Journal of Inequalities in Pure and Applied Mathematics

ON THE SHARPENED HEISENBERG-WEYL INEQUALITY

JOHN MICHAEL RASSIAS
Pedagogical Department, E. E.
National and Capodistrian University of Athens
Section of Mathematics and Informatics
4, Agamemnonos Str., Aghia Paraskevi
Athens 15342, Greece.
EMail: jrassias@primedu.uoa.gr
URL: http://www.primedu.uoa.gr/~jrassias/
volume 7, issue 3, article 80, 2006.

Received 21 June, 2005; accepted 21 July, 2006.

Communicated by: S. Saitoh

Abstract
Contents
Home Page
Go Back
Close

Abstract

The well-known second order moment Heisenberg-Weyl inequality (or uncertainty relation) in Fourier Analysis states: Assume that $f: \mathbb{R} \rightarrow \mathbb{C}$ is a complex valued function of a random real variable x such that $f \in L^{2}(\mathbb{R})$. Then the product of the second moment of the random real x for $|f|^{2}$ and the second moment of the random real ξ for $|\hat{f}|^{2}$ is at least $E_{|f|^{2}} / 4 \pi$, where \hat{f} is the Fourier transform of f, such that $\hat{f}(\xi)=\int_{\mathbb{R}} e^{-2 i \pi \xi x} f(x) d x, f(x)=\int_{\mathbb{R}} e^{2 i \pi \xi x} \hat{f}(\xi) d \xi$, and $E_{|f|^{2}}=\int_{\mathbb{R}}|f(x)|^{2} d x$.

This uncertainty relation is well-known in classical quantum mechanics. In 2004, the author generalized the afore-mentioned result to higher order moments and in 2005, he investigated a Heisenberg-Weyl type inequality without Fourier transforms. In this paper, a sharpened form of this generalized Heisenberg-Weyl inequality is established in Fourier analysis. Afterwards, an open problem is proposed on some pertinent extremum principle.These results are useful in investigation of quantum mechanics.

2000 Mathematics Subject Classification: 26, 33, 42, 60, 52.
Key words: Sharpened, Heisenberg-Weyl inequality, Gram determinant.

Contents

1 Introduction 3
1.1 Second Order Moment Heisenberg-Weyl Inequality 3
1.2 Fourth Order Moment Heisenberg-Weyl Inequality 4
2 Sharpened Heisenberg-Weyl Inequality 8
References

1. Introduction

The serious question of certainty in science was high-lighted by Heisenberg, in 1927, via his uncertainty principle [1]. He demonstrated the impossibility of specifying simultaneously the position and the speed (or the momentum) of an electron within an atom. In 1933, according to Wiener [7] a pair of transforms cannot both be very small. This uncertainty principle was stated in 1925 by Wiener, according to Wiener's autobiography [8, p. 105-107], at a lecture in Göttingen. The following result of the Heisenberg-Weyl Inequality is credited to Pauli according to Weyl [6, p. 77, p. 393-394]. In 1928, according to Pauli [6] the less the uncertainty in $|f|^{2}$, the greater the uncertainty in $|\hat{f}|^{2}$, and conversely. This result does not actually appear in Heisenberg's seminal paper [1] (in 1927). The following second order moment Heisenberg-Weyl inequality provides a precise quantitative formulation of the above-mentioned uncertainty principle according to W. Pauli.

1.1. Second Order Moment Heisenberg-Weyl Inequality

 ([3, 4, 5]):For any $f \in L^{2}(\mathbb{R}), f: \mathbb{R} \rightarrow \mathbb{C}$, such that

$$
\|f\|_{2}^{2}=\int_{\mathbb{R}}|f(x)|^{2} d x=E_{|f|^{2}},
$$

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 3 of 18
J. Ineq. Pure and Appl. Math. 7(3) Art. 80, 2006
http://jipam.vu.edu.au
any fixed but arbitrary constants $x_{m}, \xi_{m} \in \mathbb{R}$, and for the second order moments

$$
\begin{aligned}
\left(\mu_{2}\right)_{|f|^{2}} & =\sigma_{|f|^{2}}^{2}
\end{aligned}=\int_{\mathbb{R}}\left(x-x_{m}\right)^{2}|f(x)|^{2} d x, ~ \begin{aligned}
& \mathbb{R} \\
& \left(\mu_{2}\right)_{|\hat{f}|^{2}}=\sigma_{|\hat{f}|^{2}}^{2}=\int_{\mathbb{R}}\left(\xi-\xi_{m}\right)^{2}|\hat{f}(\xi)|^{2} d \xi
\end{aligned}
$$

the second order moment Heisenberg-Weyl inequality

$$
\begin{equation*}
\sigma_{|f|^{2}}^{2} \cdot \sigma_{|\hat{f}|^{2}}^{2} \geq \frac{\|f\|_{2}^{4}}{16 \pi^{2}} \tag{1}
\end{equation*}
$$

holds. Equality holds in $\left(H_{1}\right)$ if and only if the generalized Gaussians

$$
f(x)=c_{0} \exp \left(2 \pi i x \xi_{m}\right) \exp \left(-c\left(x-x_{m}\right)^{2}\right)
$$

hold for some constants $c_{0} \in \mathbb{C}$ and $c>0$.

1.2. Fourth Order Moment Heisenberg-Weyl Inequality

 ([3, pp. 26-27]):For any $f \in L^{2}(\mathbb{R}), f: \mathbb{R} \rightarrow \mathbb{C}$, such that $\|f\|_{2}^{2}=\int_{\mathbb{R}}|f(x)|^{2} d x=E_{|f|^{2}}$, any fixed but arbitrary constants $x_{m}, \xi_{m} \in \mathbb{R}$, and for the fourth order moments

$$
\begin{aligned}
\left(\mu_{4}\right)_{|f|^{2}} & =\int_{\mathbb{R}}\left(x-x_{m}\right)^{4}|f(x)|^{2} d x \quad \text { and } \\
\left(\mu_{4}\right)_{|\hat{f}|^{2}} & =\int_{\mathbb{R}}\left(\xi-\xi_{m}\right)^{4}|\hat{f}(\xi)|^{2} d \xi
\end{aligned}
$$

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

Go Back
Close
Quit
Page 4 of 18
J. Ineq. Pure and Appl. Math. 7(3) Art. 80, 2006 http://jipam.vu.edu.au

$$
\begin{equation*}
\left(\mu_{4}\right)_{|f|^{2}} \cdot\left(\mu_{4}\right)_{|\hat{f}|^{2}} \geq \frac{1}{64 \pi^{4}} E_{2, f}^{2}, \tag{2}
\end{equation*}
$$

holds, where
$E_{2, f}=2 \int_{\mathbb{R}}\left[\left(1-4 \pi^{2} \xi_{m}^{2} x_{\delta}^{2}\right)|f(x)|^{2}-x_{\delta}^{2}\left|f^{\prime}(x)\right|^{2}-4 \pi \xi_{m} x_{\delta}^{2} \operatorname{Im}\left(f(x) \overline{f^{\prime}(x)}\right)\right] d x$,
with $x_{\delta}=x-x_{m}, \xi_{\delta}=\xi-\xi_{m}, \operatorname{Im}(\cdot)$ is the imaginary part of (\cdot), and $\left|E_{2, f}\right|<\infty$.

The "inequality" $\left(H_{2}\right)$ holds, unless $f(x)=0$.
We note that if the ordinary differential equation of second order
(ODE)

$$
f_{\alpha}^{\prime \prime}(x)=-2 c_{2} x_{\delta}^{2} f_{\alpha}(x)
$$

holds, with $\alpha=-2 \pi \xi_{m} i, f_{\alpha}(x)=e^{\alpha x} f(x)$, and a constant $c_{2}=\frac{1}{2} k_{2}^{2}>0$, $k_{2} \in \mathbb{R}$ and $k_{2} \neq 0$,then "equality" in $\left(H_{2}\right)$ seems to occur. However, the solution of this differential equation (ODE), given by the function

$$
f(x)=\sqrt{\left|x_{\delta}\right|} e^{2 \pi i x \xi_{m}}\left[c_{20} J_{-1 / 4}\left(\frac{1}{2}\left|k_{2}\right| x_{\delta}^{2}\right)+c_{21} J_{1 / 4}\left(\frac{1}{2}\left|k_{2}\right| x_{\delta}^{2}\right)\right],
$$

in terms of the Bessel functions $J_{ \pm 1 / 4}$ of the first kind of orders $\pm 1 / 4$, leads to a contradiction, because this $f \notin L^{2}(\mathbb{R})$. Furthermore, a limiting argument is

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 5 of 18	

integrand is: $=|f(x)|^{2}-x^{2}\left|f^{\prime}(x)\right|^{2}(\geq 0)$. In 2004, we ([3, 4]) generalized the Heisenberg-Weyl inequality and in 2005 we [5] investigated a Heisenberg-Weyl type inequality without Fourier transforms. In this paper, a sharpened form of this generalized Heisenberg-Weyl inequality is established in Fourier analysis. We state our following two pertinent propositions. For their proofs see [3].

Proposition 1.1 (Generalized differential identity, [3]). If $f: \mathbb{R} \rightarrow \mathbb{C}$ is a complex valued function of a real variable $x, 0 \leq\left[\frac{k}{2}\right]$ is the greatest integer $\leq \frac{k}{2}, f^{(j)}=\frac{d^{j}}{d x^{j}} f$, and $\overline{(\cdot)}$ is the conjugate of (\cdot), then
$\left({ }^{*}\right) \quad f(x) f^{\overline{(k)}}(x)+f^{(k)}(x) \bar{f}(x)$

$$
=\sum_{i=0}^{\left[\frac{k}{2}\right]}(-1)^{i} \frac{k}{k-i}\binom{k-i}{i} \frac{d^{k-2 i}}{d x^{k-2 i}}\left|f^{(i)}(x)\right|^{2}
$$

holds for any fixed but arbitrary $k \in \mathbb{N}=\{1,2, \ldots\}$, such that $0 \leq i \leq\left[\frac{k}{2}\right]$ for $i \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$.

Proposition 1.2 (Lagrange type differential identity, [3]). If $f: \mathbb{R} \rightarrow \mathbb{C}$ is a complex valued function of a real variable x, and $f_{a}=e^{a x} f$, where $a=-\beta i$, with $i=\sqrt{-1}$ and $\beta=2 \pi \xi_{m}$ for any fixed but arbitrary real constant ξ_{m}, as well as if

$$
A_{p k}=\binom{p}{k}^{2} \beta^{2(p-k)}, \quad 0 \leq k \leq p
$$

and

$$
B_{p k j}=s_{p k}\binom{p}{k}\binom{p}{j} \beta^{2 p-j-k}, \quad 0 \leq k<j \leq p
$$

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 6 of 18	

where $s_{p k}=(-1)^{p-k}(0 \leq k \leq p)$, then
(LD) $\quad\left|f_{a}^{(p)}\right|^{2}=\sum_{k=0}^{p} A_{p k}\left|f^{(k)}\right|^{2}+2 \sum_{0 \leq k\langle j \leq p} B_{p k j} R e\left(r_{p k j} f^{(k)} f^{\overline{(j)}}\right)$,
holds for any fixed but arbitrary $p \in \mathbb{N}_{0}$, where $\overline{(\cdot)}$ is the conjugate of (\cdot), and $r_{p k j}=(-1)^{p-\frac{k+j}{2}}(0 \leq k<j \leq p)$, and $\operatorname{Re}(\cdot)$ is the real part of (\cdot).

2. Sharpened Heisenberg-Weyl Inequality

We assume that $f: \mathbb{R} \rightarrow \mathbb{C}$ is a complex valued function of a real variable x (or absolutely continuous in $[-a, a], a>0$), and $w: \mathbb{R} \rightarrow \mathbb{R}$ a real valued weight function of x, as well as x_{m}, ξ_{m} any fixed but arbitrary real constants. Denote $f_{a}=e^{a x} f$, where $a=-2 \pi \xi_{m} i$ with $i=\sqrt{-1}$, and \hat{f} the Fourier transform of f, such that

$$
\hat{f}(\xi)=\int_{\mathbb{R}} e^{-2 i \pi \xi x} f(x) d x \quad \text { and } \quad f(x)=\int_{\mathbb{R}} e^{2 i \pi \xi x} \hat{f}(\xi) d \xi
$$

Also we denote

$$
\begin{aligned}
\left(\mu_{2 p}\right)_{w,|f|^{2}} & =\int_{\mathbb{R}} w^{2}(x)\left(x-x_{m}\right)^{2 p}|f(x)|^{2} d x \\
\left(\mu_{2 p}\right)_{|\hat{f}|^{2}} & =\int_{\mathbb{R}}\left(\xi-\xi_{m}\right)^{2 p}|\hat{f}(\xi)|^{2} d \xi
\end{aligned}
$$

the $2 p^{\text {th }}$ weighted moment of x for $|f|^{2}$ with weight function $w: \mathbb{R} \rightarrow \mathbb{R}$ and the $2 p^{\text {th }}$ moment of ξ for $|\hat{f}|^{2}$, respectively. In addition, we denote
$C_{q}=(-1)^{q} \frac{p}{p-q}\binom{p-q}{q}, \quad$ if $\quad 0 \leq q \leq\left[\frac{p}{2}\right] \quad\left(=\right.$ the greatest integer $\left.\leq \frac{p}{2}\right)$,
$I_{q l}=(-1)^{p-2 q} \int_{\mathbb{R}} w_{p}^{(p-2 q)}(x)\left|f^{(l)}(x)\right|^{2} d x, \quad$ if $\quad 0 \leq l \leq q \leq\left[\frac{p}{2}\right]$,

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

| Go Back |
| :---: | :---: |
| Close |
| Quit |
| Q |

Page 8 of 18

$$
\begin{aligned}
& I_{q k j}=(-1)^{p-2 q} \int_{\mathbb{R}} w_{p}^{(p-2 q)}(x) \operatorname{Re}\left(r_{q k j} f^{(k)}(x) f^{\overline{(j)}}(x)\right) d x \\
& \text { if } \quad 0 \leq k<j \leq q \leq\left[\frac{p}{2}\right]
\end{aligned}
$$

where $r_{q k j}=(-1)^{q-\frac{k+j}{2}} \in\{ \pm 1, \pm i\}$ and $w_{p}=\left(x-x_{m}\right)^{p} w$. We assume that all these integrals exist. Finally we denote

$$
D_{q}=\sum_{l=0}^{q} A_{q l} I_{q l}+2 \sum_{0 \leq k\langle j \leq q} B_{q k j} I_{q k j},
$$

if $\left|D_{q}\right|<\infty$ holds for $0 \leq q \leq\left[\frac{p}{2}\right]$, where

$$
A_{q l}=\binom{q}{l}^{2} \beta^{2(q-l)}, \quad B_{q k j}=s_{q k}\binom{q}{k}\binom{q}{j} \beta^{2 q-j-k},
$$

with $\beta=2 \pi \xi_{m}$, and $s_{q k}=(-1)^{q-k}$, and $E_{p, f}=\sum_{q=0}^{[p / 2]} C_{q} D_{q}$, if $\left|E_{p, f}\right|<\infty$ holds for $p \in \mathbb{N}$.

In addition, we assume the two conditions:
(2.1) $\quad \sum_{r=0}^{p-2 q-1}(-1)^{r} \lim _{|x| \rightarrow \infty} w_{p}^{(r)}(x)\left(\left|f^{(l)}(x)\right|^{2}\right)^{(p-2 q-r-1)}=0$,
for $0 \leq l \leq q \leq\left[\frac{p}{2}\right]$, and

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

Go Back
Close
Quit
Page 9 of 18
(2.2) $\sum_{r=0}^{p-2 q-1}(-1)^{r} \lim _{|x| \rightarrow \infty} w_{p}^{(r)}(x)\left(\operatorname{Re}\left(r_{q k j} f^{(k)}(x) f^{\overline{(j)}}(x)\right)\right)^{(p-2 q-r-1)}=0$,
for $0 \leq k<j \leq q \leq\left[\frac{p}{2}\right]$. Also,

$$
\left|E_{p, f}^{*}\right|=\sqrt{E_{p, f}^{2}+4 A^{2}}\left(\geq\left|E_{p, f}\right|\right)
$$

where $A=\|u\| x_{0}-\|v\| y_{0}$, with $L^{2}-$ norm $\|\cdot\|^{2}=\int_{\mathbb{R}}|\cdot|^{2}$, inner product $(|u|,|v|)=\int_{\mathbb{R}}|u||v|$, and

$$
\begin{aligned}
u & =w(x) x_{\delta}^{p} f_{\alpha}(x), \quad v=f_{\alpha}^{(p)}(x) \\
x_{0} & =\int_{\mathbb{R}}|\nu(x)||h(x)| d x, \quad y_{0}=\int_{\mathbb{R}}|u(x)||h(x)| d x
\end{aligned}
$$

as well as

$$
h(x)=\frac{1}{\sqrt[4]{2 \pi} \sqrt{\sigma}} e^{-\frac{1}{4}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

where μ is the mean and σ the standard deviation, or

$$
h(x)=\frac{1}{\sqrt[4]{n \pi}} \sqrt{\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}} \cdot \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{\frac{n+1}{4}}}
$$

where $n \in \mathbb{N}$, and

$$
\|h(x)\|^{2}=\int_{\mathbb{R}}|h(x)|^{2} d x=1
$$

Theorem 2.1. If $f \in L^{2}(\mathbb{R})$ (or absolutely continuous in $[-a, a], a>0$), then
$\left(H_{p}^{*}\right)$

$$
\sqrt[2 p]{\left(\mu_{2 p}\right)_{w,|f|^{2}}} \sqrt[2 p]{\left(\mu_{2 p}\right)_{|\hat{f}|^{2}}} \geq \frac{1}{2 \pi \sqrt[p]{2}} \sqrt[p]{\left|E_{p, f}^{*}\right|}
$$

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

Go Back
Close
Quit
Page 10 of 18
holds for any fixed but arbitrary $p \in \mathbb{N}$.

Equality holds in $\left(H_{p}^{*}\right)$ iff $v(x)=-2 c_{p} u(x)$ holds for constants $c_{p}>0$, and any fixed but arbitrary $p \in \mathbb{N}$; $c_{p}=k_{p}^{2} / 2>0, k_{p} \in \mathbb{R}$ and $k_{p} \neq 0, p \in \mathbb{N}$, and $A=0$, or

$$
h(x)=c_{1 p} u(x)+c_{2 p} v(x)
$$

and $x_{0}=0$, or $y_{0}=0$, where $c_{i p}(i=1,2)$ are constants and $A^{2}>0$.
Proof. In fact, from the generalized Plancherel-Parseval-Rayleigh identity [3, (GPP)], and the fact that $\left|e^{a x}\right|=1$ as $a=-2 \pi \xi_{m} i$, one gets

$$
\begin{align*}
& M_{p}^{*}= M_{p}-\frac{1}{(2 \pi)^{2 p}} A^{2} \tag{2.3}\\
&=\left(\mu_{2 p}\right)_{w,|f|^{2}} \cdot\left(\mu_{2 p}\right)_{|\hat{f}|^{2}}-\frac{1}{(2 \pi)^{2 p}} A^{2} \\
&=\left(\int_{\mathbb{R}} w^{2}(x)\left(x-x_{m}\right)^{2 p}|f(x)|^{2} d x\right) \\
&= \cdot\left(\int_{\mathbb{R}}\left(\xi-\xi_{m}\right)^{2 p}|\hat{f}(\xi)|^{2} d \xi\right)-\frac{1}{(2 \pi)^{2 p}} A^{2} \\
&(2 \pi)^{2 p}\left(\int_{\mathbb{R}} w^{2}(x)\left(x-x_{m}\right)^{2 p}\left|f_{a}(x)\right|^{2} d x\right) \\
&\left.\quad \cdot\left(\int_{\mathbb{R}}\left|f_{a}^{(p)}(x)\right|^{2} d x\right)-A^{2}\right] \\
&= \frac{1}{(2 \pi)^{2 p}}\left[\|u\|^{2}\|v\|^{2}-A^{2}\right] \tag{2.4}
\end{align*}
$$

with $u=w(x) x_{\delta}^{p} f_{\alpha}(x), v=f_{\alpha}^{(p)}(x)$.

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

Go Back
Close
Quit
Page 11 of 18

From (2.3) - (2.4), the Cauchy-Schwarz inequality $(|u|,|v|) \leq\|u\|\|v\|$ and the non-negativeness of the following Gram determinant [2]

$$
\begin{aligned}
\text { (2.5) } \left.\begin{array}{rl}
0 & \leq\left|\begin{array}{lll}
\|u\|^{2} & (|u|,|v|) & y_{0} \\
(|v|,|u|) & \|v\|^{2} & x_{0} \\
y_{0} & x_{0} & 1
\end{array}\right| \\
& =\|u\|^{2}\|v\|^{2}-(|u|,|v|)^{2}-\left[\|u\|^{2} x_{0}^{2}-2(|u|,|v|) x_{0} y_{0}+\|v\|^{2} y_{0}^{2}\right] \\
& 0
\end{array}\right]\|u\|^{2}\|v\|^{2}-(|u|,|v|)^{2}-A^{2}
\end{aligned}
$$

with

$$
A=\|u\| x_{0}-\|v\| y_{0}, x_{0}=\int_{\mathbb{R}}|\nu(x)||h(x)| d x, y_{0}=\int_{\mathbb{R}}|u(x)||h(x)| d x
$$

and

$$
\|h(x)\|^{2}=\int_{\mathbb{R}}|h(x)|^{2} d x=1
$$

we find

$$
\begin{align*}
M_{p}^{*} & \geq \frac{1}{(2 \pi)^{2 p}}(|u|,|v|)^{2} \tag{2.6}\\
& =\frac{1}{(2 \pi)^{2 p}}\left(\int_{\mathbb{R}}|u||v|\right)^{2} \\
& =\frac{1}{(2 \pi)^{2 p}}\left(\int_{\mathbb{R}}\left|w_{p}(x) f_{a}(x) f_{a}^{(p)}(x)\right| d x\right)^{2}
\end{align*}
$$

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page

Go Back
Close
Quit
Page 12 of 18
where $w_{p}=\left(x-x_{m}\right)^{p} w$, and $f_{a}=e^{a x} f$. In general, if $\|h\| \neq 0$, then one gets

$$
(u, v)^{2} \leq\|u\|^{2}\|v\|^{2}-R^{2}
$$

where $R=A /\|h\|=\|u\| x-\|v\| y$, such that $x=x_{0} /\|h\|, y=y_{0} /\|h\|$.
In this case, A has to be replaced by R in all the pertinent relations of this paper.

From (2.6) and the complex inequality, $|a b| \geq \frac{1}{2}(a \bar{b}+\bar{a} b)$ with $a=$ $w_{p}(x) f_{a}(x), b=f_{a}^{(p)}(x)$, we get

$$
\begin{equation*}
M_{p}^{*}=\frac{1}{(2 \pi)^{2 p}}\left[\frac{1}{2} \int_{\mathbb{R}} w_{p}(x)\left(f_{\alpha}(x) \overline{f_{\alpha}^{(p)}(x)}+f_{\alpha}^{(p)}(x) \overline{f_{\alpha}(x)}\right) d x\right]^{2} \tag{2.7}
\end{equation*}
$$

From (2.7) and the generalized differential identity (*), one finds

$$
\begin{equation*}
M_{p}^{*} \geq \frac{1}{2^{2(p+1)} \pi^{2 p}}\left[\int_{\mathbb{R}} w_{p}(x)\left(\sum_{q=0}^{[p / 2]} C_{q} \frac{d^{p-2 q}}{d x^{p-2 q}}\left|f_{a}^{(q)}(x)\right|^{2}\right) d x\right]^{2} \tag{2.8}
\end{equation*}
$$

From (2.8) and the Lagrange type differential identity ($L D$), we find

$$
\begin{aligned}
& M_{p}^{*} \geq \frac{1}{2^{2(p+1)} \pi^{2 p}}\left[\int _ { \mathbb { R } } w _ { p } (x) \left[\sum _ { q = 0 } ^ { [p / 2] } C _ { q } \frac { d ^ { p - 2 q } } { d x ^ { p - 2 q } } \left(\sum_{l=0}^{q} A_{q l}\left|f^{(l)}(x)\right|^{2}\right.\right.\right. \\
&\left.\left.\left.+2 \sum_{0 \leq k\langle j \leq q} B_{q k j} R e\left(r_{q k j} f^{(k)}(x) f^{\overline{(j)}}(x)\right)\right)\right] d x\right]^{2}
\end{aligned}
$$

J. Ineq. Pure and Appl. Math. 7(3) Art. 80, 2006 http://jipam.vu.edu.au

From the generalized integral identity [3], the two conditions (2.1) - (2.2), and that all the integrals exist, one gets

$$
\int_{\mathbb{R}} w_{p}(x) \frac{d^{p-2 q}}{d x^{p-2 q}}\left|f^{(l)}(x)\right|^{2} d x=(-1)^{p-2 q} \int_{\mathbb{R}} w_{p}^{(p-2 q)}(x)\left|f^{(l)}(x)\right|^{2} d x=I_{q l},
$$

as well as

$$
\begin{aligned}
& \int_{\mathbb{R}} w_{p}(x) \frac{d^{p-2 q}}{d x^{p-2 q}} \operatorname{Re}\left(r_{q k j} f^{(k)}(x) f^{\overline{(j)}}(x)\right) \\
& \quad=(-1)^{p-2 q} \int_{\mathbb{R}} w_{p}^{(p-2 q)}(x) \operatorname{Re}\left(r_{q k j} f^{(k)}(x) f^{\overline{(j)}}(x)\right)=I_{q k j} .
\end{aligned}
$$

Thus we find

$$
\begin{aligned}
M_{p}^{*} & \geq \frac{1}{2^{2(p+1)} \pi^{2 p}}\left[\sum_{q=0}^{[p / 2]} C_{q}\left(\sum_{l=0}^{q} A_{q l} I_{q l}+2 \sum_{0 \leq k j j \leq q} B_{q k j} I_{q k j}\right)\right]^{2} \\
& =\frac{1}{2^{2(p+1)} \pi^{2 p}} E_{p, f}^{2},
\end{aligned}
$$

where $E_{p, f}=\sum_{q=0}^{[p / 2]} C_{q} D_{q}$, if $\left|E_{p, f}\right|<\infty$ holds, or the sharpened moment uncertainty formula

$$
\sqrt[2 p]{M_{p}} \geq \frac{1}{2 \pi \sqrt[p]{2}} \sqrt[p]{\left|E_{p, f}^{*}\right|} \quad\left(\geq \frac{1}{2 \pi \sqrt[p]{2}} \sqrt[p]{\left|E_{p, f}\right|}\right)
$$

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

Go Back
Close
Quit
Page 14 of 18
where $M_{p}=M_{p}^{*}+\frac{1}{(2 \pi)^{2 p}} A^{2}$.

We note that the corresponding Gram matrix to the above Gram determinant is positive definite if and only if the above Gram determinant is positive if and only if u, v, h are linearly independent. Besides, the equality in (2.5) holds if and only if h is a linear combination of linearly independent u and v and $u=0$ or $v=0$, completing the proof of the above theorem.

Let

$$
\left(m_{2 p}\right)_{|f|^{2}}=\int_{\mathbb{R}} x^{2 p}|f(x)|^{2} d x
$$

be the $2 p^{\text {th }}$ moment of x for $|f|^{2}$ about the origin $x_{m}=0$, and

$$
\left(m_{2 p}\right)_{|\hat{f}|^{2}}=\int_{\mathbb{R}} \xi^{2 p}|\hat{f}(\xi)|^{2} d \xi
$$

the $2 p^{\text {th }}$ moment of ξ for $|\hat{f}|^{2}$ about the origin $\xi_{m}=0$. Denote

$$
\varepsilon_{p, q}=(-1)^{p-q} \frac{p}{p-q} \cdot \frac{p!}{(2 q)!}\binom{p-q}{q}
$$

if $p \in \mathbb{N}$ and $0 \leq q \leq\left[\frac{p}{2}\right]$.
Corollary 2.2. Assume that $f: \mathbb{R} \rightarrow \mathbb{C}$ is a complex valued function of a real variable $x, w=1, x_{m}=\xi_{m}=0$, and \hat{f} is the Fourier transform of f, described in our theorem. If $f: \mathbb{R} \rightarrow \mathbb{C}$ (or absolutely continuous in $[-a, a], a>0$), then the following inequality
(S_{p}) $\sqrt[2 p]{\left(m_{2 p}\right)_{|f|^{2}}} \sqrt[2 p]{\left.\left(m_{2 p}\right)_{\mid \hat{f}}\right|^{2}} \geq \frac{1}{2 \pi \sqrt[p]{2}} \sqrt[p]{\left.\left.\left|\sum_{q=0}^{[p / 2]} \varepsilon_{p, q}\left(m_{2 q}\right)\right| f^{(q)}\right|^{2}\right|^{2}+4 A^{2}}$,

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

Go Back
Close
Quit
Page 15 of 18
holds for any fixed but arbitrary $p \in \mathbb{N}$ and $0 \leq q \leq\left[\frac{p}{2}\right]$, where

$$
\left.\left(m_{2 q}\right)_{\mid f^{(q)}}\right|^{2}=\int_{\mathbb{R}} x^{2 q}\left|f^{(q)}(x)\right|^{2} d x
$$

and A is analogous to the one in the above theorem.
We consider the extremum principle (via (9.33) on p. 51 of [3]):

$$
\begin{equation*}
R(p) \geq \frac{1}{2 \pi}, \quad p \in \mathbb{N} \tag{R}
\end{equation*}
$$

for the corresponding "inequality" $\left(H_{p}\right)[3, \mathrm{p} .22], p \in \mathbb{N}$.
Problem 1. Employing our Theorem 8.1 on p. 20 of [3], the Gaussian function, the Euler gamma function Γ, and other related special functions, we established and explicitly proved the above extremum principle (R), where

$$
R(p)=\frac{\Gamma\left(p+\frac{1}{2}\right)}{\left|\sum_{q=0}^{[p / 2]}(-1)^{p-q} \frac{p}{p-q} \cdot \frac{p!}{(2 q)!}\binom{p-q}{q} \Gamma_{q}\right|},
$$

with

$$
\begin{aligned}
& \Gamma_{q}=\sum_{k=0}^{[q / 2]} 2^{2 k}\binom{q}{2 k}^{2} \Gamma^{2}\left(k+\frac{1}{2}\right) \Gamma\left(2 q-2 k+\frac{1}{2}\right) \\
&+2 \sum_{0 \leq k \leq j \leq[q / 2]}(-1)^{k+j} 2^{k+j}\binom{q}{2 k}\binom{q}{2 j} \\
& \times \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(j+\frac{1}{2}\right) \Gamma\left(2 q-k-j+\frac{1}{2}\right)
\end{aligned}
$$

$0 \leq\left[\frac{q}{2}\right]$ is the greatest integer $\leq \frac{q}{2}$ for $q \in \mathbb{N} \cup\{0\}=\mathbb{N}_{0},\binom{p}{q}=\frac{p!}{q!(p-q)!}$ for $p \in \mathbb{N}, q \in \mathbb{N}_{0}$ and $0 \leq q \leq p, p!=1 \cdot 2 \cdot 3 \cdots \cdots(p-1) \cdot p$ and $0!=1$, as well as

$$
\Gamma\left(p+\frac{1}{2}\right)=\frac{1}{2^{2 p}} \cdot \frac{(2 p)!}{p!} \sqrt{\pi}, p \in \mathbb{N} \quad \text { and } \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

Furthermore, by employing computer techniques, this principle was verified for $p=1,2,3, \ldots, 32,33$, as well. It now remains open to give a second explicit proof of verification for the extremum principle (R) using only special functions techniques and without applying our Heisenberg-Pauli-Weyl inequality [3].

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

Go Back
Close
Quit
Page 17 of 18

References

[1] W. HEISENBERG, Über den anschaulichen Inhalt der quantentheoretischen Kinematic und Mechanik, Zeit. Physik 43, 172 (1927); The Physical Principles of the Quantum Theory (Dover, New York, 1949; The Univ. Chicago Press, 1930).
[2] G. MINGZHE, On the Heisenberg's inequality, J. Math. Anal. Appl., 234 (1999), 727-734.
[3] J.M. RASSIAS, On the Heisenberg-Pauli-Weyl inequality, J. Inequ. Pure \& Appl. Math., 5 (2004), Art. 4. [ONLINE: http:// jipam.vu.edu. au/article.php?sid=356].
[4] J.M. RASSIAS, On the Heisenberg-Weyl inequality, J. Inequ. Pure \& Appl. Math., 6 (2005), Art. 11. [ONLINE: http://jipam.vu.edu. au/article.php?sid=480].
[5] J.M. RASSIAS, On the refined Heisenberg-Weyl type inequality, J. Inequ. Pure \& Appl. Math., 6 (2005), Art. 45. [ONLINE: http: / / jipam.vu. edu.au/article.php?sid=514].
[6] H. WEYL, Gruppentheorie und Quantenmechanik (S. Hirzel, Leipzig, 1928; and Dover edition, New York, 1950).
[7] N. WIENER, The Fourier Integral and Certain of its Applications (Cambridge, 1933).
[8] N. WIENER, I am a Mathematician (MIT Press, Cambridge, 1956).

On The Sharpened Heisenberg-Weyl Inequality

John Michael Rassias

Title Page
Contents

Go Back
Close
Quit
Page 18 of 18

