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ABSTRACT. In this paper, we derive several interesting subordination results for certain class of
analytic functions defined by the linear operatorL(a, c)f(z) which introduced and studied by
Carlson and Shaffer [2].
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1. I NTRODUCTION AND DEFINITIONS

LetA denote the class of functions of the form:

(1.1) f(z) = z +
∞∑

n=2

anz
n

which are analytic in the open unit disc∆ = {z : |z| < 1} . For two functionsf(z) andg(z)
given by

(1.2) f(z) = z +
∞∑

n=2

anz
n and g(z) = z +

∞∑
n=2

cnz
n

their Hadamard product (or convolution) is defined by

(1.3) (f ∗ g)(z) := z +
∞∑

n=2

ancnz
n.
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2 B.A. FRASIN

Define the functionφ(a, c; z) by

(1.4) φ(a, c; z) :=
∞∑

n=0

(a)n

(c)n

zn+1 (c /∈ Z−0 := {0,−1,−2, . . .}, z ∈ ∆),

where(λ)n is the Pochhammer symbol given, in terms of Gamma functions,

(λ)n :=
Γ(λ + n)

Γ(λ)
(1.5)

=

{
1, n = 0,

λ(λ + 1)(λ + 2) . . . (λ + n− 1), n ∈ N : {1, 2, . . .}.

Corresponding to the functionφ(a, c; z), Carlson and Shaffer [2] introduced a linear operator
L(a, c) : A → A by

(1.6) L(a, c)f(z) := φ(a, c; z) ∗ f(z),

or, equivalently, by

L(a, c)f(z) := z +
∞∑

n=1

(a)n

(c)n

an+1z
n+1 (z ∈ ∆).

Note thatL(1, 1)f(z) = f(z), L(2, 1)f(z) = zf ′(z) andL(3, 1)f(z) = zf ′(z) + 1
2
z2f ′′(z).

For −1 ≤ α < 1, β ≥ 0, we letL(a, c; α, β) consist of functionsf in A satisfying the
condition

(1.7) Re

{
aL(a + 1, c)f(z)

L(a, c)f(z)
− (a− 1)

}
> β

∣∣∣∣aL(a + 1, c)f(z)

L(a, c)f(z)
− a

∣∣∣∣+ α, (z ∈ ∆)

The familyL(a, c; α, β) is of special interest for it contains many well-known as well as
many new classes of analytic univalent functions. ForL(1, 1; α, 0), we obtain the family of
starlike functions of orderα (0 ≤ α < 1) andL(2, 1; α, 0) is the family of convex functions
of orderα (0 ≤ α < 1). ForL(1, 1; 0, β) andL(2, 1; 0, β), we obtain the class of uniformly
β- starlike functions and uniformlyβ- convex functions, respectively, introduced by Kanas
and Winsiowska ([3],[4]) (see also the work of Kanas and Srivastava [5], Goodman ([7],[8]),
Rønning ([10],[11]), Ma and Minda [9] and Gangadharan et al. [6]).

Before we state and prove our main result we need the following definitions and lemmas.

Definition 1.1 (Subordination Principle). Let g(z) be analytic and univalent in∆. If f(z) is
analytic in∆, f(0) = g(0), andf(∆) ⊂ g(∆), then we see that the functionf(z) is subordinate
to g(z) in ∆, and we writef(z) ≺ g(z).

Definition 1.2 (Subordinating Factor Sequence). A sequence{bn}∞n=1 of complex numbers is
called a subordinating factor sequence if, wheneverf(z) is analytic , univalent and convex in
∆, we have the subordination given by

(1.8)
∞∑

n=2

bnanz
n ≺ f(z) (z ∈ ∆, a1 = 1).

Lemma 1.1([14]). The sequence{bn}∞n=1 is a subordinating factor sequence if and only if

(1.9) Re

{
1 + 2

∞∑
n=1

bnz
n

}
> 0 (z ∈ ∆).
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Lemma 1.2. If

(1.10)
∞∑

n=2

σn(a, c; α, β) |an| ≤ 1− α

where, for convenience,

σn(a, c; α, β) :=
(1 + β)(a)n + [1− α− a(1 + β)](a)n−1

(c)n−1

(1.11)

(−1 ≤ α < 1; β ≥ 0, n ≥ 2),

thenf(z) ∈ L(a, c; α, β).

Proof. It suffices to show that

β

∣∣∣∣aL(a + 1, c)f(z)

L(a, c)f(z)
− a

∣∣∣∣− Re

{
aL(a + 1, c)f(z)

L(a, c)f(z)
− a

}
≤ 1− α.

We have

β

∣∣∣∣aL(a + 1, c)f(z)

L(a, c)f(z)
− a

∣∣∣∣− Re

{
aL(a + 1, c)f(z)

L(a, c)f(z)
− a

}
≤ (1 + β)

∣∣∣∣aL(a + 1, c)f(z)

L(a, c)f(z)
− a

∣∣∣∣
≤

(1 + β)
∑∞

n=2

(
a(a+1)n−1−a(a)n−1

(c)n−1

)
|an| |z|n−1

1−
∑∞

n=2
(a)n−1

(c)n−1
|an| |z|n−1

≤
(1 + β)

∑∞
n=2

(
(a)n−a(a)n−1

(c)n−1

)
|an|

1−
∑∞

n=2
(a)n−1

(c)n−1
|an|

.

The last expression is bounded above by1− α if
∞∑

n=2

(1 + β)(a)n + [1− α− a(1 + β)](a)n−1

(c)n−1

|an| ≤ 1− α

and the proof is complete. �

Let L?(a, c; α, β) denote the class of functionsf(z) ∈ A whose coefficients satisfy the con-
dition (1.10). We note thatL?(a, c; α, β) ⊆ L(a, c; α, β).

2. M AIN THEOREM

Employing the techniques used earlier by Srivastava and Attiya [13], Attiya [1] and Singh
[12], we state and prove the following theorem.

Theorem 2.1. Let the functionf(z) defined by (1.1) be in the classL?(a, c; α, β) where−1 ≤
α < 1 ; β ≥ 0; a > 0; c > 0. Also letK denote the familiar class of functionsf(z) ∈ A which
are also univalent and convex in∆. Then

(2.1)
σ2(a, c; α, β)

2[1− α + σ2(a, c; α, β)]
(f ∗ g)(z) ≺ g(z) ( z ∈ ∆; g ∈ K),

and

(2.2) Re(f(z)) > −1− α + σ2(a, c; α, β)

σ2(a, c; α, β)
, (z ∈ ∆).

The constant σ2(a,c;α,β)
2[1−α+σ2(a,c;α,β)]

is the best estimate.
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4 B.A. FRASIN

Proof. Let f(z) ∈ L?(a, c; α, β) and letg(z) = z +
∑∞

n=2 cnz
n ∈ K. Then

(2.3)
σ2(a, c; α, β)

2[1− α + σ2(a, c; α, β)]
(f ∗ g)(z) =

σ2(a, c; α, β)

2[1− α + σ2(a, c; α, β)]

(
z +

∞∑
n=2

ancnz
n

)
.

Thus, by Definition 1.2, the assertion of our theorem will hold if the sequence

(2.4)

{
σ2(a, c; α, β)

2[1− α + σ2(a, c; α, β)]
an

}∞
n=1

is a subordinating factor sequence, witha1 = 1. In view of Lemma 1.1, this will be the case if
and only if

(2.5) Re

{
1 + 2

∞∑
n=1

σ2(a, c; α, β)

2[1− α + σ2(a, c; α, β)]
anz

n

}
> 0 (z ∈ ∆).

Now

Re

{
1 +

σ2(a, c; α, β)

1− α + σ2(a, c; α, β)

∞∑
n=1

anz
n

}

= Re

{
1 +

σ2(a, c; α, β)

1− α + σ2(a, c; α, β)
z

+
1

1− α + σ2(a, c; α, β)

∞∑
n=1

σ2(a, c; α, β)anz
n

}

≥ 1−
{

σ2(a, c; α, β)

1− α + σ2(a, c; α, β)
r

− 1

1− α + σ2(a, c; α, β)

∞∑
n=1

σn(a, c; α, β)anr
n

}
.

Sinceσn(a, c; α, β) is an increasing function ofn (n ≥ 2)

1−
{

σ2(a, c; α, β)

1− α + σ2(a, c; α, β)
r

− 1

1− α + σ2(a, c; α, β)

∞∑
n=1

σn(a, c; α, β)anr
n

}

> 1− σ2(a, c; α, β)

1− α + σ2(a, c; α, β)
r − 1− α

1− α + σ2(a, c; α, β)
r (|z| = r)

> 0.

Thus (2.5) holds true in∆. This proves the inequality (2.1). The inequality (2.2) follows by
taking the convex functiong(z) = z

1−z
= z +

∑∞
n=2 zn in (2.1). To prove the sharpness of the

constant σ2(a,c;α,β)
2[1−α+σ2(a,c;α,β)]

, we consider the functionf0(z) ∈ L?(a, c; α, β) given by

(2.6) f0(z) = z − 1− α

σ2(a, c; α, β)
z2 (−1 ≤ α < 1; β ≥ 0).

Thus from (2.1), we have

(2.7)
σ2(a, c; α, β)

2[1− α + σ2(a, c; α, β)]
f0(z) ≺ z

1− z
.
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It can easily verified that

(2.8) min

{
Re

(
σ2(a, c; α, β)

2[1− α + σ2(a, c; α, β)]
f0(z)

)}
= −1

2
(z ∈ ∆),

This shows that the constant σ2(a,c;α,β)
2[1−α+σ2(a,c;α,β)]

is best possible. �

Corollary 2.2. Let the functionf(z) defined by (1.1) be in the classL?(1, 1; α, β) and satisfy
the condition

(2.9)
∞∑

n=2

[n(1 + β)− (α + β)] |an| ≤ 1− α

then
β + 2− α

2(β + 3− 2α)
(f ∗ g)(z) ≺ g(z)(2.10)

(−1 ≤ α < 1; β ≥ 0; z ∈ ∆; g ∈ K)

and

(2.11) Re(f(z)) > −β + 3− 2α

β + 2− α
, (z ∈ ∆).

The constant β+2−α
2(β+3−2α)

is the best estimate.

Corollary 2.3. Let the functionf(z) defined by (1.1) be in the classL?(1, 1; α, 0) and satisfy
the condition

(2.12)
∞∑

n=2

(n− α) |an| ≤ 1− α,

then

(2.13)
2− α

6− 4α
(f ∗ g)(z) ≺ g(z) (z ∈ ∆; g ∈ K)

and

(2.14) Re(f(z)) > −3− 2α

2− α
, (z ∈ ∆).

The constant2−α
6−4α

is the best estimate.

Puttingα = 0 in Corollary 2.3, we obtain

Corollary 2.4 ([12]). Let the functionf(z) defined by (1.1) be in the classL?(1, 1; 0, 0) and
satisfy the condition

(2.15)
∞∑

n=2

n |an| ≤ 1

then

(2.16)
1

3
(f ∗ g)(z) ≺ g(z) (z ∈ ∆; g ∈ K)

and

(2.17) Re(f(z)) > −3

2
, (z ∈ ∆).

The constant1/3 is the best estimate.
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Corollary 2.5. Let the functionf(z) defined by (1.1) be in the classL?(2, 1; α, β) and satisfy
the condition

(2.18)
∞∑

n=2

n[n(1 + β)− (α + β)] |an| ≤ 1− α,

then

β + 2− α

2β + 5− 3α
(f ∗ g)(z) ≺ g(z)(2.19)

(−1 ≤ α < 1; β ≥ 0; z ∈ ∆; g ∈ K)

and

(2.20) Re(f(z)) > − 2β + 5− 3α

2(β + 2− α)
, (z ∈ ∆).

The constantβ+2−α
2β+5−3α

is the best estimate.

Corollary 2.6. Let the functionf(z) defined by (1.1) be in the classL?(2, 1; α, 0) and satisfy
the condition

(2.21)
∞∑

n=2

n(n− α) |an| ≤ 1− α,

then

(2.22)
2− α

5− 3α
(f ∗ g)(z) ≺ g(z) (z ∈ ∆; g ∈ K)

and

(2.23) Re(f(z)) > − 5− 3α

2(2− α)
, (z ∈ ∆).

The constant2−α
5−3α

is the best estimate.

Puttingα = 0 in Corollary 2.6, we obtain

Corollary 2.7. Let the functionf(z) defined by (1.1) be in the classL?(2, 1; 0, 0) and satisfy
the condition

(2.24)
∞∑

n=2

n2 |an| ≤ 1

then

(2.25)
2

5
(f ∗ g)(z) ≺ g(z) (z ∈ ∆; g ∈ K)

and

(2.26) Re(f(z)) >
−5

4
, (z ∈ ∆).

The constant2/5 is the best estimate.
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