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ABSTRACT. In this study, some integral inequalities and Qi’s inequalities of which is proved by
the Bougoffa [5] – [7] are extended to the general time scale.
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1. I NTRODUCTION

The unification and extension of continuous calculus, discret calculus,q−calculus, and in-
deed arbitrary real-number calculus to time scale calculus was first accomplished by Hilger in
his PhD. thesis [8]. The purpose of this work is to extend some integral inequalities and Qi
inequalities proved by Bougoffa [5] – [7]. The following definitions will serve as a short primer
on time scale calculus; they can be found in [1] – [4]. A time scaleT is any nonempty closed
subset ofR. Within that set, define the jump operatorsρ, σ : T → T by

ρ(t) = sup{s ∈ T : s < t} and σ(t) = inf{s ∈ T : s > t},

whereinf φ := sup T andsup φ := inf T. If ρ(t) = t and ρ(t) < t, then the pointt ∈ T
is left-dense, left-scattered. Ifσ(t) = t and σ(t) > t, then the pointt ∈ T is right-dense,
right-scattered. IfT has a right-scattered minimumm, defineTk := T−{m}; otherwise, set
Tk = T. If T has a left-scattered maximumM, defineTk := T−{M}; otherwise, setTk = T.
The so-called graininess functions areµ(t) := σ(t)− t andv(t) := t− ρ(t).
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For f : T → R and t ∈ Tk, the delta derivative in [3, 4] off at t, denotedf∆(t), is the
number (provided it exists) with the property that given anyε > 0, there is a neighborhoodU
of t such that ∣∣f(σ(t))− f(s)− f∆(t)[σ(t)− s]

∣∣ ≤ ε |σ(t)− s|
for all s ∈ U . ForT = R, f∆ = f ′, the usual derivative; forT = Z the delta derivative is the
forward difference operator,f∆(t) = f(t + 1) − f(t); in the case ofq−difference equations
with q > 1,

f∆(t) =
f(qt)− f(t)

(q − 1)t
, f∆(0) = lim

s→0

f(s)− f(0)

s
.

A functionf : T → R is right-dense continuous or rd-continuous provided it is continuous at
right-dense points inT and its left-sided limits exist (finite) at left-dense points inT. If T = R,
thenf is rd-continuous if and only iff is continuous. It is known from Theorem 1.74 in [3] that
if f is right-dense continuous, there is a functionF such thatF∆(t) = f(t) and∫ b

a

f(t)∆t = F (b)− F (a).

Note that we have

σ(t) = t, µ(t) ≡ 0, f∆ = f ′,

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt, whenT = R

while

σ(t) = t + 1, µ(t) ≡ 1, f∆ = ∆f,

∫ b

a

f(t)∆t =
b−1∑
t=a

f(t), whenT = Z.

Much more information concerning time scales and dynamic equations on time scales can be
found in the books [3, 4].

Theorem 1.1(Hölder’s inequality on time scales [3]). Leta, b ∈ T. For rd-continuous functions
f, g : [a, b] → R we have∫ b

a

|f(x)g(x)|∆x ≤
(∫ b

a

|f(x)|p ∆x

) 1
p
(∫ b

a

|g(x)|q ∆x

) 1
q

,

wherep > 1 andq = p
p−1

.

2. M AIN RESULTS

In this section, we will state our main results and give their proofs.

Lemma 2.1. Let a, b ∈ T, andp > 1 and q > 1 with 1
p

+ 1
q

= 1. If two positive functions

f, g : [a, b] → R are rd-continuous and satisfying0 < m ≤ fp

gq ≤ M < ∞ on the set[a, b], then
we have the following inequality

(2.1)

(∫ b

a

fp∆x

) 1
p
(∫ b

a

gq∆x

) 1
q

≤
(

M

m

) 1
pq
∫ b

a

fg∆x.

Inequality (2.1) is called the reverse Hölder inequality.

Proof. Sincefp

gq ≤ M, g ≥ M− 1
q f

p
q , therefore

fg ≥ M− 1
q f 1+ p

q = M− 1
q fp
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and so,

(2.2)

(∫ b

a

fp∆x

) 1
p

≤ M
1
pq

(∫ b

a

fg∆x

) 1
p

.

On the other hand, sincem ≤ fp

gq , f ≥ m
1
p g

q
p , hence∫ b

a

fg∆x ≥
∫ b

a

m
1
p g1+ q

p ∆x ≥ m
1
p

∫ b

a

gq∆x

and so, (∫ b

a

fg∆x

) 1
q

≥ m
1
pq

(∫ b

a

gq∆x

) 1
q

.

Combining with (2.2), we have the desired inequality(∫ b

a

fp∆x

) 1
p
(∫ b

a

gq∆x

) 1
q

≤ M
1
pq

(∫ b

a

fg∆x

) 1
p

m− 1
pq

(∫ b

a

gq∆x

) 1
q

=

(
M

m

) 1
pq
∫ b

a

fg∆x.

�

Corollary 2.2. In Lemma 2.1, replacingfp and gq by f and g, respectively, we obtain the
reverse Hölder type inequality,

(2.3)

(∫ b

a

f∆x

) 1
p
(∫ b

a

g∆x

) 1
q

≤
(m

M

)− 1
pq

∫ b

a

f
1
p g

1
q ∆x.

The proof of this corollary can be obtained from (2.1).

Theorem 2.3.Leta, b ∈ T, p > 1 andq > 1 with 1
p
+ 1

q
= 1. If f : [a, b] → R is rd-continuous

and0 < m
1
p ≤ f ≤ M

1
p < ∞ on [a, b], then we have the following inequality

(2.4)

(∫ b

a

f
1
p ∆x

)p

≥ (b− a)
p+1

q

(m

M

) p+1
pq

(∫ b

a

fp∆x

) 1
p

.

Proof. Puttingg ≡ 1 in Lemma 2.1, we obtain(∫ b

a

fp∆x

) 1
p

[b− a]
1
q ≤

(m

M

)− 1
pq

∫ b

a

f∆x.

Therefore, we get

(2.5)

(∫ b

a

fp∆x

) 1
p

≤
(m

M

)− 1
pq

[b− a]−
1
q

∫ b

a

f∆x.

Again, substitutingg ≡ 1 in Corollary 2.2 leads to(∫ b

a

f∆x

) 1
p

≤
(m

M

)− 1
pq

[b− a]−
1
q

∫ b

a

f
1
p ∆x,

and so,

(2.6)
∫ b

a

f∆x ≤
(m

M

)− 1
q
[b− a]−

p
q

(∫ b

a

f
1
p ∆x

)p

.
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Combining (2.5) with (2.6), we obtain(∫ b

a

f
1
p ∆x

)p

≥ (b− a)
p+1

q

(m

M

) p+1
pq

(∫ b

a

fp∆x

) 1
p

.

�

Corollary 2.4. If 0 < m
1
p ≤ f ≤ M

1
p < ∞ on [a, b] and m

M
= [b− a]−p for p > 1 , then

(2.7)

(∫ b

a

f
1
p ∆x

)p

≥
(∫ b

a

fp∆x

) 1
p

.

Remark 2.5. ForT = R, (2.7) is Qi’s inequality [9].

Theorem 2.6. If f : [a, b] → R is rd-continuous and0 < m ≤ f(x) ≤ M on [a, b] , then we
have the following inequality

(2.8)
∫ b

a

f
1
p ∆x ≥ B

(∫ b

a

f∆x

) 1
p
−1

,

whereB = m(b− a)1+ 1
q
(

m
M

) 1
pq andp > 1 , q > 1 with 1

p
+ 1

q
= 1.

Proof. In Corollary 2.2, puttingg ≡ 1 yields(∫ b

a

f∆x

) 1
p

[b− a]
1
q ≤

(m

M

)− 1
pq

∫ b

a

f
1
p ∆x,

and so, ∫ b

a

f
1
p ∆x ≥

(m

M

)− 1
pq

[b− a]
1
q

(∫ b

a

f∆x

) 1
p
−1(∫ b

a

f∆x

) 1
p

.

Since0 < m ≤ f(x), we have∫ b

a

f
1
p ∆x ≥

(m

M

) 1
pq

m [b− a]1+
1
q

(∫ b

a

f∆x

) 1
p
−1

.

This proves inequality (2.8). �

Corollary 2.7. Letp > 1 andq > 1 with 1
p

+ 1
q

= 1. If

m
(m

M

) 1
pq

=
1

[b− a]1+ 1
q

and0 < m ≤ f(x) ≤ M on [a, b] , then

(2.9)
∫ b

a

f
1
p ∆x ≥

(∫ b

a

f∆x

) 1
p
−1

.

Remark 2.8. ForT = R, (2.9) is Qi’s inequality [9].

Lemma 2.9. Let a, b ∈ T, andf, g : [a, b] → R be rd-continuous and nonnegative functions
with 0 < m ≤ f

g
≤ M < ∞ on [a, b]. Then forp > 1 andq > 1 with 1

p
+ 1

q
= 1 we have the

following inequality

(2.10)
∫ b

a

[f(x)]
1
p [g(x)]

1
q ∆x ≤ M

1
p2 m

− 1
q2

∫ b

a

[f(x)]
1
q [g(x)]

1
p ∆x
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and

(2.11)
∫ b

a

[f(x)]
1
p [g(x)]

1
q ∆x ≤ M

1
p2 m

− 1
q2

(∫ b

a

f(x)∆x

) 1
q
(∫ b

a

g(x)∆x

) 1
p

.

Proof. From Hölder’s inequality, we obtain∫ b

a

[f(x)]
1
p [g(x)]

1
q ∆x ≤

(∫ b

a

f(x)∆x

) 1
q
(∫ b

a

g(x)∆x

) 1
p

,

that is,∫ b

a

[f(x)]
1
p [g(x)]

1
q ∆x ≤

(∫ b

a

[f(x)]
1
p [f(x)]

1
q ∆x

) 1
q
(∫ b

a

[g(x)]
1
p [g(x)]

1
q ∆x

) 1
p

.

Since[f(x)]
1
p ≤ M

1
p [g(x)]

1
p and[g(x)]

1
q ≤ m− 1

q [f(x)]
1
q , from the above inequality it follows

that ∫ b

a

[f(x)]
1
p [g(x)]

1
q ∆x

≤ M
1

p2 m
− 1

q2

(∫ b

a

[g(x)]
1
p [f(x)]

1
q ∆x

) 1
q
(∫ b

a

[g(x)]
1
p [f(x)]

1
q ∆x

) 1
p

,

and so,

(2.12)
∫ b

a

[f(x)]
1
p [g(x)]

1
q ∆x ≤ M

1
p2 m

− 1
q2

∫ b

a

[f(x)]
1
q [g(x)]

1
p ∆x.

Hence, the inequality (2.10) is proved.
The inequality (2.11) follows from substituting the following∫ b

a

[f(x)]
1
p [g(x)]

1
q ∆x ≤

(∫ b

a

f(x)∆x

) 1
q
(∫ b

a

g(x)∆x

) 1
p

into (2.12), which can be obtained by Hölder’s inequality on time scales. �

Lemma 2.10.Leta, b ∈ T. For a given positive integerp ≥ 2, if f : [a, b] → R is rd-continuous
and0 < m ≤ f

g
≤ M < ∞ on [a, b] , then

(2.13)
∫ b

a

[f(x)]
1
p ∆x ≤

(∫ b

a

f(x)∆x

)1− 1
p

.

Proof. Puttingg(x) ≡ 1 in (2.11) yields∫ b

a

[f(x)]
1
p ∆x ≤ K

(∫ b

a

f(x)∆x

)1− 1
p

,

whereK = M
1

p2 (b−a)
1
p

m
(1− 1

p )2
. From M ≤ m(p−1)2

(b−a)p , we conclude thatK ≤ 1. Thus the inequality

(2.13) is proved. �

In the following we generalize to arbitrary time scales a result in [6].
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Theorem 2.11.Leta, b ∈ T. If f, g : [a, b] → R is rd-continuous and satisfying0 < m ≤ f
g
≤

M < ∞ on [a, b], then we have the following inequality

(2.14)

(∫ b

a

fp(x)∆x

) 1
p

+

(∫ b

a

gp(x)∆x

) 1
p

≤ c

(∫ b

a

(f(x) + g(x))p ∆x

)1− 1
p

,

wherec = ( m
M

)
1
pq .

Proof. It follows from Lemma 2.1 that∫ b

a

(f(x) + g(x))p ∆x

=

∫ b

a

(f(x) + g(x))p−1 f(x)∆x +

∫ b

a

(f(x) + g(x))p−1 g(x)∆x

≥
(

M

m

) 1
pq
(∫ b

a

fp(x)∆x

) 1
p
(∫ b

a

(f(x) + g(x))q(p−1) ∆x

) 1
q

+

(
M

m

) 1
pq
(∫ b

a

gp(x)∆x

) 1
p
(∫ b

a

(f(x) + g(x))q(p−1) ∆x

) 1
q

=

(
M

m

) 1
pq
(∫ b

a

(f(x) + g(x))p ∆x

) 1
q

×

[(∫ b

a

fp(x)∆x

) 1
p

+

(∫ b

a

gp(x)∆x

) 1
p

]
.

Therefore, we obtain[(∫ b

a

fp(x)∆x

) 1
p

+

(∫ b

a

gp(x)∆x

) 1
p

]
≤
(m

M

) 1
pq

(∫ b

a

(f(x) + g(x))p ∆x

)1− 1
q

=
(m

M

) 1
pq

(∫ b

a

(f(x) + g(x))p ∆x

)p

,

whereq(p− 1) = p. �

Example 2.1. Let T = Z. Let f(x) = 3x andg(x) = x2 on [3, 4] with M ≈ 5.06 andm = 3.
Takingp = 2, we see that the conditions of Lemma 2.1 are fulfilled. Therefore, for(∫ 4

3

32x∆x

) 1
2

=

(
1

8
(38 − 36)

) 1
2

= 33,

(∫ 4

3

x4∆x

) 1
2

=

(
4−1∑
x=3

x4

) 1
2

= 32

and ∫ 4

3

3xx2∆x =
4−1∑
x=3

3xx2 = 35

we get (∫ 4

3

32x∆x

) 1
2
(∫ 4

3

x4∆x

) 1
2

= 243 ≤
(

5.06

3

) 1
4
∫ 4

3

3xx2∆x ≈ 274.6.
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