AN INEQUALITY AND ITS q-ANALOGUE

MINGJIN WANG
Department of Mathematics
East China Normal University,
Shanghai, 200062,
People's Republic of China
EMail: wmj@jpu.edu.cn

```
An Inequality and its \(q\)-Analogue
Mingjin Wang
vol. 8, iss. 2, art. 50, 2007
```

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

16 July, 2006
11 June, 2007
J. Sándor

Primary 26D15; Secondary 33D15.
Gould-Hsu inversions; Carlitz inversions; Grüss inequality; q-series.
In this paper, we establish a new inequality and its q-analogue by means of the Gould-Hsu inversions, the Carlitz inversions and the Grüss inequality.

Title Page
Contents

Page 1 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction and Some Known Results 3
2 A New Inequality 6
3 A q-Analogue of the Inequality 9
ANew requality 6

An Inequality and its q-Analogue
Mingjin Wang
vol. 8, iss. 2, art. 50, 2007

Title Page
Contents
44

Page 2 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction and Some Known Results

q-series, which are also called basic hypergeometric series, plays a very important role in many fields, such as affine root systems, Lie algebras and groups, number theory, orthogonal polynomials and physics, etc. In this paper, first we establish an inequality by means of the Gould-Hsu inversions, and then we obtain a q-analogue of the inequality.

We first state some notations and known results which will be used in the next sections. It is supposed in this paper that $0<q<1$. The q-shifted factorial is defined by

$$
\begin{equation*}
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) . \tag{1.1}
\end{equation*}
$$

The q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \tag{1.2}\\
k
\end{array}\right]=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} .
$$

The following inverse series relations are due to Gould-Hsu [4]:
Theorem 1.1. Let $\left\{a_{i}\right\}$ and $\left\{b_{j}\right\}$ be two real or complex sequences such that the polynomials defined by

$$
\left\{\begin{array}{l}
\psi(x, n)=\prod_{k=0}^{n-1}\left(a_{k}+x b_{k}\right),(n=1,2, \ldots) \\
\psi(x, 0)=1
\end{array}\right.
$$

differ from zero for any non-negative integer x. Then we have the following inverse

An Inequality and its q-Analogue
Mingjin Wang
vol. 8, iss. 2, art. 50, 2007

Title Page
Contents

Page 3 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
series relations

$$
\left\{\begin{array}{l}
f(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \psi(k, n) g(k) \tag{1.3}\\
g(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{a_{k}+k b_{k}}{\psi(n, k+1)} f(k)
\end{array}\right.
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Carlitz [2] gave the following q-analogue of the Gould-Hsu inverse series relations:

Theorem 1.2. Let $\left\{a_{i}\right\}$ and $\left\{b_{j}\right\}$ be two real or complex sequences such that the polynomials defined by

$$
\left\{\begin{array}{l}
\phi(x, n)=\prod_{k=0}^{n-1}\left(a_{k}+q^{x} b_{k}\right),(n=1,2, \ldots), \\
\phi(x, 0)=1
\end{array}\right.
$$

differ from zero for $x=q^{n}$ with n being non-negative integers. Then we have the following inverse series relations

$$
\left\{\begin{array}{l}
f(n)=\sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{\binom{n-k}{2}} \phi(k, n) g(k) \tag{1.4}\\
g(n)=\sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{a_{k}+q^{k} b_{k}}{\phi(n ; k+1)} f(k)
\end{array}\right.
$$

We also need the following inequality, which is well known in the literature as the Grüss inequality [5]:

An Inequality and its q-Analogue
Mingjin Wang
vol. 8, iss. 2, art. 50, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 4 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 1.3. We have
(1.5) $\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} g(x) d x\right)\right|$

$$
\leq \frac{(M-m)(N-n)}{4}
$$

provided that $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable on $[a, b]$ and $m \leq f(x) \leq M, n \leq$ $g(x) \leq N$ for all $x \in[a, b]$, where m, M, n, N are given constants.

The discrete version of the Grüss inequality can be stated as:
Theorem 1.4. If $a \leq a_{i} \leq A$ and $b \leq b_{i} \leq B$ for $i=1,2, \ldots, n$, then we have

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i}-\frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} b_{i}\right| \leq \frac{(A-a)(B-b)}{4} \tag{1.6}
\end{equation*}
$$

where a, A, a_{i}, b, B, b_{i} are real numbers.

An Inequality and its q-Analogue
 Mingjin Wang
 vol. 8, iss. 2, art. 50, 2007

Title Page
Contents

Page 5 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. A New Inequality

In this section we obtain an inequality about series by using both the Gould-Hsu inversions and the Grüss inequality.
Theorem 2.1. Suppose $0 \leq a \leq f(k) \leq A, g(k)=\sum_{i=0}^{k}\binom{k}{i} f(i), k=1,2, \ldots, n$, then the following inequality holds

$$
\begin{align*}
&\left|(n+1) \sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k}^{2} f(k) g(k)-f(n) g(n)\right| \tag{2.1}\\
& \leq 3(n+1)^{2} 2^{n-3} A\binom{n}{k_{0}}\left[A\binom{n}{k_{0}}-a\right]
\end{align*}
$$

```
An Inequality and its
    q-Analogue
    Mingjin Wang
    vol. 8, iss. 2, art. 50, 2007
```

Title Page
where $k_{0}=\left[\frac{n-1}{2}\right],[x]$ denotes the greatest integer less than or equal x.
Proof. Letting $a_{i}=-1, b_{i}=0$ in (1.3), we have

$$
\left\{\begin{array}{l}
f(n)=\sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k} g(k) \tag{2.2}\\
g(n)=\sum_{k=0}^{n}\binom{n}{k} f(k)
\end{array}\right.
$$

Since $0 \leq a \leq f(k) \leq A$, we obtain

$$
a \cdot \sum_{i=0}^{k}\binom{k}{i} \leq g(k)=\sum_{i=0}^{k}\binom{k}{i} f(i) \leq A \cdot \sum_{i=0}^{k}\binom{k}{i} .
$$

Substituting $\sum_{i=0}^{k}\binom{k}{i}=2^{k}$ into the above inequality we get

$$
\begin{equation*}
a \cdot 2^{k} \leq g(k) \leq A \cdot 2^{k}, \quad k=0,1, \ldots, n \tag{2.3}
\end{equation*}
$$

\square
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

On the other hand, we know that

$$
\frac{\binom{n}{k+1}}{\binom{n}{k}}=\frac{n!/(k+1)!(n-k-1)!}{n!/(k)!(n-k)!}=\frac{n-k}{k+1},
$$

consequently

$$
\left\{\begin{array}{l}
\frac{\binom{n}{k+1}}{\binom{n}{k}} \geq 1 \quad \text { when } k \leq k_{0} \\
\frac{\binom{n}{k+1}}{\binom{n}{k}} \leq 1, \quad \text { when } k \geq k_{0}
\end{array}\right.
$$

```
An Inequality and its
    q-Analogue
    Mingjin Wang
```

 vol. 8, iss. 2, art. 50, 2007
 Title Page
Contents
4

Page 7 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Combining (1.6), (2.5) and (2.6) we obtain

$$
\begin{array}{r}
\left|\frac{1}{n+1} \sum_{i=0}^{n} A_{i} B_{i}-\left(\frac{1}{n+1} \sum_{i=0}^{n} A_{i}\right) \cdot\left(\frac{1}{n+1} \sum_{i=0}^{n} B_{i}\right)\right| \\
\leq \frac{\left(A\binom{n}{k_{0}}-a\right)\left(2^{n} A\binom{n}{k_{0}}+2^{n-1} A\binom{n}{k_{0}}\right)}{4}
\end{array}
$$

which can be written as

$$
\begin{aligned}
\frac{1}{n+1} \sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k}^{2} f(k) g(k) & \\
-\left(\frac{1}{n+1} \sum_{k=0}^{n}\binom{n}{k} f(k)\right) & \left.\cdot\left(\frac{1}{n+1} \sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k} g(k)\right) \right\rvert\, \\
& \leq \frac{\left(A\binom{n}{k_{0}}-a\right)\left(2^{n} A\binom{n}{k_{0}}+2^{n-1} A\binom{n}{k_{0}}\right)}{4} .
\end{aligned}
$$

Substituting (2.2) into the above inequality, we get (2.1).

An Inequality and its q-Analogue
Mingjin Wang
vol. 8, iss. 2, art. 50, 2007

Title Page
Contents
44

Page 8 of 14
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. A q-Analogue of the Inequality

In this section we give a q-analogue of the inequality (2.1) by means of the Carlitz inversions. First, we have the following lemma.

Lemma 3.1. Suppose $0 \leq f(k) \leq A$ and $g(k)=\sum_{i=0}^{k}\left[\begin{array}{c}k \\ i\end{array}\right] f(i)$, then for any $k=1,2, \ldots, n$, we have

$$
0 \leq g(k) \leq A \sum_{i=0}^{n}\left[\begin{array}{c}
n \tag{3.1}\\
i
\end{array}\right]
$$

Proof. It is obvious that $g(k) \geq 0$. If $k \leq n_{1} \leq n_{2}$, then we have

$$
\left[\begin{array}{c}
n_{2} \\
k
\end{array}\right]=\frac{1-q^{n_{1}+1}}{1-q^{n_{1}+1-k}} \cdot \frac{1-q^{n_{1}+2}}{1-q^{n_{1}+2-k}} \cdots \frac{1-q^{n_{2}}}{1-q^{n_{2}-k}}\left[\begin{array}{c}
n_{1} \\
k
\end{array}\right] .
$$

Since

$$
\frac{1-q^{n_{1}+1}}{1-q^{n_{1}+1-k}} \cdot \frac{1-q^{n_{1}+2}}{1-q^{n_{1}+2-k}} \cdots \frac{1-q^{n_{2}}}{1-q^{n_{2}-k}} \geq 1
$$

we get

$$
\left[\begin{array}{c}
n_{2} \\
k
\end{array}\right] \geq\left[\begin{array}{c}
n_{1} \\
k
\end{array}\right]
$$

Consequently,

$$
g(k)=\sum_{i=0}^{k}\left[\begin{array}{c}
k \\
i
\end{array}\right] f(i) \leq \sum_{i=0}^{k}\left[\begin{array}{c}
n \\
i
\end{array}\right] f(i) \leq \sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right] f(i) .
$$

The main result of this section is the following theorem.

An Inequality and its q-Analogue

Mingjin Wang
vol. 8, iss. 2, art. 50, 2007

Title Page
Contents

Page 9 of 14
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics

Theorem 3.2. Suppose $0 \leq a \leq f(k) \leq A, g(k)=\sum_{i=0}^{k}\left[\begin{array}{c}k \\ i\end{array}\right] f(i), k=1,2, \ldots, n$, then the following inequality holds

$$
\begin{align*}
& \left|(n+1) \sum_{k=0}^{n}(-1)^{n+k}\left[\begin{array}{l}
n \\
i
\end{array}\right]^{2} q^{\left(n_{2}^{2}\right)} f(k) g(k)-f(n) g(n)\right| \tag{3.2}\\
& \quad \leq \frac{A(n+1)^{2}}{4}\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right]\left(A\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right]-a\right)\left(\sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right]+\sum_{i=0}^{n-1}\left[\begin{array}{c}
n-1 \\
i
\end{array}\right]\right),
\end{align*}
$$

where $k_{0}=\left[\frac{n-1}{2}\right],[x]$ denotes the greatest integer less than or equal x.
Proof. Letting $a_{i}=-1, b_{i}=0$ in (1.4) we get

$$
\left\{\begin{array}{l}
f(n)=\sum_{k=0}^{n}(-1)^{n+k}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{\left(n_{2}^{-k}\right)} g(k) \tag{3.3}\\
g(n)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] f(k)
\end{array}\right.
$$

Using the lemma, we have

$$
a \cdot \sum_{i=0}^{k}\left[\begin{array}{c}
k \tag{3.4}\\
i
\end{array}\right] \leq g(k)=\sum_{i=0}^{k}\left[\begin{array}{c}
k \\
i
\end{array}\right] f(i) \leq A \cdot \sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right]
$$

On the other hand, we notice that

$$
\frac{\left[\begin{array}{c}
n \\
k+1
\end{array}\right]}{\left[\begin{array}{c}
n \\
k
\end{array}\right]}=\frac{(q ; q)_{n} /(q ; q)_{k+1}(q ; q)_{n-k-1}}{(q ; q)_{n} /(q ; q)_{k}(q ; q)_{n-k}}=\frac{1-q^{n-k}}{1-q^{k+1}}
$$

Page 10 of 14

Go Back

Full Screen

Close

An Inequality and its q-Analogue
 Mingjin Wang

vol. 8, iss. 2, art. 50, 2007

Title Page
Contents
\square
,
journal of inequalities in pure and applied mathematics
issn: 1443-575b
consequently

$$
\left\{\begin{array}{l}
\frac{\left[\begin{array}{c}
n \\
k+1
\end{array}\right]}{\left[\begin{array}{c}
n \\
k
\end{array}\right]} \geq 1, \quad \text { when } k \leq k_{0} \\
\frac{\left[\begin{array}{c}
n \\
k+n
\end{array}\right]}{\left[\begin{array}{c}
n \\
k
\end{array}\right]} \leq 1, \quad \text { when } k \geq k_{0}
\end{array}\right.
$$

where $k_{0}=\left[\frac{n-1}{2}\right]$. So, we have

$$
1 \leq\left[\begin{array}{l}
n \tag{3.5}\\
k
\end{array}\right] \leq\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right], \quad k=0,1, \ldots, n
$$

$$
\begin{gathered}
\hline \text { An Inequality and its } \\
q \text {-Analogue } \\
\text { Mingjin Wang } \\
\text { vol. 8, iss. 2, art. 50, } 2007
\end{gathered}
$$

Let $A_{k}=\left[\begin{array}{l}n \\ k\end{array}\right] f(k)$ and $B_{k}=(-1)^{n+k}\left[\begin{array}{l}n \\ k\end{array}\right] q^{\binom{n-k}{2}} g(k)$, then

$$
a \leq A_{k} \leq A\left[\begin{array}{c}
n \tag{3.6}\\
k_{0}
\end{array}\right]
$$

From (3.4) and (3.5), we know that

$$
\begin{cases}0 \leq B_{k} \leq A\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right] \sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right], \quad \text { if } n-k \text { is even } \\
-A\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right] \sum_{i=0}^{n-1}\left[\begin{array}{c}
n-1 \\
i
\end{array}\right] \leq B_{k} \leq 0, & \text { if } n-k \text { is odd }\end{cases}
$$

Page 11 of 14

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Combining (1.6), (3.6) and (3.7) we obtain

$$
\begin{aligned}
&\left|\frac{1}{n+1} \sum_{i=0}^{n} A_{i} B_{i}-\left(\frac{1}{n+1} \sum_{i=0}^{n} A_{i}\right) \cdot\left(\frac{1}{n+1} \sum_{i=0}^{n} B_{i}\right)\right| \\
& \leq \frac{1}{4}\left(A\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right]-a\right)\left(A\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right] \sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right]+A\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right] \sum_{i=0}^{n-1}\left[\begin{array}{c}
n-1 \\
i
\end{array}\right]\right)
\end{aligned}
$$

which can be written as

$$
\begin{aligned}
& \left\lvert\, \frac{1}{n+1} \sum_{k=0}^{n}(-1)^{n+k}\left[\begin{array}{l}
n \\
k
\end{array}\right]^{2} q^{\binom{n-k}{2}} f(k) g(k)\right. \\
& \left.-\left(\frac{1}{n+1} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] f(k)\right)\left(\frac{1}{n+1} \sum_{k=0}^{n}(-1)^{n+k}\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{\binom{n-k}{2}} g(k)\right) \right\rvert\, \\
& \quad \leq \frac{A}{4}\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right]\left(A\left[\begin{array}{c}
n \\
k_{0}
\end{array}\right]-a\right)\left(\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right]+\sum_{i=0}^{n-1}\left[\begin{array}{c}
n-1 \\
i
\end{array}\right]\right)
\end{aligned}
$$

Substituting (3.3) into the above inequality, we get (3.2).
From [3], we know

$$
\lim _{q \rightarrow 1}\left[\begin{array}{c}
n \\
i
\end{array}\right]=\binom{n}{i}
$$

Let $q \rightarrow 1$ in both sides of the inequality (3.2) to get

$$
\left|(n+1) \sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k}^{2} f(k) g(k)-f(n) g(n)\right|
$$

An Inequality and its q-Analogue
Mingjin Wang
vol. 8, iss. 2, art. 50, 2007

Title Page
Contents
\square
Page 12 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \leq \frac{A(n+1)^{2}}{4}\binom{n}{k_{0}}\left[A\binom{n}{k_{0}}-a\right]\left[\sum_{i=0}^{n}\binom{n}{2}+\sum_{i=0}^{n-1}\binom{n-1}{2}\right] \\
& =\frac{A(n+1)^{2}}{4}\binom{n}{k_{0}}\left[A\binom{n}{k_{0}}-a\right]\left[2^{n}+2^{n-1}\right]=3(n+1)^{2} 2^{n-3} A\binom{n}{k_{0}}\left[A\binom{n}{k_{0}}-a\right],
\end{aligned}
$$

which is the inequality (2.1). So the inequality (3.2) is the q-analogue of the inequality (2.1).

An Inequality and its q-Analogue
Mingjin Wang
vol. 8, iss. 2, art. 50, 2007

Title Page
Contents

Page 13 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] G.E. ANDREWS, R. ASKEY and R. ROY, Special Functions, Cambridge University Press, 2000.
[2] L. CARLITZ, Some inverse relations, Duke Math. J., 40 (1973), 893-901
[3] G. GASPER AND M. RAHMAN, Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, 35, Cambridge University Press, Cambridge and New York, 1990.
[4] H.W. GOULD and L.C. HSU, Some new inverse series relations, Duke Math. J., 40 (1973), 885-891
[5] G. GRÜSS, Über das maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} g(x) d x\right)$, Math.Z., 39 (1935), 215-226.
[6] MINGJIN WANG, An inequality about q-series, J. Ineq. Pure and Appl. Math., 7(4) (2006), Art. 136. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=756].

```
An Inequality and its
            q-Analogue
Mingjin Wang
vol. 8, iss. 2, art. 50, 2007
```

Title Page
Contents

Page 14 of 14
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

