an application we give an error bound of the operatorL5
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for six times differentiable functions instead of eight times differentiable ones as in the classical
result.

In this paper only 5–convex functions on[−1, 1] are considered. Recall that the function
f : [−1, 1] → R is called 5–convexif

(1.1) D(x1, . . . , x7; f) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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for any x1, . . . , x7 such that−1 ≤ x1 < · · · < x7 ≤ 1. More detailed introductory notes
concerning higher–order convexity were given in [6]. For a wide treatment of this topic we
refer the reader to Popoviciu’s thesis [3], the very well known books [2] and [5] and to Hopf’s
thesis [1], where it appeared (without the name) for the first time.

2. RESULTS

Let us start with four technical results.

Lemma 2.1. If f : [−1, 1] → R is an even 5–convex function then

(w2 − u2)(v2 − u2)(w2 − v2)f(0) + u2w2(w2 − u2)f(v)

≤ w2v2(w2 − v2)f(u) + v2u2(v2 − u2)f(w)

for any0 < u < v < w ≤ 1.

Proof. Fix 0 < u < v < w ≤ 1. By 5–convexity,D(−w,−v,−u, 0, u, v, w; f) ≥ 0. Ex-
pand this determinant by the last row and perform elementary computations on Vandermonde
determinants. �

Lemma 2.2. If f : [−1, 1] → R is 5–convex then so is the function[−1, 1] 3 x 7→ f(−x).

Proof. This result is well known from the theory of convex functions of higher order and it
holds in fact for convex functions of any odd order (cf. e.g. [3]). However, the proof is easy if
we use the condition (1.1) and elementary properties of determinants. �

By (1.1) it is obvious that a sum of two 5–convex functions is also 5–convex. Then we have
the following.

Lemma 2.3. If f : [−1, 1] → R is 5–convex then so is its even part, i.e. the function

fe(x) =
f(x) + f(−x)

2
, x ∈ [−1, 1].

Record also the trivial

Lemma 2.4. If T ∈ {C,G2,G3,L4,L5,S} thenT (f) = T (fe) for anyf : [−1, 1] → R.

Now we establish all possible inequalities between the considered operators in the class of
5–convex functions.

Theorem 2.5. If f : [−1, 1] → R is 5–convex thenG3(f) ≤ L5(f) ≤ L4(f). In the class of
5–convex functions the operatorsG2, C, S are not comparable both with each other and with
G3, L4, L5.
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Proof. By Lemmas 2.3 and 2.4, it is enough to prove the desired inequalities for even 5–convex
functions. Using Lemma 2.1 foru =

√
21
7

, v =
√

15
5

, w = 1 we obtainG3(f) ≤ L5(f). The

inequalityL5(f) ≤ L4(f) we get foru =
√

5
5

, v =
√

21
7

, w = 1.
Now letf = exp, g = 1− cos. Both functions are 5–convex on[−1, 1] since their derivatives

of the sixth order are nonnegative on this interval (cf. [2, 3, 5], for a quick reference cf. also [7]).
See the table below.

Operator G2 C S G3 L5 L4

f 1.17135 1.17373 1.18103 1.17517 1.17520 1.17524
g 0.16209 0.15984 0.15323 0.15850 0.15853 0.15857

Then

G2(f) < C(f) < G3(f) < L5(f) < L4(f) < S(f),

S(g) < G3(g) < L5(g) < L4(g) < C(g) < G2(g),

which proves the second part of the statement. �

Remark 1. By the example given in the above proof one could expect that the inequality

min{G2, C,S} ≤ G3 ≤ L5 ≤ L4 ≤ max{G2, C,S}
holds in the class of 5–convex functions. However this is not the case since for a 5–convex
functionh(x) = x6 − 3

2
x4 + 1

6
we have

G2(h) =
1

27
, C(h) = S(h) = 0, G3(h) = − 1

75
, L5(h) =

1

105
, L4(h) =

1

25
,

so
G3(h) < C(h) = S(h) < L5(h) < G2(h) < L4(h).

Let us comment on the results of Theorem 2.5. The set{C,G2,G3,L4,L5,S} has 15 two–
element subsets. That is why maximally 15 inequalities may be established between the opera-
tors considered. For 3–convex functions we have proved in [6] that 12 inequalities hold true and
only 3 fail. We can see that for 5–convex functions the situation is quite different: only 3 in-
equalities are true, the rest are false. Moreover, the operatorsG2, C, S comparable for 3–convex
functions are not comparable for 5–convex ones, while the operatorsG3, L4, L5 comparable for
5–convex functions are not comparable for 3–convex ones.

The classical error bound of the quadratureL5 depends on the derivative of eighth order
(cf. [4, 10]). Similarly to the results of the papers [6, 7] we give an error bound of this quadrature
for less regular functions: in this paper for six–times differentiable functions. LetI(f) :=
1
2

∫ 1

−1
f(x)dx. Forf ∈ C6 ([−1, 1]) denote

M(f) := sup
{∣∣f (6)(x)

∣∣ : x ∈ [−1, 1]
}

.

Corollary 2.6. If f ∈ C6 ([−1, 1]) then|L5(f)− I(f)| ≤ M(f)
15750

.

Proof. It is well known (cf. [4, 9]) that iff ∈ C6 ([−1, 1]) , thenI(f) = G3(f) + f (6)(ξ)
31500

for
someξ ∈ (−1, 1). Assume for a while thatf is 5–convex. Hence by Theorem 2.5

I(f) ≤ L5(f) +
f (6)(ξ)

31500
.

Thus we arrive at

(2.1) I(f)− L5(f) ≤ M(f)

31500
.
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Now let f ∈ C6 ([−1, 1]) be an arbitrary function and letg(x) = M(f)x6

720
. Then

∣∣f (6)
∣∣ ≤ g(6) on

[−1, 1], whence(g− f)(6) ≥ 0 and(g + f)(6) ≥ 0 on [−1, 1]. This implies thatg− f andg + f
are 5–convex on[−1, 1]. It is easy to see thatM(g − f) ≤ 2M(f) andM(g + f) ≤ 2M(f).
Then we infer by 5–convexity and (2.1),

I(g − f)− L5(g − f) ≤ M(g − f)

31500
≤ M(f)

15750
and

I(g + f)− L5(g + f) ≤ M(g + f)

31500
≤ M(f)

15750
.

It is easy to see thatI(g) = L5(g). Since the operatorsI, L5 are linear, then

−I(f) + L5(f) ≤ M(f)

15750
and I(f)− L5(f) ≤ M(f)

15750
,

which concludes the proof. �
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