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ABSTRACT. The well-knownsecond order moment Heisenberg-Weyl inequality (or uncertainty
relation) in Fourier Analysis states: Assume that: R — C is a complex valued function
of a random real variable such thatf € L?(R). Then the product of the second moment

A2
of the random reat for |f|* and the second moment of the random reébr ‘f‘ is at least
Emz/47r, wheref is the Fourier transform of, such thaff (¢) = [, e~ %™* f (z) dz, f (z) =

Jp €2 f (&) de, andE 2 = [, |£ (2)]* da.

This uncertainty relation is well-known in classical quantum mechanics. In 2004, the author
generalized the afore-mentioned resulth@her order momentand in 2005, he investigated
a Heisenberg-Wetlypeinequalitywithout Fourier transformsin this paper, a sharpened form
of this generalized Heisenberg-Weyl inequality is establishdeburier analysis Afterwards,
an open problem is proposed on some pertinent extremum principle. These results are useful in
investigation of quantum mechanics.
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1. INTRODUCTION

The serious question of certainty in science was high-lighted by Heisenberg, in 1927, via his
uncertainty principlg[l]. He demonstrated the impossibility of specifying simultaneously the
position and the speed (or the momentum) of an electron within an atom. In 1933, according
to Wiener [7]a pair of transforms cannot both be very smallhis uncertainty principle was
stated in 1925 by Wiener, according to Wiener’s autobiography [8, p. 105-107], at a lecture in
Gottingen. The following result of tHdeisenberg-Weyl Inequality credited to Pauli according

to Weyl [6, p. 77, p. 393-394]. In 1928, according to Palli [&E less the uncertainty irf|”,
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~|2
the greater the uncertainty il“lf‘ , and conversely This result does not actually appear in

Heisenberg’s seminal paper [1] (in 1927). The following second order moment Heisenberg-
Weyl inequality provides a precise quantitative formulation of the above-mentioned uncertainty
principle according to W. Pauli.

1.1. Second Order Moment Heisenberg-Weyl Inequality [3,/4,/5]): Foranyf € L*(R), f:
R — C, such that

112 = / @) de = B e

any fixed but arbitrary constants,,, ¢, € R, and for the second order moments
() o = o = [ @ =) If ()" d,
2
_ 2 _ . 2|7
ey = oty = [ (€= |6 ae

the second order moment Heisenberg-Weyl inequality

(Hl) 2 2 > Hf”;L

0,202 =2 —7 &,
LT 1672
holds. Equality holds iffH,)) if and only if the generalized Gaussians

f () = coexp (2mixéy,) exp (—c(z — :cm)z)
hold for some constantg € C andc > 0.

1.2. Fourth Order Moment Heisenberg-Weyl Inequality ([3, pp. 26-27): For any f €
L*(R), f:R — C,suchthat|f[l; = [, |f ()|"dz = E,;», any fixed but arbitrary constants
Tm, &n € R, and for the fourth order moments

(e = [ @=an) [f @ dz and
Gy = [ (€= &' [ft0)] de

the fourth order moment Heisenberg-Weyl inequality

1
(Hz) (#4)|f\2 ) (ﬂ4)|f|2 > @Eg,ﬂ

holds, where
By =2 [ (14760 [£@)f = 5311 @) = dn6adim f(@) )| do.

withzs = © — x,,, & = € — &y, Im () IS the imaginary part of(-), and|E; | < oo.
The “inequality” holds, unlesg(x) = 0.
We note that if the ordinary differential equation of second order

(ODE) f(z) = —2co23 fo(z)

(e}

holds, withoew = =274, fu(x) = e** f(x), and a constant, = 3k3 > 0, k, € R andk, #
0,then “equality” in seems to occur. However, the solution of this differential equation
(GDE), given by the function

) 1 1
f(x) = \/|xs|e*m=em |:CQOJ—1/4 (5 | 2| SC?;) +ca1Jia (5 | k2| 95?)1 ;
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in terms of the Bessel functionk,; ,, of the first kind of orderst1/4, leads to a contradiction,
because thig ¢ L*(R). Furthermore, a limiting argument is required for this problem. For the
proof of this inequality see [3].

It is opento investigate cases, where the integrand on the right-hand side of integral of
E,; will be nonnegative. For instance, faf, = &, = 0, this integrand is:= |f(z)|” —
x? ]f’(x)|2 (> 0). In 2004, we ([3|_4]) generalized the Heisenberg-Weyl inequality and in 2005
we [5] investigated a Heisenberg-Weyl type inequality without Fourier transforms. In this pa-
per, a sharpened form of this generalizé¢eisenberg-Weyl inequaliig established in Fourier
analysis.We state oufollowing two pertinent propositiong-or their proofs seé [3].

Proposition 1.1 (Generalized differential identityl [3])If f : R — C is a complex valued
function of a real variabler, 0 < [£] is the greatest integex &, ) = 2 ¢ and(-) is the
conjugate of -), then

O @@ 0@ @) =Yy (P L @)
P k—i i dh—2
holds for any fixed but arbitrary € N = {1,2,...}, such that) < i < [£] fori € Ny =
{0,1,2,...}.
Proposition 1.2 (Lagrange type differential identity, [[3])}f f : R — C is a complex valued

function of a real variabler, and f, = ¢** f, wherea = — i, withi = v/—1 and § = 27§, for
any fixed but arbitrary real constaugt,, as well as if

Api, = <£>2ﬁ2(”‘k), 0<k<p,

and

By = s () (f) gk 0<k<j<p,

wheres,, = (—1)"* (0 < k < p), then

(LD) gk —ZA F9 42 3 BuyRe (rpkjf >f@),
0<k(j<p

k+3

holds for any fixed but arbitrary € Ny, where(-) is the conjugate of-), andr,,; = (1) 2
(0 <k < j<p),andRe(-) is the real part of(-).

2. SHARPENED HEISENBERG-WEYL INEQUALITY

We assume that : R — C is a complex valued function of a real variahl€or absolutely
continuous if—a, al, a > 0), andw : R — R areal valued weight function of, as well ast,,,,
&,, any fixed but arbitrary real constants. Dengife= e%* f, wherea = —27&,,i with i = /—1,
and f the Fourier transform of , such that

)= /R e f (1) dr and f(x) = /R 7 f () de.

Also we denote
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the 2p™ weighted moment af: for | f|* with weight functionw : R — R and the2p™ moment
2
of & for ’f’ , respectively. In addition, we denote
p pP—q . p . p
= (-1 —— f <g< |= =th test integex =
Cy = ( )p_q( . >, [ O_q_[Q} < e greates |neg_2),

Iql—(—1)”—2‘1/wp 2) (1) | fO (2)dz, if 0<I<g< [9],
R 2

Iy = (~1)7° /R W (1) Re (g O () 0 (1)) do, i 0<k<j<q<[b],

"
wherer;; = (—1)4"% € {+1, +i} andw, = (z — z,,)" w. We assume that all these integrals
exist. Finally we denote

D, ZAQ, a2 > Bujlyy,

0<k(j<q

if | Dy < oo holds for0 < ¢ < [], where

. ((l]>262(q—l)7 Bukj = Sai (Z) (j) 3ra=i—k,

with 8 = 27&,,, andsg, = (—1)", andE, ; = S/2 €, Dy, if | B, 4| < oo holds forp € N.
In addition, we assunie two conditions

P2t (p—2q—r—1)
1\ r l) —
(2.1) Z;<1>g&w 2) (119 @)]) 0,
for0 <1 <g¢ <[], and
P2t — (p—2q—r—1)
@2 Y (U ) (@) (Re (rggs® @) 7O @) ) =0,
r=0

for0 <k < j <q<[2]. Also,

Byl =\ Enp +4A4%(= | Epgl),

whereA = ||ul| 2o — ||v]| yo, With L2—norm|-||* = [, |-|*, inner product|u|, [v]) = [, |u]|v],
and

w=w(@)tfule),  v=fO),
amzé@@MM@W% Yo = /ﬁt|m )| dz,

as well as
]_ 1(z—p 2
h(z) = 6_3( ) ,
(@) V2o
wherey is the mean and the standard deviation, or
1 T (n+1) 1

h(x +1
= TR (1+2)%
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wheren € N, and
@) = [ no)de = 1.
R
Theorem 2.1.1f f € L? (R) (or absolutely continuous ifi-a, a], a > 0), then

* 1 *
(H}) X/ () g2 % (W), 2 = 27 {/2 Bl

holds for any fixed but arbitrary € N.

Equality holds in iff v(r) = —2c,u(x) holds for constants, > 0, and any fixed but
arbitrary p € N; ¢, = k;/2 > 0, k, € Randk, # 0,p € N,and A = 0, or

h(x) = cipu(z) + copv()
andz, = 0, or yo = 0,wherec;, (i = 1, 2) are constants and!? > 0.
Proof. In fact, from the generalized Plancherel-Parseval-Rayleigh identity [3, (GPP)], and the
fact that|e®”| = 1 asa = —27¢&,,i, one gets
1 22

2.3 = -
( ) Mp Mp (27‘()27’

= (N2p)w,\f|2 ' (M2p)|f‘2 - ﬁAQ
~([w@a-air k) ([ € o

1 2
(2m)%

Fof ) -

e[ ([
@4) = g [P ol — )

with v = w(z)2l fu(z), v = f(z).
From (2.3) —[(2.4)the Cauchy-Schwarz inequalitl| , |v|) < ||u|| ||v|| and the non-negativeness
of the following Gram determinanj2]

2

] (|u|27|U!) Yo
(2.5) 0<1| (Jv],ul) vl o
Yo Tg 1

2 2 2 2
= l[ull* vl = (ful [o))* = [llull” 25 = 2(ul , [vhzoyo + [[v]" 5] .

0 < [lull® lo))* = (ul , [o])* — A®
with
A = |lull 2o — ||v]| yo, zo z/R|V(x)I ()] d, yo =/RW(:6)! |h(x)] dz,
and

()2 = / h()Pdx = 1,
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we find

3 1) (ul, Io)?

e ()
= W ( /R |w, (2) fu (2) [P (2)] dm)Qv

wherew, = (z — z,,)Pw, andf, = e* f. In general, if|| 2|| # 0, then one gets

(2.6) M >

p

2 2 2
(u,v)” < [lull* [lo]” — R,

whereR = A/ ||h]| = [lul| z — [[v]| y, such thatr = zo/ |1l , y = yo/ [|1]-

In this case A has to be replaced bit in all the pertinent relations of this paper.

From (2.6) ancthe complex inequalityiab| > § (ab+ab) with a = w, (2) fo (z), b =
2 (), we get

@.7) ;= B [ wnte) (1) #P0) + 19 @) o)) dax} .

From [2.7) and the generalized differential identjty (*), one finds

2
[p/2] 9
. 1 Jp—24
(28) MPW[/U}},(Z’)<Z qdqu‘fq) })dm] .

R q=0

From (2.8) and the Lagrange type differential iden{ify}), we find

[p/2]

) 1 =2
M, 2 s /pr(m) Zchxp 2 ZA £ @)

q=0

0<k(j<q

+2 3" Bughe (ra s <x>f@<x>))]dx] .

From the generalized integral identity [3], the two conditigns](2.1]) - (2.2), and that all the
integrals exist, one gets

dp*q 2 2
w do = (—1)P~% w” 2q) (l de =1
[t £ @ do = 17 [ w2 @)1 (@) do = 1y,

dxp 2q

as well as
=2 -
[ (@) s R (s (@) £ o)
— (—1y /R w2 (@)Re (rgs [ (2) 19 (2)) = Iy
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Thus we find
Ip/2] g 2
MS—QQPHW ZC > Aula+2 Y Buyly
1=0 0<k(j<q
1 2

~ 22(p1) 12 By

wherer, ; = zg;/gl CyDy, if |E, ;| < oo holds, orthe sharpened moment uncertainty formula

1 1
x/M, > —— ¢/ |E* > /B, 4| ),
02 e VIEes (— 272 ptf')
whereM, = M + 2WQPAQ

We note that the corresponding Gram matrix to the above Gram determinant is positive def-
inite if and only if the above Gram determinant is positive if and only,it, h are linearly
independent. Besides, the equality[in [2.5) holds if and onlyi#f a linear combination of lin-
early independent andv andu = 0 or v = 0, completing the proof of the above theoreni.]

Let
(may)y = [ 411 @F do

be the2p™ moment ofz for \f]Q about the originz,, = 0, and

(m2p>m2 :/R§2p f(€)

|2
the 2p"" moment of¢ for ‘f‘ about the origirt,,, = 0. Denote

g D pl (p—q
5p,q:(_1)pq _—( >7

p—q 29"\ ¢

if pe Nand0 < ¢ < [&].

Corollary 2.2. Assume thaf : R — C is a complex valued function of a real variabie
w =1z, =&, = 0, and f is the Fourier transform off, described in our theorem. If
f : R — C (or absolutely continuous if-a, al, a > 0), then the following inequality

[p/2]

(Sp) {;/ Map) P2 QC/ Mmayp) L 27T\/_ Zqu (mag) @[? +4A2,

holds for any fixed but arbitrary € N and0 < ¢ < [Z], where

(mgq)|f(q)‘2 = /RIQq }f(q) (x)’2d$

and A is analogous to the one in the above theorem.

We consider thextremum principlévia (9.33) on p. 51 of [3]):

(R) R(p) > % peN

for the corresponding “inequality’H,,) [3, p. 22],p € N.
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Problem 2.1. Employing our Theorem 8.1 on p. 20 6f [3], the Gaussian function, the Euler
gamma functior’, and other relatedpecial functionswe established and explicitly provéae
above extremum principi)]), where

R(p )
[P/2] —q_p . _p (p—q
)Z ) qp—q (29)! ( q )Fq

with
[q/2]

r, = ;2% (2qk)2r2 (k:+ %) r (Qq — 2%k + %)
2 30 (1) (1)

0<k<j<[q/2]
1 1 1
D(k+=)0(j+=)0(2q—k—j+=
S GO G R
!

0 < [4] is the greatest integet £ for ¢ € NU {0} = N, <§> —
and0<¢<pp'=1-2-3----- (p—1)-pand0! =1, as well as

F(p—i—l):i-%ﬁ,pel\] and F(%>:\/7_r.

2 22p
Furthermore, by employing computer techniques, this principle was verified#ar, 2, 3, . . .,
32,33, as well. It now remains open to give a second explicit proof of verification for the ex-

tremum principle[(R) using only special functions techniques and without applying our Heisenberg-
Pauli-Weyl inequalityi3].

e forp e N, g e N
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