Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 5, Issue 4, Article 93, 2004

SOME CONSIDERATIONS ON THE MONOTONICITY PROPERTY OF POWER MEANS

IOAN GAVREA
Department of Mathematics
Technical University of Cluj-Napoca
3400 Cluj-Napoca, Romania.
ioan.gavrea@math.utcluj.ro

Received 15 September,2004; accepted 13 October, 2004
Communicated by A. Lupass

AbSTRACT. If A is an isotonic linear functional and $f:[a, b] \rightarrow(0, \infty)$ is a monotone function then $Q(r, f)=\left(f^{r}(a)+f^{r}(b)-A\left(f^{r}\right)\right)^{1 / r}$ is increasing in r.

Key words and phrases: Jensen's inequality, Monotonicity, Power means.
2000 Mathematics Subject Classification 26D15.

1. Introduction

Let $0<a \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq b$ and $w_{k}(1 \leq k \leq n)$ be positive weights associated with these x_{k} and whose sum is unity. A Mc D. Mercer [3] proved the following variant of Jensen's inequality.

Theorem 1.1. If f is a convex function on an interval containing the points x_{k} then

$$
\begin{equation*}
f\left(a+b-\sum_{k=1}^{n} w_{k} x_{k}\right) \leq f(a)+f(b)-\sum_{k=1}^{n} w_{k} f\left(x_{k}\right) . \tag{1.1}
\end{equation*}
$$

The weighted power means $M_{r}(x, w)$ of the number x_{i} with weights w_{i} are defined as

$$
\begin{aligned}
M_{r}(x, w) & =\left(\sum_{k=1}^{n} w_{k} x_{k}^{r}\right)^{\frac{1}{r}} \text { for } r \neq 0 \\
M_{0}(x, w) & =\exp \left(\sum_{k=1}^{n} w_{k} \ln x_{k}\right) .
\end{aligned}
$$

In [2] Mercer defined the family of functions

$$
Q_{r}(a, b, x)=\left(a^{r}+b^{r}-M_{r}^{r}(x, w)\right)^{\frac{1}{r}} \text { for } r \neq 0
$$

[^0]$$
Q_{0}(a, b, x)=\frac{a b}{M_{0}}
$$
and proved the following (see also [4]):
Theorem 1.2. For $r<s, Q_{r}(a, b, x) \leq Q_{s}(a, b, x)$.
In [3] are given another proofs of the above theorems.
Let us consider a isotonic linear functional A, i.e., a functional $A: C[a, b] \rightarrow \mathbb{R}$ with the properties:
(i) $A(t f+s g)=t A(f)+s A(g)$ for $t, s \in \mathbb{R}, f, g \in C[a, b]$;
(ii) $A(f) \geq 0$ of $f(x) \geq 0$ for all $x \in[a, b]$.

In [1] A. Lupaş proved the following result:
"If f is a convex function and A is an isotonic linear functional with $A\left(e_{0}\right)=1$, then

$$
\begin{equation*}
f\left(a_{1}\right) \leq A(f) \leq \frac{\left(b-a_{1}\right) f(a)+\left(a_{1}-a\right) f(b)}{b-a} \tag{1.2}
\end{equation*}
$$

where $e_{i}:[a, b] \rightarrow \mathbb{R}, e_{i}(x)=x^{i}$ and $a_{1}=A\left(e_{1}\right)$.
Let A be an isotonic linear functional defined on $C[a, b]$ such that $A\left(e_{0}\right)=1$. For a real number r and positive function $f, f \in C[a, b]$ we define the power mean of order r as

$$
M(r, f)= \begin{cases}\left(A\left(f^{r}\right)\right)^{\frac{1}{r}} & \text { for } r \neq 0 \tag{1.3}\\ \exp (A(\log f)) & \text { for } r=0\end{cases}
$$

and for every monotone function $f:[a, b] \rightarrow(0, \infty)$

$$
Q(r ; f)= \begin{cases}\left(f^{r}(a)+f^{r}(b)-M^{r}(r, f)\right)^{\frac{1}{r}}, & r \neq 0 \tag{1.4}\\ \frac{f(a) f(b)}{\exp (A(\log f))}, & r=0\end{cases}
$$

2. Main results

Our main results are given in the following theorems. Let A be an isotonic linear functional defined on $C[a, b]$ such that $A\left(e_{0}\right)=1$.

Theorem 2.1. Let f be a convex function on $[a, b]$. Then

$$
\begin{align*}
f\left(a+b-a_{1}\right) & \leq A(g) \leq f(a)+f(b)-f(a) \frac{b-a_{1}}{b-a}-f(b) \frac{a_{1}-a}{b-a} \tag{2.1}\\
& \leq f(a)+f(b)-A(f)
\end{align*}
$$

where $g=f(a+b-\cdot)$.
Theorem 2.2. Let $r, s \in \mathbb{R}$ such that $r \leq s$. Then

$$
\begin{equation*}
Q(r, f) \leq Q(s, f) \tag{2.2}
\end{equation*}
$$

for every monotone positive function.
Proof of Theorem [2.1] The function g is a convex function. From inequality (1.2), written for the function g we get:

$$
\begin{equation*}
f\left(a+b-a_{1}\right) \leq A(g) \leq \frac{\left(b-a_{1}\right) f(b)+\left(a_{1}-a\right) f(a)}{b-a} \tag{2.3}
\end{equation*}
$$

Using Hadamard's inequality (1.2) relative to the function f we obtain

$$
\begin{equation*}
A(f) \leq f(a) \frac{b-a_{1}}{b-a}+f(b) \frac{a_{1}-a}{b-a} . \tag{2.4}
\end{equation*}
$$

However,

$$
\begin{equation*}
\frac{\left(b-a_{1}\right) f(b)+\left(a_{1}-a\right) f(a)}{b-a}=f(a)+f(b)-f(a) \frac{b-a_{1}}{b-a}-f(b) \frac{a_{1}-a}{b-a} . \tag{2.5}
\end{equation*}
$$

Now (2.1) follows by (2.5), (2.4) and (2.3).
Proof of Theorem [2.2. Let us denote $\alpha=f^{r}(a), \quad \beta=f^{r}(b)$. If $0<r<s$ then the function $g(x)=x^{s / r}$ is convex. Let us consider the following isotonic linear functional $B: C[\alpha, \beta] \rightarrow \mathbb{R}$ defined by $B(h)=A\left(h \circ f^{r}\right)$, where $\alpha=\min \left(f^{r}(a), f^{r}(b)\right), \beta=\max \left(f^{r}(a), f^{r}(b)\right)$. We have:

$$
B\left(e_{1}\right)=A\left(f^{r}\right) .
$$

From (2.1) we get

$$
g\left(\alpha+\beta-B\left(e_{1}\right)\right) \leq g(\alpha)+g(\beta)-B(g)
$$

or

$$
\left(f(a)^{r}+f^{r}(b)-A(f)^{r}\right)^{s / r} \leq f^{s}(a)+f^{s}(b)-A\left(f^{s}\right) .
$$

The last inequality is equivalent to

$$
Q(r, f) \leq A(s, f)
$$

For $r<s<0, g$ is concave and we obtain

$$
\left(f^{r}(a)+f^{r}(b)-A\left(f^{r}\right)\right)^{s / r} \geq f^{s}(a)+f^{s}(b)-A\left(f^{s}\right)
$$

which is also equivalent to $Q(r, f) \leq Q(s, f)$. Finally, applying 2.1) to the concave function $\log x$ for the functional

$$
B(g)=A\left(g \circ f^{r}\right),
$$

we have

$$
\log \left(\alpha+\beta-A\left(f^{r}\right)\right) \geq \log \alpha+\log \beta-A\left(\log f^{r}\right),
$$

or

$$
r \log (Q(r, f)) \geq r \log Q(0, f)
$$

which shows that for $r>0$

$$
Q(-r, f) \leq Q(0, f) \leq Q(r, f)
$$

Remark 2.3. For the functional $A, A: C[a, b] \rightarrow \mathbb{R}$ defined by

$$
A(f)=\sum_{k=1}^{n} w_{k} f\left(x_{k}\right)
$$

in the particular case when $f(x)=x^{r}$ we obtain Theorem 1.2

References

[1] A. LUPAŞ, A generalization of Hadamard's inequalities for convex functions, Univ. Beograd Publ. Elektro. Fak., 544-579 (1976), 115-121.
[2] A. Mc D. MERCER, A monotonicity property of power means, J. Ineq. Pure and Appl. Math., 3(3) (2002), Article 40. [ONLINE: http://jipam.vu.edu.au/article.php?sid=192]
[3] A. Mc D. MERCER, A variant of Jensen's inequality, J. Ineq. Pure and Appl. Math., 4(4) (2003), Article 73. [ONLINE: http://jipam.vu.edu.au/article.php?sid=314]
[4] A. WITKOWSKI, A new proof of the monotonicity property of power means, J. Ineq. Pure and Appl. Math., 5(3) (2004), Article 73. [ONLINE: http://jipam.vu.edu.au/article. php?sid=425

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 190-04

