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1. I NTRODUCTION

In 1998, S.S. Dragomir and I. Fedotov [10] introduced the followingGrüss type error func-
tional

D (f ; u) :=

∫ b

a

f (t) du (t)− [u (a)− u (b)] · 1

b− a

∫ b

a

f (t) dt

in order to approximate theRiemann-Stieltjes integral
∫ b

a
f (t) du (t) by the simpler quantity

[u (a)− u (b)] · 1

b− a

∫ b

a

f (t) dt.

In the same paper the authors have shown that

(1.1) |D (f ; u)| ≤ 1

2
· L (M −m) (b− a) ,

provided thatu is L−Lipschitzian, i.e., |u (t)− u (s)| ≤ L |t− x| for any t, s ∈ [a, b] andf is
Riemann integrableand satisfies the condition

−∞ < m ≤ f (t) ≤ M < ∞ for anyt ∈ [a, b] .

The constant1
2

is best possible in (1.1) in the sense that it cannot be replaced by a smaller
quantity.
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2 SEVER S. DRAGOMIR

In [11], the same authors established another result forD (f ; u) , namely

(1.2) |D (f ; u)| ≤ 1

2
K (b− a)

b∨
a

(u) ,

provided thatu is of bounded variationon [a, b] with the total variation
∨b

a (u) and f is
K−Lipschitzian. Here1

2
is also best possible.

In [8], by introducing thekernelΦu : [a, b] → R given by

(1.3) Φu (t) :=
1

b− a
[(t− a) u (b) + (b− t) u (a)]− u (t) , t ∈ [a, b] ,

the author has obtained the followingintegral representation

(1.4) D (f ; u) =

∫ b

a

Φu (t) df (t) ,

whereu, f : [a, b] → R are bounded functions such that the Riemann-Stieltjes integral
∫ b

a
f (t) du (t)

and the Riemann integral
∫ b

a
f (t) dt exist. By the use of this representation he also obtained the

following bounds forD (f ; u) ,

(1.5) |D (f ; u)|

≤



sup
t∈[a,b]

|Φu (t)| ·
∨b

a (f) if u is continuous andf is of bounded variation;

L
∫ b

a
|Φu (t)| dt if u is Riemann integrable andf is L-Lipschitzian;∫ b

a
|Φu (t)| dt if u is continuous andf is monotonic nondecreasing.

If u is monotonic nondecreasingandK (u) is defined by

K (u) :=
4

(b− a)2

∫ b

a

(
t− a + b

2

)
u (t) dt (≥ 0) ,

then

(1.6) |D (f ; u)| ≤ 1

2
L (b− a) [u (b)− u (a)−K (u)] ≤ 1

2
L (b− a) [u (b)− u (a)] ,

provided thatf is L−Lipschitzian on[a, b] .
Here 1

2
is best possible in both inequalities.

Also, for u monotonic nondecreasing on[a, b] and by definingQ (u) as

Q (u) :=
1

b− a

∫ b

a

u (t) sgn

(
t− a + b

2

)
dt (≥ 0) ,

we have

(1.7) |D (f ; u)| ≤ [u (b)− u (a)−Q (u)] ·
b∨
a

(f) ≤ [u (b)− u (a)] ·
b∨
a

(f) ,

provided thatf is of bounded variation on[a, b] . The first inequality in (1.7) is sharp.
Finally, the case whenu is convex andf is of bounded variation produces the bound

(1.8) |D (f ; u)| ≤ 1

4

[
u′− (b)− u′+ (a)

]
(b− a)

b∨
a

(f) ,
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GRÜSS-TYPE INEQUALITIES 3

with 1
4

the best constant (whenu′− (b) andu′+ (a) are finite) and iff is monotonic nodecreasing
andu is convex on[a, b] , then

0 ≤ D (f ; u)(1.9)

≤ 2 ·
u′− (b)− u′+ (a)

b− a
·
∫ b

a

(
t− a + b

2

)
f (t) dt

≤



1
2

[
u′− (b)− u′+ (a)

]
max {|f (a)| , |f (b)|} (b− a)

1

(q+1)1/q

[
u′− (b)− u′+ (a)

]
‖f‖p (b− a)1/q if p > 1, 1

p
+ 1

q
= 1;[

u′− (b)− u′+ (a)
]
‖f‖1 ,

where2 and 1
2

are sharp constants (whenu′− (b) andu′+ (a) are finite) and‖·‖p are the usual

Lebesgue norms, i.e.,‖f‖p :=
(∫ b

a
|f (t)|p dt

) 1
p
, p ≥ 1.

The main aim of the present paper is to provide sharp upper bounds for the absolute value of
D (f ; u) under various conditions foru′, the derivative of an absolutely continuous functionu,
andf of bounded variation (Lipschitzian or monotonic). Natural applications for theČebyšev
functional that complement the classical results due toČebyšev, Grüss, Ostrowski and Lupaş
are also given.

2. PRELIMINARY RESULTS

We have the following integral representation ofΦu.

Lemma 2.1. Assume thatu : [a, b] → R is absolutely continuous on[a, b] and such that the
derivativeu′ exists on[a, b] (eventually except at a finite number of points). Ifu′ is Riemann
integrable on[a, b] , then

(2.1) Φu (t) :=
1

b− a

∫ b

a

K (t, s) du′ (s) , t ∈ [a, b] ,

where the kernelK : [a, b]2 → R is given by

(2.2) K (t, s) :=

{
(b− t) (s− a) if s ∈ [a, t] ,

(t− a) (b− s) if s ∈ (t, b].

Proof. We give, for simplicity, a proof only in the case whenu′ is defined on the entire interval,
and for which we have used the usual convention thatu′ (a) := u′+ (a) , u′ (b) := u′− (b) and the
lateral derivatives are finite.

Sinceu′ is assumed to be Riemann integrable on[a, b] , it follows that the Riemann-Stieltjes
integrals

∫ t

a
(s− a) du′ (s) and

∫ b

t
(b− s) du′ (s) exist for eacht ∈ [a, b] . Now, integrating by

parts in the Riemann-Stieltjes integral, we have succesively∫ b

a

K (t, s) du′ (s) = (b− t)

∫ t

a

(s− a) du′ (s) + (t− a)

∫ b

t

(b− s) du′ (s)

= (b− t)

[
(s− a) u′ (s)

∣∣∣t
a
−

∫ t

a

u′ (s) ds

]
+ (t− a)

[
(b− s) u′ (s)

∣∣∣b
t
−

∫ b

t

u′ (s) ds

]

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 117, 13 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 SEVER S. DRAGOMIR

= (b− t) [(t− a) u′ (t)− (u (t)− u (a))]

+ (t− a) [− (b− t) u′ (t) + u (b)− u (t)]

= (t− a) [u (b)− u (t)]− (b− t) [u (t)− u (a)]

= (b− a) Φu (t) ,

for anyt ∈ [a, b] , and the representation (2.1) is proved. �

The following result provides a sharp bound for|Φu| in the case whenu′ is of bounded
variation.

Theorem 2.2. Assume thatu : [a, b] → R is as in Lemma 2.1. Ifu′ is of bounded variation on
[a, b] , then

(2.3) |Φu (t)| ≤ (t− a) (b− t)

b− a

b∨
a

(u′) ≤ 1

4
(b− a)

b∨
a

(u′) ,

where
∨b

a (u′) denotes the total variation ofu′ on [a, b] .
The inequalities are sharp and the constant1

4
is best possible.

Proof. It is well known that, ifp : [α, β] → R is continuous andv : [α, β] → R is of bounded
variation, then the Riemann-Stieltjes integral

∫ β

α
p (s) dv (s) exists and∣∣∣∣∫ β

α

p (s) dv (s)

∣∣∣∣ ≤ sup
s∈[α,β]

|p (s)|
β∨
α

(v) .

Now, utilising the representation (2.1) we have successively:

|Φu (t)|(2.4)

≤ 1

b− a

[
(b− t)

∣∣∣∣∫ t

a

(s− a) du′ (s)

∣∣∣∣ + (t− a)

∣∣∣∣∫ b

t

(b− s) du′ (s)

∣∣∣∣]
≤ 1

b− a

[
(b− t) sup

s∈[a,t]

(s− a) ·
t∨
a

(u′) + (t− a) sup
s∈[t,b]

(b− s) ·
b∨
t

(u′)

]

=
(t− a) (b− t)

b− a

[
t∨
a

(u′) +
b∨
t

(u′)

]
=

(t− a) (b− t)

b− a

b∨
a

(u′) .

The second inequality is obvious by the fact that(t− a) (b− t) ≤ 1
4
(b− a)2 , t ∈ [a, b] .

For the sharpness of the inequalities, assume that there existA, B > 0 so that

(2.5) |Φu (t)| ≤ A · (t− a) (b− t)

b− a

b∨
a

(u′) ≤ B (b− a)
b∨
a

(u′) ,

with u as in the assumption of the theorem. Then, fort = a+b
2

, we get from (2.5) that

(2.6)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

4
A (b− a)

b∨
a

(u′) ≤ B (b− a)
b∨
a

(u′) .

Consider the functionu : [a, b] → R, u (t) =
∣∣t− a+b

2

∣∣ . This function is absolutely con-
tinuous,u′ (t) = sgn

(
t− a+b

2

)
, t ∈ [a, b] \

{
a+b
2

}
and

∨b
a (u′) = 2. Then (2.6) becomes

b−a
2
≤ 1

2
A (b− a) ≤ 2B (b− a) , which implies thatA ≥ 1 andB ≥ 1

4
. �
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Corollary 2.3. With the assumptions of Theorem 2.2, we have

(2.7)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

4
(b− a)

b∨
a

(u′) .

The constant1
4

is best possible.

The Lipschitzian case is incorporated in the following result.

Theorem 2.4. Assume thatu : [a, b] → R is absolutely continuous on[a, b] with the property
thatu′ is K−Lipschitzian on(a, b) . Then

(2.8) |Φu (t)| ≤ 1

2
(t− a) (b− t) K ≤ 1

8
(b− a)2 K.

The constants1
2

and 1
8

are best possible.

Proof. We utilise the fact that, for anL−Lipschitzian functionp : [α, β] → R and a Riemann
integrable functionv : [α, β] → R, the Riemann-Stieltjes integral

∫ β

α
p (s) dv (s) exists and∣∣∣∣∫ β

α

p (s) dv (s)

∣∣∣∣ ≤ L

∫ β

α

|p (s)| ds.

Then, by (2.1), we have that

|Φu (t)| ≤ 1

b− a

[
(b− t)

∣∣∣∣∫ t

a

(s− a) du′ (s)

∣∣∣∣ + (t− a)

∣∣∣∣∫ b

t

(b− s) du′ (s)

∣∣∣∣](2.9)

≤ 1

b− a

[
1

2
K (b− t) (t− a)2 +

1

2
K (t− a) (b− t)2

]
=

1

2
(t− a) (b− t) K,

which proves the first part of (2.8). The second part is obvious.
Now, for the sharpness of the constants, assume that there exist the constantsC, D > 0 such

that

(2.10) |Φu (t)| ≤ C (b− t) (t− a) K ≤ D (b− a)2 K,

provided thatu is as in the hypothesis of the theorem. Fort = a+b
2

, we get from (2.10) that

(2.11)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

4
CK (b− a)2 ≤ D (b− a)2 K.

Consideru : [a, b] → R, u (t) = 1
2

∣∣t− a+b
2

∣∣2 . Thenu′ (t) = t − a+b
2

is Lipschitzian with the
constantK = 1 and (2.11) becomes

1

8
(b− a)2 ≤ 1

4
C (b− a)2 ≤ D (b− a)2 ,

which implies thatC ≥ 1
2

andD ≥ 1
8
. �

Corollary 2.5. With the assumptions of Theorem 2.4, we have

(2.12)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

8
(b− a)2 K.

The constant1
8

is best possible.
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6 SEVER S. DRAGOMIR

Remark 2.6. If u′ is absolutely continuous and‖u′′‖∞ := ess supt∈[a,b] |u′′ (t)| < ∞, then we
can takeK = ‖u′′‖∞ , and we have from (2.8) that

(2.13) |Φu (t)| ≤ 1

2
(t− a) (b− t) ‖u′′‖∞ ≤ 1

8
(b− a)2 ‖u′′‖∞ .

The constants1
2

and 1
8

are best possible in (2.13).
From (2.12) we also get

(2.14)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

8
(b− a)2 ‖u′′‖∞ ,

in which 1
8

is the best possible constant.

3. BOUNDS IN THE CASE WHEN u′ IS OF BOUNDED VARIATION

We can start with the following result:

Theorem 3.1. Assume thatu : [a, b] → R is as in Lemma 2.1. Ifu′ and f are of bounded
variation on[a, b] , then

(3.1) |D (f ; u)| ≤ 1

4
(b− a)

b∨
a

(u′) ·
b∨
a

(f) ,

and the constant1
4

is best possible in (3.1).

Proof. We use the following representation of the functionalD (f ; u) obtained in [8] (see also
[9] or [6]):

(3.2) D (f ; u) =

∫ b

a

Φu (t) df (t) .

Then we have the bound

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|Φu (t)|
b∨
a

(f)

≤ 1

b− a

b∨
a

(u′) sup
t∈[a,b]

[(t− a) (b− t)] ·
b∨
a

(f)

=
1

4
(b− a)

b∨
a

(u′) ·
b∨
a

(f) ,

where, for the last inequality we have used (2.3).
To prove the sharpness of the constant1

4
, assume that there is a constantE > 0 such that

(3.3) |D (f ; u)| ≤ E (b− a)
b∨
a

(u′) ·
b∨
a

(f) .

Consideru : [a, b] → R, u (t) =
∣∣t− a+b

2

∣∣ . Thenu′ (t) = sgn
(
t− a+b

2

)
, t ∈ [a, b] \

{
a+b
2

}
.

The total variation on[a, b] is 2 and

D (f ; u) = −
∫ a+b

2

a

f (t) dt +

∫ b

a+b
2

f (t) dt =

∫ b

a

sgn

(
t− a + b

2

)
f (t) dt.

Now, if we choosef (t) = sgn
(
t− a+b

2

)
, then we obtain from (3.1)b−a ≤ 4E (b− a) , which

implies thatE ≥ 1
4
. �
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The following result can be stated as well:

Theorem 3.2.Assume thatu : [a, b] → R is as in Lemma 2.1. If the derivativeu′ is of bounded
variation on[a, b] whilef is L−Lipschitzian on[a, b] , then

(3.4) |D (f ; u)| ≤ 1

6
L (b− a)2

b∨
a

(u′) .

Proof. We have

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣ ≤ L

∫ b

a

|Φu (t)| dt

≤ L

b− a

b∨
a

(u′)

∫ b

a

(t− a) (b− t) dt

=
1

6
L (b− a)2

b∨
a

(u′) ,

where for the second inequality we have used the inequality (2.3). �

Remark 3.3. It is an open problem whether or not the constant1
6

is the best possible constant
in (3.4).

When the integrandf is monotonic, we can state the following result as well:

Theorem 3.4. Assume thatu is as in Theorem 3.1. Iff is monotonic nondecreasing on[a, b] ,
then

|D (f ; u)| ≤ 2 ·
∨b

a (u′)

b− a
·
∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ f (t) dt(3.5)

≤



1
2

∨b
a (u′) max {|f (a)| , |f (b)|} (b− a) ;

1

(q+1)1/q

∨b
a (u′) ‖f‖p (b− a)1/q if p > 1, 1

p
+ 1

q
= 1;

∨b
a (u′) ‖f‖1 ,

where‖f‖p :=
(∫ b

a
|f (t)|p dt

) 1
p
, p ≥ 1 are the Lebesgue norms. The constants2 and 1

2
are

best possible in (3.5).

Proof. It is well known that, ifp : [α, β] → R is continuous andv : [α, β] → R is monotonic

nondecreasing, then the Riemann-Stieltjes integral
∫ β

α
p (t) dv (t) exists and

∣∣∣∫ β

α
p (t) dv (t)

∣∣∣ ≤∫ β

α
|p (t)| dv (t) . Then, on applying this property for the integral

∫ b

a
Φu (t) df (t) , we have

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣ ≤ ∫ b

a

|Φu (t)| df (t)(3.6)

≤
∨b

a (u′)

b− a
·
∫ b

a

(t− a) (b− t) df (t) ,

where for the last inequality we used (2.3).
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8 SEVER S. DRAGOMIR

Integrating by parts in the Riemann-Stieltjes integral, we have∫ b

a

(t− a) (b− t) df (t) = f (t) (b− t) (t− a)
∣∣∣b
a
−

∫ b

a

[−2t + (a + b)] f (t) dt

= 2

∫ b

a

(
t− a + b

2

)
f (t) dt,

which together with (3.6) produces the first part of (3.5).
The second part is obvious by the Hölder inequality applied for the integral

∫ b

a

(
t− a+b

2

)
f (t) dt

and the details are omitted.
For the sharpness of the constants we use as examplesu (t) =

∣∣t− a+b
2

∣∣ andf (t) = sgn
(
t− a+b

2

)
,

t ∈ [a, b] . The details are omitted. �

4. BOUNDS IN THE CASE WHEN u′ IS L IPSCHITZIAN

The following result can be stated as well:

Theorem 4.1. Let u : [a, b] → R be absolutely continuous on[a, b] with the property thatu′ is
K−Lipschitzian on(a, b) . If f is of bounded variation, then

(4.1) |D (f ; u)| ≤ 1

8
(b− a)2 K

b∨
a

(f) .

The constant1
8

is best possible in (4.1).

Proof. Utilising (2.8), we have successively:

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|Φu (t)|
b∨
a

(f)

≤ 1

2
K sup

t∈[a,b]

[(b− t) (t− a)]
b∨
a

(f)

=
1

8
(b− a)2 K

b∨
a

(f) ,

and the inequality (4.1) is proved.
Now, for the sharpness of the constant, assume that the inequality holds with a constant

G > 0, i.e.,

(4.2) |D (f ; u)| ≤ G (b− a)2 K
b∨
a

(f) .

for u andf as in the statement of the theorem.
Consideru (t) := 1

2

(
t− a+b

2

)2
andf (t) = sgn

(
t− a+b

2

)
, t ∈ [a, b] . Thenu′ (t) = t − a+b

2
is K−Lipschitzian with the constantK = 1 and

D (f ; u) =

∫ b

a

sgn

(
t− a + b

2

)
·
(

t− a + b

2

)
dt =

(b− a)2

4
.

Since
∨b

a (f) = 2, hence from (4.2) we get(b−a)2

4
≤ 2G (b− a)2, which implies thatG ≥

1
8
. �

The following result may be stated as well:
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Theorem 4.2.Letv : [a, b] → R be as in Theorem 4.1. Iff is L−Lipschitzian on[a, b] , then

(4.3) |D (f ; u)| ≤ 1

12
(b− a)3 KL.

The constant1
12

is best possible in (4.3).

Proof. We have by (2.8), that:

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣
≤ L

∫ b

a

|Φu (t)| dt

≤ 1

2
LK

∫ b

a

(b− t) (t− a) dt =
1

12
KL (b− a)3 ,

and the inequality is proved.
For the sharpness, assume that (4.3) holds with a constantF > 0. Then

(4.4) |D (f ; u)| ≤ F (b− a)3 KL,

providedf andu are as in the hypothesis of the theorem.
Considerf (t) = t− a+b

2
andu (t) = 1

2

(
t− a+b

2

)2
. Thenu′ is Lipschitzian with the constant

K = 1 andf is Lipschitzian with the constantL = 1. Also,

D (f ; u) =

∫ b

a

(
t− a + b

2

)2

dt =
(b− a)3

12
,

and by (4.4) we get(b−a)3

12
≤ F (b− a)3 which implies thatF ≥ 1

2
. �

Finally, the case of monotonic integrands is enclosed in the following result.

Theorem 4.3.Letu : [a, b] → R be as in Theorem 4.1. Iff is monotonic nondecreasing, then

|D (f ; u)| ≤ K

∫ b

a

(
t− a + b

2

)
f (t) dt(4.5)

≤



1
4
K max {|f (a)| , |f (b)|} (b− a)2 ;

1

2(q+1)1/q K ‖f‖p (b− a)1+1/q if p > 1, 1
p

+ 1
q

= 1;

1
2
(b− a) K ‖f‖1 .

The first inequality is sharp. The constant1
4

is best possible.

Proof. We have

|D (f ; u)| ≤
∫ b

a

|Φu (t)| df (t)

≤ 1

2
K

∫ b

a

(b− t) (t− a) df (t)

= K

∫ b

a

(
t− a + b

2

)
f (t) dt

and the first inequality is proved. The second part follows by the Hölder inequality.
The sharpness of the first inequality and of the constant1

4
follows by choosingu (t) =∣∣t− a+b

2

∣∣ andf (t) = sgn
(
t− a+b

2

)
. The details are omitted. �
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5. APPLICATIONS FOR THE ČEBYŠEV FUNCTIONAL

The above result can naturally be applied in obtaining various sharp upper bounds for the
absolute value of thěCebyšev functionalC (f, g) defined by

(5.1) C (f, g) :=
1

b− a

∫ b

a

f (t) g (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

g (t) dt,

wheref, g : [a, b] → R are Lebesgue integrable functions such thatfg is also Lebesgue inte-
grable.

There are various sharp upper bounds for|C (f, g)| and in the following we will recall just a
few of them.

In 1934, Grüss [13] showed that

(5.2) |C (f, g)| ≤ 1

4
(M −m) (N − n)

under the assumptions thatf andg satisfy the bounds

(5.3) −∞ < m ≤ f (t) ≤ M < ∞ and −∞ < n ≤ g (t) ≤ N < ∞

for almost everyt ∈ [a, b] , wherem,M, n,N are real numbers. The constant1
4

is best possible
in the sense that it cannot be replaced by a smaller quantity.

Another less known result, even though it was established byČebyšev in 1882 [1], states that

(5.4) |C (f, g)| ≤ 1

12
‖f ′‖∞ ‖g′‖∞ (b− a)2 ,

provided thatf ′, g′ exist and are continuous in[a, b] and‖f ′‖∞ = supt∈[a,b] |f ′ (t)| . The con-
stant 1

12
cannot be replaced by a smaller quantity. TheČebyšev inequality also holds iff, g are

absolutely continuous on[a, b] , f ′, g′ ∈ L∞ [a, b] and‖·‖∞ is replaced by theess sup norm
‖f ′‖∞ = ess supt∈[a,b] |f ′ (t)| .

In 1970, A. Ostrowski [16] considered a mixture between Grüss andČebyšev inequalities by
proving that

(5.5) |C (f, g)| ≤ 1

8
(b− a) (M −m) ‖g′‖∞ ,

provided thatf satisfies (5.3) andg is absolutely continuous andg′ ∈ L∞ [a, b] .
Three years after Ostrowski, A. Lupaş [14] obtained another bound forC (f, g) in terms of

the Euclidean norms of the derivatives. Namely, he proved that

(5.6) |C (f, g)| ≤ 1

π2
(b− a) ‖f ′‖2 ‖g

′‖2 ,

provided thatf and g are absolutely continuous andf ′, g′ ∈ L2 [a, b] . Here 1
π2 is also best

possible.
Recently, Cerone and Dragomir [2], proved the following result:

(5.7) |C (f, g)| ≤ inf
γ∈R

‖g − γ‖∞ · 1

b− a

∫ b

a

∣∣∣∣f (t)− 1

b− a

∫ b

a

f (s) ds

∣∣∣∣ dt,

providedf ∈ L [a, b] andg ∈ C [a, b] .
As particular cases of (5.7), we can state the results:

(5.8) |C (f, g)| ≤ ‖g‖∞
1

b− a

∫ b

a

∣∣∣∣f (t)− 1

b− a

∫ b

a

f (s) ds

∣∣∣∣ dt
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if g ∈ C [a, b] andf ∈ L [a, b] and

(5.9) |C (f, g)| ≤ 1

2
(M −m)

1

b− a

∫ b

a

∣∣∣∣f (t)− 1

b− a

∫ b

a

f (s) ds

∣∣∣∣ dt,

wherem ≤ g (x) ≤ M for x ∈ [a, b] . The constants1 in (5.8) and1
2

in (5.9) are best possible.
The inequality (5.9) has been obtained before in a different way in [5].

For generalisations in abstract Lebesgue spaces, best constants and discrete versions, see [3].
For other results on thěCebyšev functional, see [6], [7] and [12].

Now, assume thatg : [a, b] → R is Lebesgue integrable on[a, b] . Then the functionu (t) :=∫ t

a
g (s) ds is absolutely continuous on[a, b] and we can consider the function

(5.10) Φ̃g (t) := Φu (t) =

∫ t

a

g (s) ds− t− a

b− a

∫ b

a

g (s) ds, t ∈ [a, b] .

Utilising Lemma 2.1, we can state the following representation result.

Lemma 5.1. If g is absolutely continuous, then

(5.11) Φ̃g (t) =
1

b− a

∫ b

a

K (t, s) dg (s) , t ∈ [a, b] ,

whereK is given by (2.2).

As a consequence of Theorems 2.2 and 2.4, we also have the inequalities:

Proposition 5.2. Assume thatg is Lebesgue integrable on[a, b] .

(i) If g is of bounded variation on[a, b] , then

(5.12)
∣∣∣Φ̃g (t)

∣∣∣ ≤ (t− a) (b− t)

b− a

b∨
a

(g) ≤ 1

4
(b− a)

b∨
a

(g) .

The inequalities are sharp and1
4

is best possible.
(ii) If g is K−Lipschitzian on[a, b] , then

(5.13)
∣∣∣Φ̃g (t)

∣∣∣ ≤ 1

2
(b− t) (t− a) K ≤ 1

8
(b− a)2 K.

The constants1
2

and 1
8

are best possible.

We notice that the functionsg1 : [a, b] → R, g1 (t) = sgn
(
t− a+b

2

)
andg2 : [a, b] → R,

g (t) =
(
t− a+b

2

)
realise equality in (5.12) and (5.13), respectively.

Now, we observe that foru (t) =
∫ t

a
g (s) ds, s ∈ [a, b] , we have the identity:

(5.14) D (f, u) = (b− a) C (f, g) .

Utilising this identity and Theorems 3.1 and 3.4, we can state the following result.

Proposition 5.3. Assume thatg is of bounded variation on[a, b] .

(i) If f is of bounded variation on[a, b] , then

(5.15) |C (f, g)| ≤ 1

4

b∨
a

(g) ·
b∨
a

(f) .

The constant1
4

is best possible in (5.15).
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(ii) If f is monotonic nondecreasing, then

|C (f, g)| ≤ 2
b∨
a

(g) · 1

(b− a)2

∫ b

a

(
t− a + b

2

)
f (t) dt(5.16)

≤



1
2
·
∨b

a (g) max {|f (a)| , |f (b)|} ;

1

(q+1)1/q

∨b
a (g) ‖f‖p (b− a)−1/p if p > 1, 1

p
+ 1

q
= 1;

1
b−a

∨b
a (g) ‖f‖1 .

The multiplicative constants2 and 1
2

are best possible in (5.16).

Finally, by Theorems 4.1 – 4.3 we also have the following sharp bounds for theČebyšev
functionalC (f, g) .

Proposition 5.4. Assume thatg is K−Lipschitzian on[a, b] .

(i) If f is of bounded variation, then

(5.17) |C (f, g)| ≤ 1

8
· (b− a) K

b∨
a

(f) .

The constant1
8

is best possible.
(ii) If f is L−Lipschitzian, then

(5.18) |C (f, g)| ≤ 1

12
(b− a)2 KL.

The constant1
12

is best possible in (5.18).
(iii) If f is monotonic nondecreasing, then

|C (f, g)| ≤ K · 1

b− a

∫ b

a

(
t− a + b

2

)
f (t) dt(5.19)

≤



1
4
K (b− a) max {|f (a)| , |f (b)|} ;

1

2(q+1)1/q K (b− a)1/q ‖f‖p if p > 1, 1
p

+ 1
q

= 1;

1
2
K ‖f‖1 .

The first inequality is sharp. The constant1
4

is best possible.

Remark 5.5. The inequalities (5.15) and (5.17) were obtained by P. Cerone and S.S. Dragomir
in [4, Corollary 3.5]. However, the sharpnes of the constants1

4
and 1

8
were not discussed there.

Inequality (5.18) is similar to thěCebyšev inequality (5.4).
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