ON QUADRATURE RULES, INEQUALITIES AND ERROR BOUNDS

SZYMON WĄSOWICZ
Department of Mathematics and Computer Science
University of Bielsko-BiaŁa Willowa 2, 43-309 Bielsko-BiAŁA

Poland
swasowicz@ath.bielsko.pl
Received 06 June, 2007; accepted 22 May, 2008
Communicated by P. Cerone

Abstract

The order structure of the set of six operators connected with quadrature rules is established in the class of 5-convex functions. An error bound of the Lobatto quadrature rule with five knots is given for less regular functions as in the classical result.

Key words and phrases: Approximate integration, Quadrature rules, Convex functions of higher order.
2000 Mathematics Subject Classification Primary: 41A55; Secondary: 26A51, 26D15.

1. Introduction

For $f:[-1,1] \rightarrow \mathbb{R}$ we consider six operators approximating the integral mean value $\frac{1}{2} \int_{-1}^{1} f(x) d x$. They are

$$
\begin{aligned}
\mathcal{C}(f) & :=\frac{1}{3}\left(f\left(-\frac{\sqrt{2}}{2}\right)+f(0)+f\left(\frac{\sqrt{2}}{2}\right)\right), \\
\mathcal{G}_{2}(f) & :=\frac{1}{2}\left(f\left(-\frac{\sqrt{3}}{3}\right)+f\left(\frac{\sqrt{3}}{3}\right)\right), \\
\mathcal{G}_{3}(f) & :=\frac{4}{9} f(0)+\frac{5}{18}\left(f\left(-\frac{\sqrt{15}}{5}\right)+f\left(\frac{\sqrt{15}}{5}\right)\right), \\
\mathcal{L}_{4}(f) & :=\frac{1}{12}(f(-1)+f(1))+\frac{5}{12}\left(f\left(-\frac{\sqrt{5}}{5}\right)+f\left(\frac{\sqrt{5}}{5}\right)\right), \\
\mathcal{L}_{5}(f) & :=\frac{16}{45} f(0)+\frac{1}{20}(f(-1)+f(1))+\frac{49}{180}\left(f\left(-\frac{\sqrt{21}}{7}\right)+f\left(\frac{\sqrt{21}}{7}\right)\right), \\
\mathcal{S}(f) & :=\frac{1}{6}(f(-1)+f(1))+\frac{2}{3} f(0) .
\end{aligned}
$$

All of them are connected with the very well known rules of approximate integration: Chebyshev quadrature, Gauss-Legendre quadrature with two and three knots, Lobatto quadrature with four and five knots and Simpson's Rule, respectively (see e.g. [4, 8, 9, 10, 11]).

In the paper [6] the order structure of the set of above operators was investigated in the class of 3-convex functions. In this note we establish all possible inequalities between these operators in the class of 5 -convex functions. As an application we give an error bound of the operator \mathcal{L}_{5}
for six times differentiable functions instead of eight times differentiable ones as in the classical result.

In this paper only 5 -convex functions on $[-1,1]$ are considered. Recall that the function $f:[-1,1] \rightarrow \mathbb{R}$ is called 5-convex if

$$
D\left(x_{1}, \ldots, x_{7} ; f\right):=\left|\begin{array}{ccc}
1 & \ldots & 1 \tag{1.1}\\
x_{1} & \ldots & x_{7} \\
x_{1}^{2} & \ldots & x_{7}^{2} \\
x_{1}^{3} & \ldots & x_{7}^{3} \\
x_{1}^{4} & \ldots & x_{7}^{4} \\
x_{1}^{5} & \ldots & x_{7}^{5} \\
f\left(x_{1}\right) & \ldots & f\left(x_{7}\right)
\end{array}\right| \geq 0
$$

for any x_{1}, \ldots, x_{7} such that $-1 \leq x_{1}<\cdots<x_{7} \leq 1$. More detailed introductory notes concerning higher-order convexity were given in [6]. For a wide treatment of this topic we refer the reader to Popoviciu's thesis [3], the very well known books [2] and [5] and to Hopf's thesis [1], where it appeared (without the name) for the first time.

2. Results

Let us start with four technical results.
Lemma 2.1. If $f:[-1,1] \rightarrow \mathbb{R}$ is an even 5 -convex function then

$$
\begin{aligned}
\left(w^{2}-u^{2}\right)\left(v^{2}-u^{2}\right)\left(w^{2}-v^{2}\right) f(0) & +u^{2} w^{2}\left(w^{2}-u^{2}\right) f(v) \\
& \leq w^{2} v^{2}\left(w^{2}-v^{2}\right) f(u)+v^{2} u^{2}\left(v^{2}-u^{2}\right) f(w)
\end{aligned}
$$

for any $0<u<v<w \leq 1$.
Proof. Fix $0<u<v<w \leq 1$. By 5-convexity, $D(-w,-v,-u, 0, u, v, w ; f) \geq 0$. Expand this determinant by the last row and perform elementary computations on Vandermonde determinants.
Lemma 2.2. If $f:[-1,1] \rightarrow \mathbb{R}$ is 5-convex then so is the function $[-1,1] \ni x \mapsto f(-x)$.
Proof. This result is well known from the theory of convex functions of higher order and it holds in fact for convex functions of any odd order (cf. e.g. [3]). However, the proof is easy if we use the condition (1.1) and elementary properties of determinants.

By (1.1) it is obvious that a sum of two 5-convex functions is also 5-convex. Then we have the following.
Lemma 2.3. If $f:[-1,1] \rightarrow \mathbb{R}$ is 5-convex then so is its even part, i.e. the function

$$
f_{e}(x)=\frac{f(x)+f(-x)}{2}, \quad x \in[-1,1] .
$$

Record also the trivial
Lemma 2.4. If $\mathcal{T} \in\left\{\mathcal{C}, \mathcal{G}_{2}, \mathcal{G}_{3}, \mathcal{L}_{4}, \mathcal{L}_{5}, \mathcal{S}\right\}$ then $\mathcal{T}(f)=\mathcal{T}\left(f_{e}\right)$ for any $f:[-1,1] \rightarrow \mathbb{R}$.
Now we establish all possible inequalities between the considered operators in the class of 5-convex functions.

Theorem 2.5. If $f:[-1,1] \rightarrow \mathbb{R}$ is 5-convex then $\mathcal{G}_{3}(f) \leq \mathcal{L}_{5}(f) \leq \mathcal{L}_{4}(f)$. In the class of 5-convex functions the operators $\mathcal{G}_{2}, \mathcal{C}, \mathcal{S}$ are not comparable both with each other and with $\mathcal{G}_{3}, \mathcal{L}_{4}, \mathcal{L}_{5}$.

Proof. By Lemmas 2.3 and 2.4, it is enough to prove the desired inequalities for even 5-convex functions. Using Lemma 2.1 for $u=\frac{\sqrt{21}}{7}, v=\frac{\sqrt{15}}{5}, w=1$ we obtain $\mathcal{G}_{3}(f) \leq \mathcal{L}_{5}(f)$. The inequality $\mathcal{L}_{5}(f) \leq \mathcal{L}_{4}(f)$ we get for $u=\frac{\sqrt{5}}{5}, v=\frac{\sqrt{21}}{7}, w=1$.

Now let $f=\exp , g=1-$ cos. Both functions are 5 -convex on $[-1,1]$ since their derivatives of the sixth order are nonnegative on this interval (cf. [2, 3, 5], for a quick reference cf. also [7]). See the table below.

Operator	\mathcal{G}_{2}	\mathcal{C}	\mathcal{S}	\mathcal{G}_{3}	\mathcal{L}_{5}	\mathcal{L}_{4}
f	1.17135	1.17373	1.18103	1.17517	1.17520	1.17524
g	0.16209	0.15984	0.15323	0.15850	0.15853	0.15857

Then

$$
\begin{array}{r}
\mathcal{G}_{2}(f)<\mathcal{C}(f)<\mathcal{G}_{3}(f)<\mathcal{L}_{5}(f)<\mathcal{L}_{4}(f)<\mathcal{S}(f), \\
\mathcal{S}(g)<\mathcal{G}_{3}(g)<\mathcal{L}_{5}(g)<\mathcal{L}_{4}(g)<\mathcal{C}(g)<\mathcal{G}_{2}(g),
\end{array}
$$

which proves the second part of the statement.
Remark 1. By the example given in the above proof one could expect that the inequality

$$
\min \left\{\mathcal{G}_{2}, \mathcal{C}, \mathcal{S}\right\} \leq \mathcal{G}_{3} \leq \mathcal{L}_{5} \leq \mathcal{L}_{4} \leq \max \left\{\mathcal{G}_{2}, \mathcal{C}, \mathcal{S}\right\}
$$

holds in the class of 5 -convex functions. However this is not the case since for a 5 -convex function $h(x)=x^{6}-\frac{3}{2} x^{4}+\frac{1}{6}$ we have

$$
\mathcal{G}_{2}(h)=\frac{1}{27}, \quad \mathcal{C}(h)=\mathcal{S}(h)=0, \quad \mathcal{G}_{3}(h)=-\frac{1}{75}, \quad \mathcal{L}_{5}(h)=\frac{1}{105}, \quad \mathcal{L}_{4}(h)=\frac{1}{25},
$$

so

$$
\mathcal{G}_{3}(h)<\mathcal{C}(h)=\mathcal{S}(h)<\mathcal{L}_{5}(h)<\mathcal{G}_{2}(h)<\mathcal{L}_{4}(h) .
$$

Let us comment on the results of Theorem 2.5. The set $\left\{\mathcal{C}, \mathcal{G}_{2}, \mathcal{G}_{3}, \mathcal{L}_{4}, \mathcal{L}_{5}, \mathcal{S}\right\}$ has 15 twoelement subsets. That is why maximally 15 inequalities may be established between the operators considered. For 3-convex functions we have proved in [6] that 12 inequalities hold true and only 3 fail. We can see that for 5 -convex functions the situation is quite different: only 3 inequalities are true, the rest are false. Moreover, the operators $\mathcal{G}_{2}, \mathcal{C}, \mathcal{S}$ comparable for 3 -convex functions are not comparable for 5 -convex ones, while the operators $\mathcal{G}_{3}, \mathcal{L}_{4}, \mathcal{L}_{5}$ comparable for 5 -convex functions are not comparable for 3 -convex ones.
The classical error bound of the quadrature \mathcal{L}_{5} depends on the derivative of eighth order (cf. [4, 10]). Similarly to the results of the papers [6, 7] we give an error bound of this quadrature for less regular functions: in this paper for six-times differentiable functions. Let $\mathcal{I}(f):=$ $\frac{1}{2} \int_{-1}^{1} f(x) d x$. For $f \in \mathcal{C}^{6}([-1,1])$ denote

$$
M(f):=\sup \left\{\left|f^{(6)}(x)\right|: x \in[-1,1]\right\} .
$$

Corollary 2.6. If $f \in \mathcal{C}^{6}([-1,1])$ then $\left|\mathcal{L}_{5}(f)-\mathcal{I}(f)\right| \leq \frac{M(f)}{15750}$.
Proof. It is well known (cf. [4, 9]) that if $f \in \mathcal{C}^{6}([-1,1])$, then $\mathcal{I}(f)=\mathcal{G}_{3}(f)+\frac{f^{(6)}(\xi)}{31500}$ for some $\xi \in(-1,1)$. Assume for a while that f is 5-convex. Hence by Theorem 2.5

$$
\mathcal{I}(f) \leq \mathcal{L}_{5}(f)+\frac{f^{(6)}(\xi)}{31500}
$$

Thus we arrive at

$$
\begin{equation*}
\mathcal{I}(f)-\mathcal{L}_{5}(f) \leq \frac{M(f)}{31500} \tag{2.1}
\end{equation*}
$$

Now let $f \in \mathcal{C}^{6}([-1,1])$ be an arbitrary function and let $g(x)=\frac{M(f) x^{6}}{720}$. Then $\left|f^{(6)}\right| \leq g^{(6)}$ on $[-1,1]$, whence $(g-f)^{(6)} \geq 0$ and $(g+f)^{(6)} \geq 0$ on $[-1,1]$. This implies that $g-f$ and $g+f$ are 5-convex on $[-1,1]$. It is easy to see that $M(g-f) \leq 2 M(f)$ and $M(g+f) \leq 2 M(f)$. Then we infer by $5-$ convexity and (2.1),

$$
\begin{aligned}
& \mathcal{I}(g-f)-\mathcal{L}_{5}(g-f) \leq \frac{M(g-f)}{31500} \leq \frac{M(f)}{15750} \quad \text { and } \\
& \mathcal{I}(g+f)-\mathcal{L}_{5}(g+f) \leq \frac{M(g+f)}{31500} \leq \frac{M(f)}{15750}
\end{aligned}
$$

It is easy to see that $\mathcal{I}(g)=\mathcal{L}_{5}(g)$. Since the operators $\mathcal{I}, \mathcal{L}_{5}$ are linear, then

$$
-\mathcal{I}(f)+\mathcal{L}_{5}(f) \leq \frac{M(f)}{15750} \quad \text { and } \quad \mathcal{I}(f)-\mathcal{L}_{5}(f) \leq \frac{M(f)}{15750}
$$

which concludes the proof.

References

[1] E. HOPF, Über die Zusammenhänge zwischen gewissen höheren Differenzenquotienten reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften, Dissertation, Friedrich-Wilhelms-Universität Berlin, 1926.
[2] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Państwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Śląski, Warszawa-Kraków-Katowice 1985.
[3] T. POPOVICIU, Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Mathematica (Cluj), 8 (1934), 1-85.
[4] A. RALSTON, A First Course in Numerical Analysis, McGraw-Hill Book Company, New York, St. Louis, San Francisco, Toronto, London, Sydney, 1965.
[5] A.W. ROBERTS and D.E. VARBERG, Convex Functions, Academic Press, New York 1973.
[6] S. WAASOWICZ, Inequalities between the quadrature operators and error bounds of quadrature rules, J. Ineq. Pure \& Appl. Math., 8(2) (2007), Art. 42. [ONLINE: http:// jipam.vu.edu. au/article.php?sid=848].
[7] S. WĄSOWICZ, On error bounds for Gauss-Legendre and Lobatto quadrature rules, J. Ineq. Pure \& Appl. Math., 7(3) (2006), Art. 84. [ONLINE: http://jipam.vu.edu.au/article. php?sid=704].
[8] E.W. WEISSTEIN, Chebyshev Quadrature, From MathWorld - A Wolfram Web Resource. [ONLINE: http://mathworld.wolfram.com/ChebyshevQuadrature.html].
[9] E.W. WEISSTEIN, Legendre-Gauss Quadrature, From MathWorld - A Wolfram Web Resource. [ONLINE: http://mathworld.wolfram.com/Legendre-GaussQuadrature. html.
[10] E.W. WEISSTEIN, Lobatto Quadrature, From MathWorld - A Wolfram Web Resource. [ONLINE: http://mathworld.wolfram.com/LobattoQuadrature.html].
[11] E.W. WEISSTEIN, Simpson's Rule, From MathWorld - A Wolfram Web Resource. [ONLINE: http://mathworld.wolfram.com/SimpsonsRule.html.

