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Abstract

The well-known second order moment Heisenberg-Weyl inequality (or uncer-
tainty relation) in Fourier Analysis states: Assume that f : R → C is a complex
valued function of a random real variable x such that f ∈ L2(R). Then the
product of the second moment of the random real x for |f |2 and the second

moment of the random real ξ for
∣∣∣f̂ ∣∣∣2 is at least E|f |2

/
4π, where f̂ is the Fourier

transform of f , such that f̂ (ξ) =
∫

R e−2iπξxf (x) dx, f (x) =
∫

R e2iπξxf̂ (ξ) dξ,

and E|f |2 =
∫

R |f (x)|2 dx.
This uncertainty relation is well-known in classical quantum mechanics. In

2004, the author generalized the afore-mentioned result to higher order mo-
ments and in 2005, he investigated a Heisenberg-Weyl type inequality with-
out Fourier transforms. In this paper, a sharpened form of this generalized
Heisenberg-Weyl inequality is established in Fourier analysis. Afterwards, an
open problem is proposed on some pertinent extremum principle.These results
are useful in investigation of quantum mechanics.

2000 Mathematics Subject Classification: 26, 33, 42, 60, 52.
Key words: Sharpened, Heisenberg-Weyl inequality, Gram determinant.
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1. Introduction
The serious question of certainty in science was high-lighted by Heisenberg, in
1927, via hisuncertainty principle[1]. He demonstrated the impossibility of
specifying simultaneously the position and the speed (or the momentum) of an
electron within an atom. In 1933, according to Wiener [7] a pair of transforms
cannot both be very small. This uncertainty principle was stated in 1925 by
Wiener, according to Wiener’s autobiography [8, p. 105-107], at a lecture in
Göttingen. The following result of theHeisenberg-Weyl Inequalityis credited
to Pauli according to Weyl [6, p. 77, p. 393-394]. In 1928, according to Pauli

[6] the less the uncertainty in|f |2, the greater the uncertainty in
∣∣∣f̂ ∣∣∣2, and

conversely. This result does not actually appear in Heisenberg’s seminal paper
[1] (in 1927). The following second order moment Heisenberg-Weyl inequality
provides a precise quantitative formulation of the above-mentioned uncertainty
principle according to W. Pauli.

1.1. Second Order Moment Heisenberg-Weyl Inequality
([3, 4, 5]):

For anyf ∈ L2(R), f : R → C, such that

‖f‖2
2 =

∫
R
|f (x)|2 dx = E|f |2 ,
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any fixed but arbitrary constantsxm, ξm ∈ R, and for the second order mo-
ments

(µ2)|f |2 = σ2
|f |2 =

∫
R

(x− xm)2 |f (x)|2 dx,

(µ2)|f̂|2 = σ2

|f̂|2 =

∫
R

(ξ − ξm)2
∣∣∣f̂(ξ)

∣∣∣2 dξ,

the second order moment Heisenberg-Weyl inequality

(H1) σ2
|f |2 · σ

2

|f̂|2 ≥
‖f‖4

2

16π2
,

holds. Equality holds in(H1) if and only if the generalized Gaussians

f (x) = c0 exp (2πixξm) exp
(
−c (x− xm)2)

hold for some constantsc0 ∈ C andc > 0.

1.2. Fourth Order Moment Heisenberg-Weyl Inequality
([3, pp. 26-27]):

For anyf ∈ L2(R), f : R → C, such that‖f‖2
2 =

∫
R |f (x)|2 dx = E|f |2, any

fixed but arbitrary constantsxm, ξm ∈ R, and for the fourth order moments

(µ4)|f |2 =

∫
R

(x− xm)4 |f (x)|2 dx and

(µ4)|f̂|2 =

∫
R

(ξ − ξm)4
∣∣∣f̂(ξ)

∣∣∣2 dξ,
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the fourth order moment Heisenberg-Weyl inequality

(H2) (µ4)|f |2 · (µ4)|f̂|2 ≥
1

64π4
E2

2,f ,

holds, where

E2,f = 2

∫
R

[
(1−4π2ξ2

mx2
δ) |f(x)|2 − x2

δ |f ′(x)|2 − 4πξmx2
δIm(f(x)f ′(x))

]
dx,

with xδ = x − xm, ξδ = ξ − ξm, Im (·) is the imaginary part of(·), and
|E2,f | < ∞.

The “inequality” (H2) holds, unlessf(x) = 0.

We note that if the ordinary differential equation of second order

(ODE) f ′′α(x) = −2c2x
2
δfα(x)

holds, withα = −2πξmi, fα(x) = eαxf(x), and a constantc2 = 1
2
k2

2 > 0,
k2 ∈ R and k2 6= 0,then “equality” in (H2) seems to occur. However, the
solution of this differential equation (ODE), given by the function

f(x) =
√
|xδ|e2πixξm

[
c20J−1/4

(
1

2
|k2|x2

δ

)
+ c21J1/4

(
1

2
|k2|x2

δ

)]
,

in terms of the Bessel functionsJ±1/4 of the first kind of orders±1/4, leads to
a contradiction, because thisf /∈ L2(R). Furthermore, a limiting argument is
required for this problem. For the proof of this inequality see [3].

It is opento investigate cases, where the integrand on the right-hand side
of integral ofE2,f will be nonnegative. For instance, forxm = ξm = 0, this
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integrand is:= |f(x)|2−x2 |f ′(x)|2 (≥ 0). In 2004, we ([3, 4]) generalized the
Heisenberg-Weyl inequality and in 2005 we [5] investigated a Heisenberg-Weyl
type inequality without Fourier transforms. In this paper, a sharpened form of
this generalizedHeisenberg-Weyl inequalityis established in Fourier analysis.
We state ourfollowing two pertinent propositions. For their proofs see [3].

Proposition 1.1 (Generalized differential identity, [3]). If f : R → C is a
complex valued function of a real variablex, 0 ≤

[
k
2

]
is the greatest integer

≤ k
2
, f (j) = dj

dxj f , and(·) is the conjugate of(·), then

(*) f (x) f (k) (x) + f (k) (x) f̄ (x)

=

[ k
2 ]∑

i=0

(−1)i k

k − i

(
k − i

i

)
dk−2i

dxk−2i

∣∣f (i) (x)
∣∣2,

holds for any fixed but arbitraryk ∈ N = {1, 2, . . .}, such that0 ≤ i ≤
[

k
2

]
for

i ∈ N0 = {0, 1, 2, . . .}.

Proposition 1.2 (Lagrange type differential identity, [3]). If f : R → C is a
complex valued function of a real variablex, andfa = eaxf , wherea = −βi,
with i =

√
−1 andβ = 2πξm for any fixed but arbitrary real constantξm, as

well as if

Apk =
(p

k

)2

β2(p−k), 0 ≤ k ≤ p,

and

Bpkj = spk

(p

k

)(p

j

)
β2p−j−k, 0 ≤ k < j ≤ p,
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wherespk = (−1)p−k (0 ≤ k ≤ p), then

(LD)
∣∣f (p)

a

∣∣2 =

p∑
k=0

Apk

∣∣f (k)
∣∣2 + 2

∑
0≤k〈j≤p

BpkjRe
(
rpkjf

(k)f (j)
)
,

holds for any fixed but arbitraryp ∈ N0, where(·) is the conjugate of(·), and

rpkj = (−1)p− k+j
2 (0 ≤ k < j ≤ p), andRe (·) is the real part of(·).
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2. Sharpened Heisenberg-Weyl Inequality
We assume thatf : R → C is a complex valued function of a real variablex (or
absolutely continuous in[−a, a], a > 0), andw : R → R a real valued weight
function ofx, as well asxm, ξm any fixed but arbitrary real constants. Denote
fa = eaxf , wherea = −2πξmi with i =

√
−1, andf̂ the Fourier transform of

f , such that

f̂ (ξ) =

∫
R

e−2iπξxf (x) dx and f (x) =

∫
R

e2iπξxf̂(ξ) dξ.

Also we denote

(µ2p)w,|f |2 =

∫
R

w2 (x) (x− xm)2p |f (x)|2 dx,

(µ2p)|f̂|2 =

∫
R

(ξ − ξm)2p
∣∣∣f̂(ξ)

∣∣∣2 dξ

the2pth weighted moment ofx for |f |2 with weight functionw : R → R and

the2pth moment ofξ for
∣∣∣f̂ ∣∣∣2, respectively. In addition, we denote

Cq = (−1)q p

p− q

(
p− q

q

)
, if 0 ≤ q ≤

[p
2

] (
= the greatest integer≤ p

2

)
,

Iql = (−1)p−2q

∫
R

w(p−2q)
p (x)

∣∣f (l) (x)
∣∣2 dx, if 0 ≤ l ≤ q ≤

[p
2

]
,
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Iqkj = (−1)p−2q

∫
R

w(p−2q)
p (x) Re

(
rqkjf

(k) (x) f (j) (x)
)

dx,

if 0 ≤ k < j ≤ q ≤
[p
2

]
,

whererqkj = (−1)q− k+j
2 ∈ {±1,±i} andwp = (x− xm)p w. We assume that

all these integrals exist. Finally we denote

Dq =

q∑
l=0

AqlIql + 2
∑

0≤k〈j≤q

BqkjIqkj,

if |Dq| < ∞ holds for0 ≤ q ≤
[

p
2

]
, where

Aql =
(q

l

)2

β2(q−l), Bqkj = sqk

( q

k

)(q

j

)
β2q−j−k,

with β = 2πξm, andsqk = (−1)q−k, andEp,f =
∑[p/2]

q=0 CqDq, if |Ep,f | < ∞
holds forp ∈ N.

In addition, we assumethe two conditions:

(2.1)
p−2q−1∑

r=0

(−1)r lim
|x|→∞

w(r)
p (x)

(∣∣f (l) (x)
∣∣2)(p−2q−r−1)

= 0,

for 0 ≤ l ≤ q ≤
[

p
2

]
, and

(2.2)
p−2q−1∑

r=0

(−1)r lim
|x|→∞

w(r)
p (x)

(
Re
(
rqkjf

(k) (x) f (j) (x)
))(p−2q−r−1)

= 0,
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for 0 ≤ k < j ≤ q ≤
[

p
2

]
. Also,

|E∗
p,f | =

√
E2

p,f + 4A2(≥ |Ep,f |),

whereA = ‖u‖x0 − ‖v‖ y0, with L2−norm ‖·‖2 =
∫

R |·|
2, inner product

(|u| , |v|) =
∫

R |u| |v|, and

u = w(x)xp
δfα(x), v = f (p)

α (x);

x0 =

∫
R
|ν(x)| |h(x)| dx, y0 =

∫
R
|u(x)| |h(x)| dx,

as well as

h(x) =
1

4
√

2π
√

σ
e−

1
4(

x−µ
σ )

2

,

whereµ is the mean andσ the standard deviation, or

h(x) =
1

4
√

nπ

√
Γ
(

n+1
2

)
Γ
(

n
2

) · 1(
1 + x2

n

)n+1
4

,

wheren ∈ N, and

‖h(x)‖2 =

∫
R
|h(x)|2dx = 1.

Theorem 2.1. If f ∈ L2 (R) (or absolutely continuous in[−a, a], a > 0), then

(H∗
p ) 2p

√
(µ2p)w,|f |2 2p

√
(µ2p)|f̂|2 ≥

1

2π p
√

2
p

√∣∣E∗
p,f

∣∣,
holds for any fixed but arbitraryp ∈ N.
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Equality holds in (H∗
p ) iff v(x) = −2cpu(x) holds for constantscp > 0, and

any fixed but arbitraryp ∈ N; cp = k2
p/2 > 0, kp ∈ R andkp 6= 0, p ∈ N, and

A = 0, or
h(x) = c1pu(x) + c2pv(x)

andx0 = 0, or y0 = 0,wherecip (i = 1, 2) are constants andA2 > 0.

Proof. In fact, from the generalized Plancherel-Parseval-Rayleigh identity [3,
(GPP)], and the fact that|eax| = 1 asa = −2πξmi, one gets

M∗
p = Mp −

1

(2π)2p
A2(2.3)

= (µ2p)w,|f |2 · (µ2p)|f̂|2 −
1

(2π)2p
A2

=

(∫
R

w2 (x) (x− xm)2p |f (x)|2 dx

)
·
(∫

R
(ξ − ξm)2p

∣∣∣f̂ (ξ)
∣∣∣2 dξ

)
− 1

(2π)2p
A2

=
1

(2π)2p

[(∫
R

w2 (x) (x− xm)2p |fa (x)|2 dx

)
·
(∫

R

∣∣f (p)
a (x)

∣∣2 dx

)
− A2

]
=

1

(2π)2p

[
‖u‖2 ‖v‖2 − A2

]
(2.4)

with u = w(x)xp
δfα(x), v = f

(p)
α (x).
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From (2.3) – (2.4), the Cauchy-Schwarz inequality(|u| , |v|) ≤ ‖u‖ ‖v‖ and
the non-negativeness of the followingGram determinant[2]

0 ≤

∣∣∣∣∣∣
‖u‖2 (|u| , |v|) y0

(|v| , |u|) ‖v‖2 x0

y0 x0 1

∣∣∣∣∣∣(2.5)

= ‖u‖2 ‖v‖2 − (|u| , |v|)2 −
[
‖u‖2 x2

0 − 2(|u| , |v|)x0y0 + ‖v‖2 y2
0

]
,

0 ≤ ‖u‖2 ‖v‖2 − (|u| , |v|)2 − A2

with

A = ‖u‖x0 − ‖v‖ y0, x0 =

∫
R
|ν(x)| |h(x)| dx, y0 =

∫
R
|u(x)| |h(x)| dx,

and

‖h(x)‖2 =

∫
R
|h(x)|2dx = 1,

we find

M∗
p ≥

1

(2π)2p
(|u| , |v|)2(2.6)

=
1

(2π)2p

(∫
R
|u| |v|

)2

=
1

(2π)2p

(∫
R

∣∣wp (x) fa (x) f (p)
a (x)

∣∣ dx

)2

,
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wherewp = (x− xm)pw, andfa = eaxf . In general, if‖h‖ 6= 0, then one gets

(u, v)2 ≤ ‖u‖2 ‖v‖2 −R2,

whereR = A/ ‖h‖ = ‖u‖x− ‖v‖ y, such thatx = x0/ ‖h‖ , y = y0/ ‖h‖.
In this case, A has to be replaced byR in all the pertinent relations of this

paper.
From (2.6) and the complex inequality,|ab| ≥ 1

2

(
ab + ab

)
with a =

wp (x) fa (x), b = f
(p)
a (x), we get

(2.7) M∗
p =

1

(2π)2p

[
1

2

∫
R

wp(x)
(
fα(x)f

(p)
α (x) + f (p)

α (x)fα(x)
)

dx

]2

.

From (2.7) and the generalized differential identity (* ), one finds

(2.8) M∗
p ≥

1

22(p+1)π2p

∫
R

wp (x)

[p/2]∑
q=0

Cq
dp−2q

dxp−2q

∣∣f (q)
a (x)

∣∣2 dx

2

.

From (2.8) and the Lagrange type differential identity (LD), we find

M∗
p ≥

1

22(p+1)π2p

∫
R

wp (x)

[p/2]∑
q=0

Cq
dp−2q

dxp−2q

(
q∑

l=0

Aql

∣∣f (l) (x)
∣∣2

+2
∑

0≤k〈j≤q

BqkjRe
(
rqkjf

(k) (x) f (j) (x)
) dx

2

.
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From the generalized integral identity [3], the two conditions (2.1) – (2.2), and
that all the integrals exist, one gets∫

R
wp (x)

dp−2q

dxp−2q

∣∣f (l) (x)
∣∣2 dx = (−1)p−2q

∫
R

w(p−2q)
p (x)

∣∣f (l) (x)
∣∣2 dx = Iql,

as well as∫
R

wp (x)
dp−2q

dxp−2q
Re
(
rqkjf

(k) (x) f (j) (x)
)

= (−1)p−2q

∫
R

w(p−2q)
p (x)Re

(
rqkjf

(k) (x) f (j) (x)
)

= Iqkj.

Thus we find

M∗
p ≥

1

22(p+1)π2p

[p/2]∑
q=0

Cq

 q∑
l=0

AqlIql + 2
∑

0≤k〈j≤q

BqkjIqkj

2

=
1

22(p+1)π2p
E2

p,f ,

whereEp,f =
∑[p/2]

q=0 CqDq, if |Ep,f | < ∞ holds, orthe sharpened moment
uncertainty formula

2p
√

Mp ≥
1

2π p
√

2
p

√∣∣E∗
p,f

∣∣ (
≥ 1

2π p
√

2
p

√
|Ep,f |

)
,

whereMp = M∗
p + 1

(2π)2p A2.

http://jipam.vu.edu.au/
mailto:jrassias@primedu.uoa.gr
http://jipam.vu.edu.au/


On The Sharpened
Heisenberg-Weyl Inequality

John Michael Rassias

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 18

J. Ineq. Pure and Appl. Math. 7(3) Art. 80, 2006

http://jipam.vu.edu.au

We note that the corresponding Gram matrix to the above Gram determinant
is positive definite if and only if the above Gram determinant is positive if and
only if u, v, h are linearly independent. Besides, the equality in (2.5) holds if
and only ifh is a linear combination of linearly independentu andv andu = 0
or v = 0, completing the proof of the above theorem.

Let

(m2p)|f |2 =

∫
R

x2p |f (x)|2 dx

be the2pth moment ofx for |f |2 about the originxm = 0, and

(m2p)|f̂|2 =

∫
R

ξ2p
∣∣∣f̂(ξ)

∣∣∣2 dξ

the2pth moment ofξ for
∣∣∣f̂ ∣∣∣2 about the originξm = 0. Denote

εp,q = (−1)p−q p

p− q
· p!

(2q)!

(
p− q

q

)
,

if p ∈ N and0 ≤ q ≤
[

p
2

]
.

Corollary 2.2. Assume thatf : R → C is a complex valued function of a real
variablex, w = 1, xm = ξm = 0, andf̂ is the Fourier transform off , described
in our theorem. Iff : R → C (or absolutely continuous in[−a, a], a > 0), then
the following inequality

(Sp) 2p

√
(m2p)|f |2 2p

√
(m2p)|f̂|2 ≥

1

2π p
√

2

p

√√√√√
∣∣∣∣∣∣
[p/2]∑
q=0

εp,q (m2q)|f (q)|2

∣∣∣∣∣∣
2

+ 4A2,
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holds for any fixed but arbitraryp ∈ N and0 ≤ q ≤
[

p
2

]
, where

(m2q)|f (q)|2 =

∫
R

x2q
∣∣f (q) (x)

∣∣2 dx

andA is analogous to the one in the above theorem.

We consider theextremum principle(via (9.33) on p. 51 of [3]):

(R) R(p) ≥ 1

2π
, p ∈ N

for the corresponding “inequality”(Hp) [3, p. 22],p ∈ N.

Problem1. Employing our Theorem 8.1 on p. 20 of [3], the Gaussian function,
the Euler gamma functionΓ, and other relatedspecial functions, we established
and explicitly provedthe above extremum principle(R), where

R(p) =
Γ
(
p + 1

2

)∣∣∣∑[p/2]
q=0 (−1)p−q p

p−q
· p!

(2q)!

(
p−q

q

)
Γq

∣∣∣ ,
with

Γq =

[q/2]∑
k=0

22k
( q

2k

)2

Γ2

(
k +

1

2

)
Γ

(
2q − 2k +

1

2

)
+ 2

∑
0≤k≤j≤[q/2]

(−1)k+j2k+j
( q

2k

)( q

2j

)

× Γ

(
k +

1

2

)
Γ

(
j +

1

2

)
Γ

(
2q − k − j +

1

2

)
,
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0 ≤
[

q
2

]
is the greatest integer≤ q

2
for q ∈ N ∪ {0} = N0,

(
p
q

)
= p!

q!(p−q)!
for

p ∈ N, q ∈ N0 and0 ≤ q ≤ p, p! = 1 · 2 · 3 · · · · · (p− 1) · p and0! = 1, as well
as

Γ

(
p +

1

2

)
=

1

22p
· (2p)!

p!

√
π, p ∈ N and Γ

(
1

2

)
=
√

π.

Furthermore, by employing computer techniques, this principle was verified
for p = 1, 2, 3, . . ., 32, 33, as well.It now remains open to give a second explicit
proof of verification for the extremum principle (R) using only special functions
techniques and without applying our Heisenberg-Pauli-Weyl inequality[3].
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