Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 5, Article 191, 2006

# INCLUSION AND NEIGHBORHOOD PROPERTIES OF CERTAIN SUBCLASSES OF ANALYTIC AND MULTIVALENT FUNCTIONS OF COMPLEX ORDER 

H.M. SRIVASTAVA, K. SUCHITHRA, B. ADOLF STEPHEN, AND S. SIVASUBRAMANIAN

Department of Mathematics and Statistics<br>University of Victoria<br>Victoria, British Columbia V8W 3P4, Canada<br>harimsri@math.uvic.ca

Department of Applied Mathematics
Sri Venkateswara College of Engineering
SRiperumbudur 602105
TAmil NADU, India
suchithrak@svce.ac.in
Department of Mathematics
Madras Christian College
East Tambaram 600059
TAmil NADU, India
adolfmcc2003@yahoo.co.in
Department of Mathematics
Easwari Engineering College
RAMAPURAM, ChENNAI 600089
TAmil Nadu, India
sivasaisastha@rediffmail.com
Received 08 July, 2006; accepted 11 July, 2006
Communicated by Th.M. Rassias


#### Abstract

In the present paper, the authors prove several inclusion relations associated with the $(n, \delta)$-neighborhoods of certain subclasses of $p$-valently analytic functions of complex order, which are introduced here by means of a family of extended multiplier transformations. Special cases of some of these inclusion relations are shown to yield known results.


Key words and phrases: Analytic functions, p-valent functions, Coefficient bounds, Multiplier transformations, Neighborhood of analytic functions, Inclusion relations.

2000 Mathematics Subject Classification. Primary 30C45.

ISSN (electronic): 1443-5756
(C) 2006 Victoria University. All rights reserved.

The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

187-06

## 1. Introduction, Definitions and Preliminaries

Let $\mathcal{A}_{p}(n)$ denote the class of functions $f(z)$ normalized by

$$
\begin{gather*}
f(z)=z^{p}-\sum_{\tau=n+p}^{\infty} a_{\tau} z^{\tau}  \tag{1.1}\\
\left(a_{\tau} \geqq 0 ; n, p \in \mathbb{N}:=\{1,2,3, \ldots\}\right),
\end{gather*}
$$

which are analytic and $p$-valent in the open unit disk

$$
\mathbb{U}:=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

Analogous to the multiplier transformation on $\mathcal{A}$, the operator $I_{p}(r, \mu)$, given on $\mathcal{A}_{p}(1)$ by

$$
\begin{gathered}
I_{p}(r, \mu) f(z):=z^{p}-\sum_{\tau=p+1}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r} a_{\tau} z^{\tau} \\
\left(\mu \geqq 0 ; r \in \mathbb{Z} ; f \in \mathcal{A}_{p}(1)\right)
\end{gathered}
$$

was studied by Kumar et al. [6]. It is easily verified that

$$
(p+\mu) I_{p}(r+1, \mu) f(z)=z\left[I_{p}(r, \mu) f(z)\right]^{\prime}+\mu I_{p}(r, \mu) f(z)
$$

The operator $I_{p}(r, \mu)$ is closely related to the Sǎlăgean derivative operator [11]. The operator

$$
I_{\mu}^{r}:=I_{1}(r, \mu)
$$

was studied by Cho and Srivastava [4] and Cho and Kim [3]. Moreover, the operator

$$
I_{r}:=I_{1}(r, 1)
$$

was studied earlier by Uraleggadi and Somanatha [13].
Here, in our present investigation, we define the operator $I_{p}(r, \mu)$ on $\mathcal{A}_{p}(n)$ by

$$
\begin{gather*}
I_{p}(r, \mu) f(z):=z^{p}-\sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r} a_{\tau} z^{\tau}  \tag{1.2}\\
(\mu \geqq 0 ; p \in \mathbb{N} ; r \in \mathbb{Z})
\end{gather*}
$$

By using the operator $I_{p}(r, \mu) f(z)$ given by 1.2 , we introduce a subclass $\mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b)$ of the $p$-valently analytic function class $\mathcal{A}_{p}(n)$, which consists of functions $f(z)$ satisfying the following inequality:

$$
\begin{gather*}
\left|\frac{1}{b}\left(\frac{z\left[I_{p}(r, \mu) f(z)\right]^{(m+1)}+\lambda z^{2}\left[I_{p}(r, \mu) f(z)\right]^{(m+2)}}{\lambda z\left[I_{p}(r, \mu) f(z)\right]^{(m+1)}+(1-\lambda)\left[I_{p}(r, \mu) f(z)\right]^{(m)}}-(p-m)\right)\right|<1  \tag{1.3}\\
\left(z \in \mathbb{U} ; p \in \mathbb{N} ; m \in \mathbb{N}_{0} ; r \in \mathbb{Z} ; \mu \geqq 0 ; \lambda \geqq 0 ; p>\max (m,-\mu) ; b \in \mathbb{C} \backslash\{0\}\right)
\end{gather*}
$$

Next, following the earlier investigations by Goodman [5], Ruscheweyh [10] and Altintas et al. [2] (see also [1], [7] and [12]), we define the ( $n, \delta)$-neighborhood of a function $f(z) \in \mathcal{A}_{p}(n)$ by (see, for details, [2, p. 1668])

$$
\begin{equation*}
N_{n, \delta}(f):=\left\{g \in \mathcal{A}_{p}(n): g(z)=z^{p}-\sum_{\tau=n+p}^{\infty} b_{\tau} z^{\tau} \text { and } \sum_{\tau=n+p}^{\infty} \tau\left|a_{\tau}-b_{\tau}\right| \leqq \delta\right\} . \tag{1.4}
\end{equation*}
$$

It follows from (1.4) that, if

$$
\begin{equation*}
h(z)=z^{p} \quad(p \in \mathbb{N}), \tag{1.5}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(h):=\left\{g \in \mathcal{A}_{p}(n): g(z)=z^{p}-\sum_{\tau=n+p}^{\infty} b_{\tau} z^{\tau} \text { and } \sum_{\tau=n+p}^{\infty} \tau\left|b_{\tau}\right| \leqq \delta\right\} . \tag{1.6}
\end{equation*}
$$

Finally, we denote by $\mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b)$ the subclass of $\mathcal{A}_{p}(n)$ consisting of functions $f(z)$ which satisfy the inequality (1.7) below:

$$
\begin{array}{r}
\left\lvert\, \begin{array}{r}
\left.\frac{1}{b}\left\{[1-\lambda(p-m-1)]\left[I_{p}(r, \mu) f(z)\right]^{(m+1)}+\lambda z\left[I_{p}(r, \mu) f(z)\right]^{(m+2)}-(p-m)\right\} \right\rvert\, \\
\end{array}<p-m\right.  \tag{1.7}\\
\left(z \in \mathbb{U} ; p \in \mathbb{N} ; m \in \mathbb{N}_{0} ; r \in \mathbb{Z} ; \mu \geqq 0 ; \lambda \geqq 0 ; p>\max (m,-\mu) ; b \in \mathbb{C} \backslash\{0\}\right)
\end{array}
$$

The object of the present paper is to investigate the various properties and characteristics of analytic $p$-valent functions belonging to the subclasses

$$
\mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b) \quad \text { and } \quad \mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b),
$$

which we have defined here. Apart from deriving a set of coefficient bounds for each of these function classes, we establish several inclusion relationships involving the $(n, \delta)$-neighborhoods of analytic $p$-valent functions (with negative and missing coefficients) belonging to these subclasses.

Our definitions of the function classes

$$
\mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b) \quad \text { and } \quad \mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b)
$$

are motivated essentially by the earlier investigations of Orhan and Kamali [8], and of Raina and Srivastava [9], in each of which further details and closely-related subclasses can be found. In particular, in our definition of the function classes

$$
\mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b) \quad \text { and } \quad \mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b)
$$

involving the inequalities (1.3) and (1.7), we have relaxed the parametric constraint

$$
0 \leqq \lambda \leqq 1
$$

which was imposed earlier by Orhan and Kamali [8, p. 57, Equations (1.10) and (1.11)] (see also Remark 3 below).

## 2. A Set of Coefficient Bounds

In this section, we prove the following results which yield the coefficient inequalities for functions in the subclasses

$$
\mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b) \quad \text { and } \quad \mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b) .
$$

Theorem 1. Let $f(z) \in \mathcal{A}_{p}(n)$ be given by 1.1 . Then $f(z) \in \mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b)$ if and only if

$$
\begin{align*}
& \sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r}\binom{\tau}{m}[1+\lambda(\tau-m-1)](\tau-p+|b|) a_{\tau}  \tag{2.1}\\
& \leqq|b|\left\{\binom{p}{m}[1+\lambda(p-m-1)]\right\}
\end{align*}
$$

where

$$
\binom{\tau}{m}=\frac{\tau(\tau-1) \cdots(\tau-m+1)}{m!}
$$

Proof. Let a function $f(z)$ of the form (1.1) belong to the class $\mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b)$. Then, in view of (1.2) and (1.3), we have the following inequality:
(2.2) $\mathfrak{R}\left(\frac{-\sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r}\binom{\tau}{m}(\tau-p)[1+\lambda(\tau-m-1)] a_{\tau} z^{\tau-m}}{\binom{p}{m}[1+\lambda(p-m-1)] z^{p-m}-\sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r}\binom{\tau}{m}[1+\lambda(\tau-m-1)] a_{\tau} z^{\tau-m}}\right)$

$$
>-|b| \quad(z \in \mathbb{U})
$$

Putting $z=r_{1}\left(0 \leqq r_{1}<1\right)$ in $(2.2)$, we observe that the expression in the denominator on the left-hand side of $(2.2)$ is positive for $r_{1}=0$ and also for all $r_{1}\left(0<r_{1}<1\right)$. Thus, by letting $r_{1} \rightarrow 1$ - through real values, (2.2) leads us to the desired assertion (2.1) of Theorem 1 .

Conversely, by applying (2.1) and setting $|z|=1$, we find by using (1.2) that

$$
\begin{aligned}
& \left|\frac{z\left[I_{p}(r, \mu) f(z)\right]^{(m+1)}+\lambda z^{2}\left[I_{p}(r, \mu) f(z)\right]^{(m+2)}}{\lambda z\left[I_{p}(r, \mu) f(z)\right]^{(m+1)}+(1-\lambda)\left[I_{p}(r, \mu) f(z)\right]^{(m)}}-(p-m)\right| \\
& \quad=\left|\frac{\sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r}\binom{\tau}{m}[1+\lambda(\tau-m-1)](\tau-p) a_{\tau}}{\binom{p}{m}[1+\lambda(p-m-1)]-\sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r}\binom{\tau}{m}[1+\lambda(\tau-m-1)] a_{\tau}}\right| \\
& \quad \leqq \frac{|b|\left[\binom{p}{m}[1+\lambda(p-m-1)]-\sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r}\binom{\tau}{m}[1+\lambda(\tau-m-1)] a_{\tau}\right]}{\binom{p}{m}[1+\lambda(p-m-1)]-\sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r}\binom{\tau}{m}[1+\lambda(\tau-m-1)] a_{\tau}} \\
& \quad=|b| .
\end{aligned}
$$

Hence, by the maximum modulus principle, we infer that $f(z) \in \mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b)$, which completes the proof of Theorem 1 .

Remark 1. In the special case when

$$
\begin{align*}
m & =0, \quad p=1, \quad b=\beta \gamma(0<\beta \leqq 1 ; \gamma \in \mathbb{C} \backslash\{0\})  \tag{2.3}\\
r & =\Omega\left(\Omega \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right), \quad \tau=k+1, \text { and } \mu=0
\end{align*}
$$

Theorem11 corresponds to a result given earlier by Orhan and Kamali [8, p. 57, Lemma 1].
By using the same arguments as in the proof of Theorem 1, we can establish Theorem 2 below.

Theorem 2. Let $f(z) \in \mathcal{A}_{p}(n)$ be given by (1.1). Then $f(z) \in \mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b)$ if and only if

$$
\begin{equation*}
\sum_{\tau=n+p}^{\infty}\left(\frac{\tau+\mu}{p+\mu}\right)^{r}\binom{\tau}{m}(\tau-m)[1+\lambda(\tau-p)] a_{\tau} \leqq(p-m)\left[\frac{|b|-1}{m!}+\binom{p}{m}\right] \tag{2.4}
\end{equation*}
$$

Remark 2. Making use of the same parametric substitutions as mentioned above in 2.3), Theorem 2 yields another known result due to Orhan and Kamali [8, p. 58, Lemma 2].

## 3. InClusion Relationships Involving the $(n, \delta)$-Neighborhoods

In this section, we establish several inclusion relationships for the function classes

$$
\mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b) \quad \text { and } \quad \mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b)
$$

involving the $(n, \delta)$-neighborhood defined by (1.6).

## Theorem 3. If

$$
\begin{equation*}
\delta:=\frac{|b|(n+p)\binom{p}{m}[1+\lambda(p-m-1)]}{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]} \quad(p>|b|), \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b) \subset N_{n, \delta}(h) . \tag{3.2}
\end{equation*}
$$

Proof. Let $f(z) \in \mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b)$. Then, in view of the assertion 2.1) of Theorem 1 , we have

$$
\begin{aligned}
(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p & m-1)] \sum_{\tau=n+p}^{\infty} a_{\tau} \\
& \leqq|b|\binom{p}{m}[1+\lambda(p-m-1)]
\end{aligned}
$$

which yields

$$
\begin{equation*}
\sum_{\tau=n+p}^{\infty} a_{\tau} \leqq \frac{|b|\binom{p}{m}[1+\lambda(p-m-1)]}{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]} . \tag{3.3}
\end{equation*}
$$

Applying the assertion (2.1) of Theorem 1 again, in conjunction with (3.3), we obtain

$$
\begin{aligned}
& \left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)] \sum_{\tau=n+p}^{\infty} \tau a_{\tau} \\
& \leqq|b|\binom{p}{m}[1+\lambda(p-m-1)]+(p-|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r} \\
& \quad \cdot\binom{n+p}{m}[1+\lambda(n+p-m-1)] \sum_{\tau=n+p}^{\infty} a_{\tau} \\
& \leqq|b|\binom{p}{m}[1+\lambda(p-m-1)]+(p-|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r} \\
& \quad \cdot\binom{n+p}{m}[1+\lambda(n+p-m-1)] \frac{|b|\binom{p}{m}[1+\lambda(p-m-1)]}{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]} \\
& =|b|\binom{p}{m}[1+\lambda(p-m-1)]\left(\frac{n+p}{n+|b|}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{\tau=n+p} \tau a_{\tau} \leqq \frac{|b|(n+p)\binom{p}{m}[1+\lambda(p-m-1)]}{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]}=: \delta \quad(p>|b|) \tag{3.4}
\end{equation*}
$$

which, by virtue of (1.6), establishes the inclusion relation (3.2) of Theorem 3 ,

Analogously, by applying the assertion (2.4) of Theorem 2 instead of the assertion (2.1) of Theorem 1 to functions in the class $\mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b)$, we can prove the following inclusion relationship.
Theorem 4. If

$$
\begin{equation*}
\delta=\frac{(p-m)\left[\frac{|b|-1}{m!}+\binom{p}{m}\right]}{\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p-1}{m}(1+\lambda n)} \quad\left(\lambda>\frac{1}{p}\right), \tag{3.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b) \subset N_{n, \delta}(h) . \tag{3.6}
\end{equation*}
$$

Remark 3. Applying the parametric substitutions listed in 2.3 , Theorem 3 and Theorem 4 would yield the known results due to Orhan and Kamali [8, p. 58, Theorem 1; p. 59, Theorem 2]. Incidentally, just as we indicated in Section 1 above, the condition $\lambda>1$ is needed in the proof of one of these known results [8, p. 59, Theorem 2]. This implies that the constraint $0 \leqq \lambda \leqq 1$ in [8, p. 57, Equations (1.10) and (1.11)] should be replaced by the less stringent constraint $\lambda \geqq 0$.

## 4. Further Neighborhood Properties

In this last section, we determine the neighborhood properties for each of the following (slightly modified) function classes:

$$
\mathcal{S}_{n, m}^{p, \alpha}(\mu, r, \lambda, b) \quad \text { and } \quad \mathcal{R}_{n, m}^{p, \alpha}(\mu, r, \lambda, b) .
$$

Here the class $\mathcal{S}_{n, m}^{p, \alpha}(\mu, r, \lambda, b)$ consists of functions $f(z) \in \mathcal{A}_{p}(n)$ for which there exists another function $g(z) \in \mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<p-\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<p) \tag{4.1}
\end{equation*}
$$

Analogously, the class $\mathcal{R}_{n, m}^{p, \alpha}(\mu, r, \lambda, b)$ consists of functions $f(z) \in \mathcal{A}_{p}(n)$ for which there exists another function $g(z) \in \mathcal{R}_{n, m}^{p}(\mu, r, \lambda, b)$ satisfying the inequality (4.1).
Theorem 5. Let $g(z) \in \mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b)$. Suppose also that

$$
\begin{align*}
\alpha & =p-\frac{\delta}{n+p}  \tag{4.2}\\
& \cdot\left[\frac{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]}{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]-|b|\binom{p}{m}[1+\lambda(p-m-1)]}\right] .
\end{align*}
$$

Then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \mathcal{S}_{n, m}^{p, \alpha}(\mu, r, \lambda, b) \tag{4.3}
\end{equation*}
$$

Proof. Suppose that $f(z) \in N_{n, \delta}(g)$. We then find from (1.4) that

$$
\begin{equation*}
\sum_{\tau=n+p}^{\infty} \tau\left|a_{\tau}-b_{\tau}\right| \leqq \delta \tag{4.4}
\end{equation*}
$$

which readily implies the following coefficient inequality:

$$
\begin{equation*}
\sum_{\tau=n+p}^{\infty}\left|a_{\tau}-b_{\tau}\right| \leqq \frac{\delta}{n+p} \quad(n \in \mathbb{N}) \tag{4.5}
\end{equation*}
$$

Next, since $g \in \mathcal{S}_{n, m}^{p}(\mu, r, \lambda, b)$, we have

$$
\sum_{\tau=n+p}^{\infty} b_{\tau} \leqq \frac{\left.|b| \begin{array}{c}
p  \tag{4.6}\\
m
\end{array}\right)[1+\lambda(p-m-1)]}{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]},
$$

so that

$$
\begin{aligned}
& \left|\frac{f(z)}{g(z)}-1\right|<\frac{\sum_{\tau=n+p}^{\infty}\left|a_{\tau}-b_{\tau}\right|}{1-\sum_{\tau=n+p}^{\infty} b_{\tau}} \\
& \leqq \frac{\delta}{n+p}\left[1-\frac{\left.|b| \begin{array}{c}
p \\
m
\end{array}\right)[1+\lambda(p-m-1)]}{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]}\right]^{-1} \\
& =\frac{\delta}{n+p}\left[\frac{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]}{(n+|b|)\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}[1+\lambda(n+p-m-1)]-|b|\binom{p}{m}[1+\lambda(p-m-1)]}\right] \\
& =p-\alpha,
\end{aligned}
$$

provided that $\alpha$ is given precisely by (4.2). Thus, by definition, $f \in \mathcal{S}_{n, m}^{p, \alpha}(\mu, r, \lambda, b)$ for $\alpha$ given by (4.2). This evidently completes the proof of Theorem 5 .

The proof of Theorem 6 below is much similar to that of Theorem 55, hence the proof of Theorem 6 is being omitted.

Theorem 6. Let $g(z) \in \mathcal{R}_{n, m}^{p, \alpha}(\mu, r, \lambda, b)$. Suppose also that

$$
\begin{equation*}
\alpha=p-\frac{\delta}{n+p}\left[\frac{\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}(n+p-m)(1+\lambda n)}{\left(\frac{n+p+\mu}{p+\mu}\right)^{r}\binom{n+p}{m}(n+p-m)(1+\lambda n)-(p-m)\left[\frac{|b|-1}{m!}+\binom{p}{m}\right]}\right] . \tag{4.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \mathcal{R}_{n, m}^{p, \alpha}(\mu, r, \lambda, b) . \tag{4.8}
\end{equation*}
$$

Remark 4. Applying the parametric substitutions listed in (2.3), Theorem 5 and Theorem 6 would yield the known results due to Orhan and Kamali [8, p. 60, Theorem 3; p. 61, Theorem 4].

## References

[1] O. ALTINTAŞ, Ö. ÖZKAN and H.M. SRIVASTAVA, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13(3) (2000), 63-67.
[2] O. ALTINTAŞ, Ö. ÖZKAN AND H.M. SRIVASTAVA, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl., 47 (2004), 1667-1672.
[3] N.E. CHO and T.H. KIM, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (2003), 399-410.
[4] N.E. CHO AND H.M. SRIVASTAVA, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37 (2003), 39-49.
[5] A.W. GOODMAN, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598-601.
[6] S.S. KUMAR, H.C. TANEJA AND V. RAVICHANDRAN, Classes of multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformation, Kyungpook Math. J., 46 (2006), 97-109.
[7] G. MURUGUSUNDARAMOORTHY AND H.M. SRIVASTAVA, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure. Appl. Math., 5(2) (2004), Art. 24. [ONLINE: http://jipam.vu.edu.au/article.php?sid=374].
[8] H. ORHAN AND M. KAMALI, Neighborhoods of a class of analytic functions with negative coefficients, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 21(1) (2005), 55-61 (electronic).
[9] R. K. RAINA AND H. M. SRIVASTAVA, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure. Appl. Math., 7(1) (2006), Art.5. [ONLINE: http: //jipam.vu.edu.au/article.php?sid=640].
[10] S. RUSCHEWEYH, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521-527.
[11] G.Ş. SǍLǍGEAN, Subclasses of univalent functions, Complex Analysis: Fifth Romanian-Finnish Seminar. Part 1 (Bucharest, 1981), pp. 362-372, Lecture Notes in Mathematics, No. 1013, Springer-Verlag, Berlin, 1983.
[12] H.M. SRIVASTAVA AND S. OWA (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[13] B.A. URALEGADDI AND C. SOMANATHA, Certain classes of univalent functions, in Current Topics in Analytic Function Theory (H. M. Srivastava and S. Owa, Eds.), pp. 371-374, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

