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1. I NTRODUCTION

Let I be a real interval, that is, a nonempty, connected and bounded subset ofR. An
n-dimensionalChebyshev systemon I consists of a set of real valued continuous functions
ω1, . . . , ωn and is determined by the property that eachn points ofI×R with distinct first coor-
dinates can uniquely be interpolated by a linear combination of the functions. More precisely,
we have the following

Definition 1.1. Let I ⊂ R be a real interval andω1, . . . , ωn : I → R be continuous func-
tions. Denote the column vector whose components areω1, . . . , ωn in turn by ωωωωωωωωω, that is,ωωωωωωωωω :=
(ω1, . . . , ωn). We say thatωωωωωωωωω is aChebyshev system overI if, for all elementsx1 < · · · < xn of
I, the following inequality holds:∣∣ ωωωωωωωωω(x1) · · · ωωωωωωωωω(xn)

∣∣ > 0.

In fact, it suffices to assume that the determinant above is nonvanishing whenever the argu-
mentsx1, . . . , xn are pairwise distinct points of the domain. Indeed, Bolzano’s theorem guar-
antees that its sign is constant if the arguments are supposed to be in an increasing order, hence
the componentsω1, . . . , ωn can always be rearranged such thatωωωωωωωωω fulfills the requirement of the
definition. However, considering Chebyshev systems as vectors of functions instead of sets of
functions is widely accepted in the technical literature and also turns out to be very convenient
in our investigations.
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2 M. BESSENYEI

Without claiming completeness, let us list some important and classical examples of Cheby-
shev systems. In each exampleωωωωωωωωω is defined on an arbitraryI ⊂ R except for the last one where
I ⊂]− π

2
, π

2
[.

• polynomial system:ωωωωωωωωω(x) := (1, x, . . . , xn);
• exponential system:ωωωωωωωωω(x) := (1, exp x, . . . , exp nx);
• hyperbolic system:ωωωωωωωωω(x) := (1, cosh x, sinh x, . . . , cosh nx, sinh nx);
• trigonometric system:ωωωωωωωωω(x) := (1, cos x, sin x, . . . , cos nx, sin nx).

We make no attempt here to present an exhaustive account of the theory of Chebyshev sys-
tems, but only mention that, motivated by some results of A.A. Markov, the first systematic in-
vestigation of the geometric theory of Chebyshev systems was done by M. G. Krein. However,
let us note that Chebyshev systems play an important role, sometimes indirectly, in numerous
fields of mathematics, for example, in the theory of approximation, numerical analysis and the
theory of inequalities. The books [16] and [15] contain a rich literature and bibliography of
the topics for the interested reader. The notion of convexity can also be extended by applying
Chebyshev systems:

Definition 1.2. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system over the real intervalI. A function
f : I → R is said to begeneralized convex with respect toωωωωωωωωω if, for all elementsx0 < · · · < xn

of I, it satisfies the inequality

(−1)n

∣∣∣∣∣ f(x0) · · · f(xn)

ωωωωωωωωω(x0) · · · ωωωωωωωωω(xn)

∣∣∣∣∣ ≥ 0.

There are other alternatives to express thatf is generalized convex with respect toωωωωωωωωω, for ex-
ample,f is generalizedωωωωωωωωω-convexor simplyωωωωωωωωω-convex. If the underlyingn-dimensional Cheby-
shev system can uniquely be identified from the context, we briefly say thatf is generalized
n-convex.

If ωωωωωωωωω is the polynomial Chebyshev system, the definition leads to the notion of higher-order
monotonicity which was introduced and studied by T. Popoviciu in a sequence of papers [20, 22,
21, 24, 23, 27, 29, 25, 30, 28, 26, 31, 33, 32, 34, 35]. A summary of these results can be found
in [36] and [17]. For the sake of uniform terminology, throughout the this paper Popoviciu’s
setting is called polynomial convexity. That is, a functionf : I → R is said to bepolynomially
n-convexif, for all elementsx0 < · · · < xn of I, it satisfies the inequality

(−1)n

∣∣∣∣∣∣∣∣∣∣

f(x0) . . . f(xn)
1 . . . 1
x0 . . . xn
...

...
...

xn−1
0 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣
≥ 0.

Observe that polynomially2-convex functions are exactly the “standard” convex ones. The case,
when the “generalized” convexity notion is induced by the special two dimensional Chebyshev
systemω1(x) := 1 andω2(x) := x, is termedstandard settingandstandard convexity, respec-
tively.

The integral average of any standard convex functionf : [a, b] → R can be estimated from
the midpoint and the endpoints of the domain as follows:

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

This is the well known Hadamard’s inequality ([11]) or, as it is quoted for historical reasons
(see [12] and also [18] for interesting remarks), the Hermite–Hadamard-inequality.
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HERMITE-HADAMARD -TYPE INEQUALITIES 3

The aim of this paper is to verify analogous inequalities for generalized convex functions, that
is, to give lower and upper estimations for the integral average of the function using certain base
points of the domain. Of course, the base points are supposed to depend only on the underlying
Chebyshev system of the induced convexity.

For this purpose, we shall follow an inductive approach since it seems to have more advan-
tages than the deductive one. First of all, it makes the original motivations clear; on the other
hand, it allows us to use the most suitable mathematical tools. Hence sophisticated proofs that
sometimes occur when using a deductive approach can also be avoided.

SECTION 2 investigates the case of polynomial convexity. The base points of the Hermite–
Hadamard-type inequalities turn out to be the zeros of certain orthogonal polynomials. The
main tools of the section are based on some methods of numerical analysis, like the Gauss
quadrature formula and Hermite-interpolation. A smoothing technique and two theorems of
Popoviciu are also crucial.

In SECTION 3 we present Hermite–Hadamard-type inequalities for generalized2-convex
functions. The most important auxiliary result of the proof is a characterization theorem which,
in the standard setting, reduces to the well known characterization properties of convex func-
tions. Another theorem of the section establishes a tight relationship between standard and
generalized2-convexity. This result has important regularity consequences and is also essential
in verifying Hermite–Hadamard-type inequalities.

The general case is studied in SECTION 4. The main results guarantee only the existence
and also the uniqueness of the base points of the Hermite–Hadamard-type inequalities but offer
no explicit formulae for determining them. The main tool of the section is the Krein–Markov
theory of moment spaces induced by Chebyshev systems. In some special cases (when the di-
mension of the underlying Chebyshev systems are “small”), an elementary alternative approach
is also presented.

SECTION 5 is devoted to showing that, at least in the two dimensional case and requiring
weak regularity conditions, Hermite–Hadamard-type inequalities are not merely the conse-
quences of generalized convexity, but they also characterize it.

Specializing the members of Chebyshev systems, several applications and examples are pre-
sented for concrete Hermite–Hadamard-type inequalities in both the cases of polynomial con-
vexity and generalized2-convexity. As a simple consequence, the classical Hermite–Hadamard
inequality is among the corollaries in each case as well.

The results of this paper can be found in [3, 4, 5, 6, 7] and [1]. In what follows, we present
them without any further references to the mentioned papers.

2. POLYNOMIAL CONVEXITY

The main results of this section state Hermite–Hadamard-type inequalities for polynomially
convex functions. Let us recall that a functionf : I → R is said to bepolynomiallyn-convex
if, for all elementsx0 < · · · < xn of I, it satisfies the inequality

(−1)n

∣∣∣∣∣∣∣∣∣∣

f(x0) . . . f(xn)
1 . . . 1
x0 . . . xn
...

...
...

xn−1
0 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣
≥ 0.

In order to determine the base points and coefficients of the inequalities, Gauss-type quadrature
formulae are applied. Then, using the remainder term of the Hermite-interpolation, the main
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4 M. BESSENYEI

results follow immediately for “sufficiently smooth” functions due to the next two theorems of
Popoviciu:

Theorem A. ([17, Theorem 1. p. 387])Assume thatf : I → R is continuous andn times
differentiable on the interior ofI. Then,f is polynomiallyn-convex if and only iff (n) ≥ 0 on
the interior ofI.

Theorem B. ([17, Theorem 1. p. 391])Assume thatf : I → R is polynomiallyn-convex and
n ≥ 2. Then,f is (n− 2) times differentiable andf (n−2) is continuous on the interior ofI.

To drop the regularity assumptions, a smoothing technique is developed that guarantees the
approximation of polynomially convex functions with smooth polynomially convex ones.

2.1. Orthogonal polynomials and basic quadrature formulae. In what follows,ρ denotes a
positive, locally integrable function (briefly:weight function) on an intervalI. The polynomials
P andQ are said to beorthogonal on[a, b] ⊂ I with respect to the weight functionρ or simply
ρ-orthogonal on[a, b] if

〈P, Q〉ρ :=

∫ b

a

PQρ = 0.

A system of polynomials is called aρ-orthogonal polynomial system on[a, b] ⊂ I if each
member of the system isρ-orthogonal to the others on[a, b]. Define themomentsof ρ by the
formulae

µk :=

∫ b

a

xkρ(x)dx (k = 0, 1, 2, . . .).

Then, thenth degree member of theρ-orthogonal polynomial system on[a, b] has the following
representation via the moments ofρ:

Pn(x) :=

∣∣∣∣∣∣∣∣
1 µ0 · · · µn−1

x µ1 · · · µn
...

...
.. .

...
xn µn · · · µ2n−1

∣∣∣∣∣∣∣∣ .
Clearly, it suffices to show thatPn is ρ-orthogonal to the special polynomials1, x, . . . , xn−1.
Indeed, fork = 1, . . . , n, the first and the(k + 1)st columns of the determinant〈Pn(x), xk−1〉ρ
are linearly dependent according to the definition of the moments.

In fact, the moments and the orthogonal polynomials depend heavily on the interval[a, b].
Therefore, we use the notionsµk;[a,b] andPn;[a,b] instead ofµk andPn above when we want to
or have to emphasize the dependence on the underlying interval.

Throughout this section, the following property of the zeros of orthogonal polynomials plays
a key role (see [39]). LetPn denote thenth degree member of theρ-orthogonal polynomial
system on[a, b]. Then,Pn hasn pairwise distinct zerosξ1 < · · · < ξn in ]a, b[.

Let us consider the following∫ b

a

fρ =
n∑

k=1

ckf(ξk),(2.1)

∫ b

a

fρ = c0f(a) +
n∑

k=1

ckf(ξk),(2.2)
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HERMITE-HADAMARD -TYPE INEQUALITIES 5

∫ b

a

fρ =
n∑

k=1

ckf(ξk) + cn+1f(b),(2.3)

∫ b

a

fρ = c0f(a) +
n∑

k=1

ckf(ξk) + cn+1f(b).(2.4)

Gauss-type quadrature formulae where the coefficients and the base points are to be determined
so that (2.1), (2.2), (2.3) and (2.4) are exact whenf is a polynomial of degree at most2n − 1,
2n, 2n and2n + 1, respectively. The subsequent four theorems investigate these cases.

Theorem 2.1. Let Pn be thenth degree member of the orthogonal polynomial system on[a, b]
with respect to the weight functionρ. Then(2.1) is exact for polynomialsf of degree at most
2n− 1 if and only ifξ1, . . . , ξn are the zeros ofPn, and

(2.5) ck =

∫ b

a

Pn(x)

(x− ξk)P ′
n(ξk)

ρ(x)dx.

Furthermore,ξ1, . . . , ξn are pairwise distinct elements of]a, b[, andck ≥ 0 for all k = 1, . . . , n.

This theorem follows easily from well known results in numerical analysis (see [13], [14],
[39]). For the sake of completeness, we provide a proof.

Proof. First assume thatξ1, . . . , ξn are the zeros of the polynomialPn and, for allk = 1, . . . , n,
denote the primitive Lagrange-interpolation polynomials byLk : [a, b] → R. That is,

Lk(x) :=


Pn(x)

(x− ξk)P ′
n(ξk)

if x 6= ξk

1 if x = ξk.

If Q is a polynomial of degree at most2n − 1, then, using the Euclidian algorithm,Q can be
written in the formQ = PPn + R wheredeg P, deg R ≤ n− 1. The inequalitydeg P ≤ n− 1
implies theρ-orthogonality ofP andPn:∫ b

a

PPnρ = 0.

On the other hand,deg R ≤ n − 1 yields thatR is equal to its Lagrange-interpolation polyno-
mial:

R =
n∑

k=1

R(ξk)Lk.

Therefore, considering the definition of the coefficientsc1, . . . , cn in formula (2.5), we obtain
that ∫ b

a

Qρ =

∫ b

a

PPnρ +

∫ b

a

Rρ =
n∑

k=1

R(ξk)

∫ b

a

Lkρ

=
n∑

k=1

ckR(ξk) =
n∑

k=1

ck

(
P (ξk)Pn(ξk) + R(ξk)

)
=

n∑
k=1

ckQ(ξk).

That is, the quadrature formula (2.1) is exact for polynomials of degree at most2n− 1.
Conversely, assume that (2.1) is exact for polynomials of degree at most2n − 1. Define the

polynomialQ by the formulaQ(x) := (x− ξ1) · · · (x− ξn) and letP be a polynomial of degree
at mostn− 1. Then,deg PQ ≤ 2n− 1, and thus∫ b

a

PQρ = c1P (ξ1)Q(ξ1) + · · ·+ cnP (ξn)Q(ξn) = 0.
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6 M. BESSENYEI

ThereforeQ is ρ-orthogonal toP . The uniqueness ofPn implies thatPn = anQ, andξ1, . . . , ξn

are the zeros ofPn. Furthermore, (2.1) is exact if we substitutef := Lk andf := L2
k, respec-

tively. The first substitution gives (2.5), while the second one shows the nonnegativity ofck.
For further details, consult the book [39, p. 44]. �

Theorem 2.2. Let Pn be thenth degree member of the orthogonal polynomial system on[a, b]
with respect to the weight functionρa(x) := (x− a)ρ(x). Then(2.2) is exact for polynomialsf
of degree at most2n if and only ifξ1, . . . , ξn are the zeros ofPn, and

c0 =
1

P 2
n(a)

∫ b

a

P 2
n(x)ρ(x)dx,(2.6)

ck =
1

ξk − a

∫ b

a

(x− a)Pn(x)

(x− ξk)P ′
n(ξk)

ρ(x)dx.(2.7)

Furthermore,ξ1, . . . , ξn are pairwise distinct elements of]a, b[, andck ≥ 0 for all k = 0, . . . , n.

Proof. Assume that the quadrature formula (2.2) is exact for polynomials of degree at most2n.
If P is a polynomial of degree at most2n− 1, then∫ b

a

Pρa =

∫ b

a

(x− a)P (x)ρ(x)dx = c1(ξ1 − a)P (ξ1) + · · ·+ cn(ξn − a)P (ξn).

Applying Theorem 2.1 to the weight functionρa and the coefficients

ca;k := ck(ξk − a),

we get thatξ1, . . . , ξn are the zeros ofPn and, for allk = 1, . . . , n, the coefficientsca;k can be
computed using formula (2.5). Therefore,

ck(ξk − a) =

∫ b

a

Pn(x)

(x− ξk)P ′
n(ξk)

ρa(x)dx =

∫ b

a

(x− a)Pn(x)

(x− ξk)P ′
n(ξk)

ρ(x)dx.

Substitutingf := P 2
n into (2.1), we obtain that

c0 =
1

P 2
n(a)

∫ b

a

P 2
nρ.

Thus (2.6) and (2.7) are valid, andck ≥ 0 for k = 0, 1, . . . , n.
Conversely, assume thatξ1, . . . , ξn are the zeros of the orthogonal polynomialPn, and the

coefficientsc1, . . . , cn are given by the formula (2.7). Define the coefficientc0 by c0 =
∫ b

a
ρ −

(c1 + · · · + cn). If P is a polynomial of degree at most2n, then there exists a polynomialQ
with deg Q ≤ 2n− 1 such that

P (x) = (x− a)Q(x) + P (a).

Indeed, the polynomialP (x)−P (a) vanishes at the pointx = a, hence it is divisible by(x−a).
Applying Theorem 2.1 again to the weight functionρa,∫ b

a

Qρa = ca;1Q(ξ1) + · · ·+ ca;nQ(ξn)
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holds. Thus, using the definition ofc0, the representation of the polynomialP and the quadra-
ture formula above, we have that∫ b

a

P (x)ρ(x)dx =

∫ b

a

(
(x− a)Q(x) + P (a)

)
ρ(x)dx

=
n∑

k=1

ck(ξk − a)Q(ξk) +
n∑

k=0

P (a)ck

= c0P (a) +
n∑

k=1

ck

(
(ξk − a)Q(ξk) + P (a)

)
= c0P (a) +

n∑
k=1

ckP (ξk),

which yields that the quadrature formula (2.2) is exact for polynomials of degree at most2n.
Therefore, substitutingf := P 2

n into (2.2), we get formula (2.6). �

Theorem 2.3. Let Pn be thenth degree member of the orthogonal polynomial system on[a, b]
with respect to the weight functionρb(x) := (b− x)ρ(x). Then(2.3) is exact for polynomialsf
of degree at most2n if and only ifξ1, . . . , ξn are the zeros ofPn, and

ck =
1

b− ξk

∫ b

a

(b− x)Pn(x)

(x− ξk)P ′
n(ξk)

ρ(x)dx,(2.8)

cn+1 =
1

P 2
n(b)

∫ b

a

P 2
n(x)ρ(x)dx.(2.9)

Furthermore,ξ1, . . . , ξn are pairwise distinct elements of]a, b[, andck ≥ 0 for all k = 1, . . . , n+
1.

Hint. Applying a similar argument to the previous one to the weight functionρb, we obtain the
statement of the theorem. �

Theorem 2.4. Let Pn be thenth degree member of the orthogonal polynomial system on[a, b]
with respect to the weight functionρb

a. Then(2.4) is exact for polynomialsf of degree at most
2n + 1 if and only ifξ1, . . . , ξn are the zeros ofPn, and

c0 =
1

(b− a)P 2
n(a)

∫ b

a

(b− x)P 2
n(x)ρ(x)dx,(2.10)

ck =
1

(b− ξk)(ξk − a)

∫ b

a

(b− x)(x− a)Pn(x)

(x− ξk)P ′
n(ξk)

ρ(x)dx,(2.11)

cn+1 =
1

(b− a)P 2
n(b)

∫ b

a

(x− a)P 2
n(x)ρ(x)dx.(2.12)

Furthermore,ξ1, . . . , ξn are pairwise distinct elements of]a, b[, andck ≥ 0 for all k = 0, . . . , n+
1.

Proof. Assume that the quadrature formula (2.4) is exact for polynomials of degree at most
2n + 1. If P is a polynomial of degree at most2n− 1, then∫ b

a

Pρb
a =

∫ b

a

(b− x)(x− a)P (x)ρ(x)dx

= c1(b− ξ1)(ξ1 − a)P (ξ1) + · · ·+ cn(b− ξn)(ξn − a)P (ξn).
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Applying Theorem 2.1 to the weight functionρb
a and the coefficients

ca,b;k := ck(b− ξk)(ξk − a),

we get thatξ1, . . . , ξn are the zeros ofPn and, for allk = 1, . . . , n, the coefficientsca,b;k can be
computed using formula (2.5). Therefore,

ck(b− ξk)(ξk − a) =

∫ b

a

Pn(x)

(x− ξk)P ′
n(ξk)

ρb
a(x)dx

=

∫ b

a

(b− x)(x− a)Pn(x)

(x− ξk)P ′
n(ξk)

ρ(x)dx.

Substitutingf := (b− x)P 2
n(x) andf := (x− a)P 2

n(x) into (2.1), we obtain that

c0 =
1

(b− a)P 2
n(a)

∫ b

a

(b− x)P 2
n(x)ρ(x)dx,

cn+1 =
1

(b− a)P 2
n(b)

∫ b

a

(x− a)P 2
n(x)ρ(x)dx.

Thus (2.10), (2.11) and (2.12) are valid, furthermore,ck ≥ 0 for k = 0, . . . , n + 1.
Conversely, assume thatξ1, . . . , ξn are the zeros ofPn, and the coefficientsc1, . . . , cn are

given by the formula (2.11). Define the coefficientsc0 andcn+1 by the equations∫ b

a

(b− x)ρ(x)dx = c0(b− a) +
n∑

k=1

ck(b− ξk),∫ b

a

(x− a)ρ(x)dx =
n∑

k=1

ck(ξk − a) + cn+1(b− a).

If P is a polynomial of degree at most2n + 1, then there exists a polynomialQ with deg Q ≤
2n− 1 such that

(b− a)P (x) = (b− x)(x− a)Q(x) + (x− a)P (b) + (b− x)P (a).

Indeed, the polynomial(b−a)P (x)− (x−a)P (b)− (b−x)P (a) is divisible by(b−x)(x−a)
sincex = a andx = b are its zeros. Applying Theorem 2.1 again,∫ b

a

Qρb
a = ca,b;1Q(ξ1) + · · ·+ ca,b;nQ(ξn)

holds. Thus, using the definition ofc0 andcn+1, the representation of the polynomialP and the
quadrature formula above, we have that

(b− a)

∫ b

a

P (x)ρ(x)dx

=

∫ b

a

(
(b− x)(x− a)Q(x) + (x− a)P (b) + (b− x)P (a)

)
ρ(x)dx

=
n∑

k=1

ck(b− ξk)(ξk − a)Q(ξk)

+ P (b)

∫ b

a

(x− a)ρ(x)dx + P (a)

∫ b

a

(b− x)ρ(x)dx
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=
n∑

k=1

ck(b− ξk)(ξk − a)Q(ξk)

+ c0(b− a)P (a) +
n∑

k=1

ck(b− ξk)P (a)

+
n∑

k=1

ck(ξk − a)P (b) + cn+1(b− a)P (b)

=
n∑

k=1

ck

(
(b− ξk)(ξk − a)Q(ξk) + (ξk − a)P (b) + (b− ξk)P (a)

)
+ c0(b− a)P (a) + cn+1(b− a)P (b)

= c0(b− a)P (a) +
n∑

k=1

ck(b− a)P (ξk) + cn+1(b− a)P (b),

which yields that the quadrature formula (2.4) is exact for polynomials of degree at most2n+1.
Therefore, substitutingf := (b − x)P 2

n(x) andf := (x − a)P 2
n(x) into (2.4), formulae (2.10)

and (2.12) follow. �

Let f : [a, b] → R be a differentiable function,x1, . . . , xn be pairwise distinct elements of
[a, b], and1 ≤ r ≤ n be a fixed integer. We denote the Hermite interpolation polynomial byH,
which satisfies the following conditions:

H(xk) = f(xk) (k = 1, . . . , n),

H ′(xk) = f ′(xk) (k = 1, . . . , r).

We recall thatdeg H = n + r − 1. From a well known result, (see [13, Sec. 5.3, pp. 230-231]),
for all x ∈ [a, b] there existsθ such that

(2.13) f(x)−H(x) =
ωn(x)ωr(x)

(n + r)!
f (n+r)(θ),

where

ωk(x) = (x− x1) · · · (x− xk).

2.2. An approximation theorem. It is well known that there exists a functionϕ which pos-
sesses the following properties:

(i) ϕ : R → R+ is C∞, i. e., it is infinitely many times differentiable;
(ii) suppϕ ⊂ [−1, 1];

(iii)
∫

R ϕ = 1.

Usingϕ, one can define the functionϕε for all ε > 0 by the formula

ϕε(x) =
1

ε
ϕ
(x

ε

)
(x ∈ R).

Then, as it can easily be checked,ϕε satisfies the following conditions:

(i’) ϕε : R → R+ is C∞;
(ii’) suppϕε ⊂ [−ε, ε];

(iii’)
∫

R ϕε = 1.
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10 M. BESSENYEI

Let I ⊂ R be a nonempty open interval,f : I → R be a continuous function, and choose
ε > 0. Denote the convolution off andϕε by fε, that is

fε(x) :=

∫
R

f̄(y)ϕε(x− y)dy (x ∈ R)

wheref̄(y) = f(y) if y ∈ I, otherwisef̄(y) = 0. Let us recall, thatfε → f uniformly asε → 0
on each compact subinterval ofI, andfε is infinitely many times differentiable onR. These
important results can be found for example in [40, p. 549].

Theorem 2.5. Let I ⊂ R be an open interval,f : I → R be a polynomiallyn-convex con-
tinuous function. Then, for all compact subintervals[a, b] ⊂ I, there exists a sequence of
polynomiallyn-convex andC∞ functions(fk) which converges uniformly tof on [a, b].

Proof. Choosea, b ∈ I andε0 > 0 such that the inclusion[a− ε0, b + ε0] ⊂ I holds. We show
that the functionτεf : [a, b] → R defined by the formula

τεf(x) := f(x− ε)

is polynomiallyn-convex on[a, b] for 0 < ε < ε0. Let a ≤ x0 < · · · < xn ≤ b andk ≤ n− 1
be fixed. By induction, we are going to verify the identity

(2.14)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) · · · τεf(xn)
1 · · · 1
x0 · · · xn
...

.. .
...

xk−1
0 · · · xk−1

n

xk
0 · · · xk

n
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) · · · τεf(xn)
1 · · · 1

x0 − ε · · · xn − ε
...

...
...

(x0 − ε)k−1 · · · (xn − ε)k−1

xk
0 · · · xk

n
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If k = 1, then this equation obviously holds. Assume, for a fixed positive integerk ≤ n − 2,
that (2.14) remains true. The binomial theorem implies the identity

xk =

(
k

0

)
εk +

(
k

1

)
εk−1(x− ε) + · · ·+

(
k

k

)
(x− ε)k.

That is,(x−ε)k is the linear combination of the elements1, x−ε, . . . , (x−ε)k andxk. Therefore,
adding the appropriate linear combination of the2nd, . . . , (k + 1)st rows to the(k + 2)nd row,
we arrive at the equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) · · · τεf(xn)
1 · · · 1

x0 − ε · · · xn − ε
...

.. .
...

(x0 − ε)k−1 · · · (xn − ε)k−1

xk
0 · · · xk

n

xk+1
0 · · · xk+1

n
...

.. .
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) · · · τεf(xn)
1 · · · 1

x0 − ε · · · xn − ε
...

...
...

(x0 − ε)k−1 · · · (xn − ε)k−1

(x0 − ε)k · · · (xn − ε)k

xk+1
0 · · · xk+1

n
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Hence formula (2.14) holds for all fixed positivek whenever1 ≤ k ≤ n − 1. The particular
casek = n − 1 gives the polynomialn-convexity ofτεf . Applying a change of variables and
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the previous result, we get that

(−1)n

∣∣∣∣∣∣∣∣∣∣

fε(x0) · · · fε(xn)
1 · · · 1
x0 · · · xn
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
=

∫
R
(−1)n

∣∣∣∣∣∣∣∣∣∣

f̄(t)ϕε(x0 − t) · · · f̄(t)ϕε(xn − t)
1 · · · 1
x0 · · · xn
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
dt

=

∫
R
(−1)n

∣∣∣∣∣∣∣∣∣∣

f̄(x0 − s) · · · f̄(xn − s)
1 · · · 1
x0 · · · xn
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
ϕε(s)ds

=

∫
R
(−1)n

∣∣∣∣∣∣∣∣∣∣

τsf(x0) · · · τsf(xn)
1 · · · 1
x0 · · · xn
...

...
...

xn−1
0 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
ϕε(s)ds ≥ 0,

which shows the polynomialn-convexity offε on [a, b] for 0 < ε < ε0.
To complete the proof, choose a positive integern0 such that the relation1

n0
< ε0 holds. If

we defineεk andfk by εk := 1
n0+k

andfk := fεk
for k ∈ N, then0 < εk < ε0, and thus(fk)

∞
k=1

satisfies the requirements of the theorem. �

2.3. Hermite–Hadamard-type inequalities. In the sequel, we shall need two additional aux-
iliary results. The first one investigates the convergence properties of the zeros of orthogonal
polynomials.

Lemma 2.1. Letρ be a weight function on[a, b], and(aj) be strictly monotone decreasing,(bj)
be strictly monotone increasing sequences such thataj → a, bj → b anda1 < b1. Denote the
zeros ofPm;j by ξ1;j, . . . , ξm;j, wherePm;j is themth degree member of theρ|[aj ,bj ]-orthogonal
polynomial system on[aj, bj], and denote the zeros ofPm by ξ1, . . . , ξm, wherePm is themth

degree member of theρ-orthogonal polynomial system on[a, b]. Then,

lim
j→∞

ξk;j = ξk (k = 1, . . . , n).

Proof. Observe first that the mapping(a, b) 7→ µk;[a,b] is continuous, thereforeµk;[aj ,bj ] →
µk;[a,b] hencePm;j → Pm pointwise according to the representation of orthogonal polynomials.
Takeε > 0 such that

]ξk − ε, ξk + ε[⊂]a, b[,

]ξk − ε, ξk + ε[∩]ξl − ε, ξl + ε[= ∅ (k 6= l, k, l ∈ {1, . . . ,m}).
The polynomialPm changes its sign on]ξk − ε, ξk + ε[ since it is of degreem and it hasm
pairwise distinct zeros; therefore, due to the pointwise convergence,Pm;j also changes its sign
on the same interval up to an index. That is, for sufficiently largej, ξk;j ∈]ξk − ε, ξk + ε[. �
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12 M. BESSENYEI

The other auxiliary result investigates the one-sided limits of polynomiallyn-convex func-
tions at the endpoints of the domain. Let us note that its first assertion involves, in fact, two
cases according to the parity of the convexity.

Lemma 2.2. Letf : [a, b] → R be a polynomiallyn-convex function. Then,

(i) (−1)nf(a) ≥ lim supt→a+0(−1)nf(t);
(ii) f(b) ≥ lim supt→b−0 f(t).

Proof. It suffices to restrict the investigations to the even case of assertion(i) only since the
proofs of the other ones are completely the same. For the sake of brevity, we shall use the
notationf+(a) := lim supt→a+0 f(t). Take the elementsx0 := a < x1 := t < · · · < xn of
[a, b]. Then, the (even order) polynomial convexity off implies∣∣∣∣∣∣∣∣∣∣

f(a) f(t) f(x2) . . . f(xn)
1 1 1 . . . 1
a t x2 . . . xn
...

...
...

. ..
...

an−1 tn−1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣
≥ 0.

Therefore, taking the limsup ast → a + 0, we obtain that∣∣∣∣∣∣∣∣∣∣

f(a) f+(a) f(x2) . . . f(xn)
1 1 1 . . . 1
a a x2 . . . xn
...

...
...

...
...

an−1 an−1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣
≥ 0.

The adjoint determinants of the elementsf(x2), . . . , f(xn) in the first row are equal to zero
since their first and second columns coincide; on the other hand,f(a) andf+(a) have the same
(positive) Vandermonde-type adjoint determinant. Hence, applying the expansion theorem on
the first row, we obtain the desired inequality

f(a)− f+(a) ≥ 0.

�

The main results concern the cases of odd and even order polynomial convexity separately in
the subsequent two theorems.

Theorem 2.6. Let ρ : [a, b] → R be a positive integrable function. Denote the zeros ofPm by
ξ1, . . . , ξm wherePm is themth degree member of the orthogonal polynomial system on[a, b]
with respect to the weight function(x − a)ρ(x), and denote the zeros ofQm by η1, . . . , ηm

whereQm is themth degree member of the orthogonal polynomial system on[a, b] with respect
to the weight function(b− x)ρ(x). Define the coefficientsα0, . . . , αm andβ1, . . . , βm+1 by the
formulae

α0 :=
1

P 2
m(a)

∫ b

a

P 2
m(x)ρ(x)dx,

αk :=
1

ξk − a

∫ b

a

(x− a)Pm(x)

(x− ξk)P ′
m(ξk)

ρ(x)dx
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and

βk :=
1

b− ηk

∫ b

a

(b− x)Qm(x)

(x− ηk)Q′
m(ηk)

ρ(x)dx,

βm+1 :=
1

Q2
m(b)

∫ b

a

Q2
m(x)ρ(x)dx.

If a functionf : [a, b] → R is polynomially(2m + 1)-convex, then it satisfies the following
Hermite–Hadamard-type inequality

α0f(a) +
m∑

k=1

αkf(ξk) ≤
∫ b

a

fρ ≤
m∑

k=1

βkf(ηk) + βm+1f(b).

Proof. First assume thatf is (2m + 1) times differentiable. Then, according to Theorem A,
f (2m+1) ≥ 0 on ]a, b[. Let H be the Hermite interpolation polynomial determined by the condi-
tions

H(a) = f(a),

H(ξk) = f(ξk),

H ′(ξk) = f ′(ξk).

By the remainder term (2.13) of the Hermite interpolation, ifx is an arbitrary element of]a, b[,
then there existsθ ∈]a, b[ such that

f(x)−H(x) =
(x− a)(x− ξ1)

2 · · · (x− ξm)2

(2m + 1)!
f (2m+1)(θ).

That is,fρ ≥ Hρ on [a, b] due to the nonnegativity off (2m+1) and the positivity ofρ. On the
other hand,H is of degree2m, therefore Theorem 2.2 yields that∫ b

a

fρ ≥
∫ b

a

Hρ = α0H(a) +
m∑

k=1

αkH(ξk) = α0f(a) +
m∑

k=1

αkf(ξk).

For the general case, letf be an arbitrary polynomially(2m + 1)-convex function. Without
loss of generality we may assume thatm ≥ 1; in this case,f is continuous (see Theorem B). Let
(aj) and(bj) be sequences fulfilling the requirements of Lemma 2.1. According to Theorem 2.5,
there exists a sequence ofC∞, polynomially(2m+1)-convex functions(fi;j) such thatfi;j → f
uniformly on [aj, bj] asi → ∞. Denote the zeros ofPm;j by ξ1;j, . . . , ξm;j wherePm;j is the
mth degree member of the orthogonal polynomial system on[aj, bj] with respect to the weight
function(x− a)ρ(x). Define the coefficientsα0;j, . . . , αm;j analogously toα0, . . . , αm with the
help ofPm;j. Then,ξk;j → ξk due to Lemma 2.1, and henceαk;j → αk asj → ∞. Applying
the previous step of the proof on the smooth functions(fi;j), it follows that

α0;jfi;j(aj) +
m∑

k=1

αk;jfi;j(ξk;j) ≤
∫ bj

aj

fi;jρ.

Taking the limitsi →∞ and thenj →∞, we get the inequality

α0

(
lim inf
t→a+0

f(t)
)

+
m∑

k=1

αkf(ξk) ≤
∫ b

a

fρ.

This, together with Lemma 2.2, gives the left hand side inequality to be proved. The proof of
the right hand side inequality is analogous, therefore it is omitted. �
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14 M. BESSENYEI

The second main result offers Hermite–Hadamard-type inequalities for even-order polynomi-
ally convex functions. In this case, the symmetrical structure disappears: the lower estimation
involves none of the endpoints, while the upper estimation involves both of them.

Theorem 2.7. Let ρ : [a, b] → R be a positive integrable function. Denote the zeros ofPm by
ξ1, . . . , ξm wherePm is themth degree member of the orthogonal polynomial system on[a, b]
with respect to the weight functionρ(x), and denote the zeros ofQm−1 by η1, . . . , ηm−1 where
Qm−1 is the(m−1)st degree member of the orthogonal polynomial system on[a, b] with respect
to the weight function(b− x)(x− a)ρ(x). Define the coefficientsα1, . . . , αm andβ0, . . . , βm+1

by the formulae

αk :=

∫ b

a

Pm(x)

(x− ξk)P ′
m(ξk)

ρ(x)dx

and

β0 =
1

(b− a)Q2
m−1(a)

∫ b

a

(b− x)Q2
m−1(x)ρ(x)dx,

βk =
1

(b− ηk)(ξk − a)

∫ b

a

(b− x)(x− a)Qm−1(x)

(x− ηk)Q′
m−1(ηk)

ρ(x)dx,

βm+1 =
1

(b− a)Q2
m−1(b)

∫ b

a

(x− a)Q2
m−1(x)ρ(x)dx.

If a functionf : [a, b] → R is polynomially(2m)-convex, then it satisfies the following Hermite–
Hadamard-type inequality

m∑
k=1

αkf(ξk) ≤
∫ b

a

fρ ≤ β0f(a) +
m−1∑
k=1

βkf(ηk) + βmf(b).

Proof. First assume thatf is n = 2m times differentiable. Thenf (2m) ≥ 0 on ]a, b[ according
to Theorem B. Consider the Hermite interpolation polynomialH that interpolates the function
f in the zeros ofPm in the following manner:

H(ξk) = f(ξk),

H ′(ξk) = f ′(ξk).

By the remainder term (2.13) of the Hermite interpolation, ifx is an arbitrary element of]a, b[,
then there existsθ ∈]a, b[ such that

f(x)−H(x) =
(x− ξ1)

2 · · · (x− ξm)2

(2m)!
f (2m)(θ).

Hencefρ ≥ Hρ on [a, b] due to the nonnegativity off (2m) and the positivity ofρ. On the other
hand,H is of degree2m − 1, therefore Theorem 2.1 yields the left hand side of the inequality
to be proved: ∫ b

a

fρ ≥
∫ b

a

Hρ =
m∑

k=1

αkH(ξk) =
m∑

k=1

αkf(ξk).
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Now consider the Hermite interpolation polynomialH that interpolates the functionf at the
zeros ofQm−1 and at the endpoints of the domain in the following way:

H(a) = f(a),

H(ηk) = f(ηk),

H ′(ηk) = f ′(ηk),

H(b) = f(b).

By the remainder term (2.13) of the Hermite interpolation, ifx is an arbitrary element of]a, b[,
then there exists aθ ∈]a, b[ such that

f(x)−H(x) =
(x− a)(x− b)(x− η1)

2 · · · (x− ηm−1)
2

(2m)!
f (2m)(θ).

The factors of the right hand side are nonnegative except for the factor(x−b) which is negative,
hencefρ ≤ Hρ. On the other hand,H is of degree2m − 1, therefore Theorem 2.4 yields the
right hand side inequality to be proved:∫ b

a

fρ ≤
∫ b

a

Hρ = β0H(a) +
m−1∑
k=1

βkH(ηk) + βmH(b)

= β0f(a) +
m−1∑
k=1

βkf(ηk) + βmf(b).

From this point, an analogous argument to the corresponding part of the previous proof gives
the statement of the theorem without any differentiability assumptions on the functionf . �

Specializing the weight functionρ ≡ 1, the roots of the inequalities can be obtained as convex
combinations of the endpoints of the domain. The coefficients of the convex combinations are
the zeros of certain orthogonal polynomials on[0, 1] in both cases. Observe that interchanging
the role of the endpoints in any side of the inequality concerning the odd order case, we obtain
the other side of the inequality.

Theorem 2.8.Let, form ≥ 0, the polynomialPm be defined by the formula

Pm(x) :=

∣∣∣∣∣∣∣∣∣
1 1

2
· · · 1

m+1

x 1
3

· · · 1
m+2

...
...

...
...

xm 1
m+2

· · · 1
2m+1

∣∣∣∣∣∣∣∣∣ .
Then,Pm hasm pairwise distinct zerosλ1, . . . , λm in ]0, 1[. Define the coefficientsα0, . . . , αm

by

α0 :=
1

P 2
m(0)

∫ 1

0

P 2
m(x)dx,

αk :=
1

λk

∫ 1

0

xPm(x)

(x− λk)P ′
m(λk)

dx.
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If a functionf : [a, b] → R is polynomially(2m + 1)-convex, then it satisfies the following
Hermite–Hadamard-type inequality

α0f(a) +
m∑

k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a

f(x)dx

≤
m∑

k=1

αkf
(
λka + (1− λk)b

)
+ α0f(b).

Proof. Apply Theorem 2.6 in the particular setting whena := 0, b := 1 and the weight function
is ρ ≡ 1. Then, as simple calculations show,Pm is exactly themth degree member of the
orthogonal polynomial system on[0, 1] with respect to the weight functionρ(x) = x (see the
beginning of this section). Therefore,Pm hasm pairwise distinct zeros0 < λ1 < · · · < λm < 1.
Moreover, the coefficientsα0, . . . , αm have the form above. Define the functionF : [0, 1] → R
by the formula

F (t) := f
(
(1− t)a + tb

)
.

It is easy to check thatF is polynomially(2m+1)-convex on the interval[0, 1]. Hence, applying
Theorem 2.6 and the previous observations, it follows that∫ 1

0

F (t)dt ≥ α0F (0) +
m∑

k=1

αkF (λk)

= α0f(a) +
m∑

k=1

αkf
(
(1− λk)a + λkb

)
.

On the other hand, to complete the proof of the left hand side inequality, observe that

1

b− a

∫ b

a

f(x)dx =

∫ 1

0

F (t)dt.

For verifying the right hand side one, define the functionϕ : [a, b] → R by the formula

ϕ(x) := −f(a + b− x).

Then,ϕ is polynomially(2m + 1)-convex on[a, b]. The previous inequality applied onϕ gives
the upper estimation of the Hermite–Hadamard-type inequality forf . �

Theorem 2.9.Let, form ≥ 1, the polynomialsPm andQm−1 be defined by the formulae

Pm(x) :=

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

m
x 1

2
· · · 1

m+1
...

...
...

...
xm 1

m+1
· · · 1

2m

∣∣∣∣∣∣∣∣∣ ,

Qm−1(x) :=

∣∣∣∣∣∣∣∣∣
1 1

2·3 · · · 1
m(m+1)

x 1
3·4 · · · 1

(m+1)(m+2)
...

...
...

...
xm−1 1

(m+1)(m+2)
· · · 1

(2m−1)2m

∣∣∣∣∣∣∣∣∣ .
Then,Pm hasm pairwise distinct zerosλ1, . . . , λm in ]0, 1[ andQm−1 hasm− 1 pairwise dis-
tinct zerosµ1, . . . , µm−1 in ]0, 1[, respectively. Define the coefficientsα1, . . . , αm andβ0, . . . , βm

by

αk :=

∫ 1

0

Pm(x)

(x− λk)P ′
m(λk)

dx
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and

β0 :=
1

Q2
m−1(0)

∫ 1

0

(1− x)Q2
m−1(x)dx,

βk :=
1

(1− µk)µk

∫ 1

0

x(1− x)Qm−1(x)

(x− µk)Q′
m−1(µk)

dx,

βm :=
1

Q2
m−1(1)

∫ 1

0

xQ2
m−1(x)dx.

If a functionf : [a, b] → R is polynomially(2m)-convex, then it satisfies the following Hermite–
Hadamard-type inequality

m∑
k=1

αkf
(
(1− λk)a + λkb

)
≤ 1

b− a

∫ b

a

f(x)dx

≤ β0f(a) +
m−1∑
k=1

βkf
(
(1− µk)a + µkb

)
+ βmf(b).

Proof. Substitutea := 0, b := 1 andρ ≡ 1 into Theorem 2.7. Then,Pm is exactly themth

degree member of the orthogonal polynomial system on the interval[0, 1] with respect to the
weight functionρ(x) = 1; similarly, Qm−1 is the(m − 1)st degree member of the orthogonal
polynomial system on the interval[0, 1] with respect to the weight functionρ(x) = (1 − x)x.
Therefore,Qm hasm pairwise distinct zeros0 < λ1 < · · · < λm < 1 andQm−1 hasm − 1
pairwise distinct zeros0 < µ1 < · · · < µm−1 < 1. Moreover, the coefficientsα1, . . . , αm and
β0, . . . , βm have the form above. To complete the proof, apply Theorem 2.7 on the function
F : [0, 1] → R defined by the formula

F (t) := f
(
(1− t)a + tb

)
.

�

2.4. Applications. In the particular setting whenm = 1, Theorem 2.8 reduces to the classical
Hermite–Hadamard inequality:

Corollary 2.1. If f : [a, b] → R is a polynomially2-convex (i.e. convex) function, then the
following inequalities hold

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

In the subsequent corollaries we present Hermite–Hadamard-type inequalities in those cases
when the zeros of the polynomials in Theorem 2.8 and Theorem 2.9 can explicitly be computed.

Corollary 2.2. If f : [a, b] → R is a polynomially3-convex function, then the following in-
equalities hold

1

4
f(a) +

3

4
f

(
a + 2b

3

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ 3

4
f

(
2a + b

3

)
+

1

4
f(b).
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Corollary 2.3. If f : [a, b] → R is a polynomially4-convex function, then the following in-
equalities hold

1

2
f

(
3 +

√
3

6
a +

3−
√

3

6
b

)
+

1

2
f

(
3−

√
3

6
a +

3 +
√

3

6
b

)

≤ 1

b− a

∫ b

a

f(x)dx ≤ 1

6
f(a) +

2

3
f

(
a + b

2

)
+

1

6
f(b).

Corollary 2.4. If f : [a, b] → R is a polynomially5-convex function, then the following in-
equalities hold

1

9
f(a) +

16 +
√

6

36
f

(
4 +

√
6

10
a +

6−
√

6

10
b

)

+
16−

√
6

36
f

(
4−

√
6

10
a +

6 +
√

6

10
b

)

≤ 1

b− a

∫ b

a

f(x)dx

≤ 16−
√

6

36
f

(
6 +

√
6

10
a +

4−
√

6

10
b

)

+
16 +

√
6

36
f

(
6−

√
6

10
a +

4 +
√

6

10
b

)
+

1

9
f(b).

In some other cases analogous statements can be formulated applying Theorem 2.9. For
simplicity, instead of writing down these corollaries explicitly, we shall present a list which
contains the zeros ofPn (denoted byλk), the coefficientsαk for the left hand side inequality,
also the zeros ofQn (denoted byµk), and the coefficientsβk for the right hand side inequality,
respectively.

Casen = 6
The zeros ofP3:

5−
√

15

10
,

1

2
,

5 +
√

15

10
;

the corresponding coefficients:
5

18
,

4

9
,

5

18
.

The zeros ofQ2:
5−

√
5

10
,

5 +
√

5

10
;

the corresponding coefficients:
1

12
,

5

12
,

5

12
,

1

12
.

Casen = 8
The zeros ofP4:

1

2
−
√

525 + 70
√

30

70
,

1

2
−
√

525− 70
√

30

70
,

1

2
+

√
525− 70

√
30

70
,

1

2
+

√
525 + 70

√
30

70
;
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the corresponding coefficients:

1

4
−
√

30

72
,

1

4
+

√
30

72
,

1

4
+

√
30

72
,

1

4
−
√

30

72
.

The zeros ofQ3:
1

2
−
√

21

14
,

1

2
,

1

2
+

√
21

14
;

the corresponding coefficients:

1

20
,

49

180
,

16

45
,

49

180
,

1

20
.

Casen = 10
The zeros ofP5:

1

2
−
√

245 + 14
√

70

42
,

1

2
−
√

245− 14
√

70

42
,

1

2
,

1

2
+

√
245− 14

√
70

42
,

1

2
+

√
245 + 14

√
70

42
;

the corresponding coefficients:

322− 13
√

70

1800
,

322 + 13
√

70

1800
,

64

225
,

322 + 13
√

70

1800
,

322− 13
√

70

1800
.

The zeros ofQ4:

1

2
−
√

147 + 42
√

7

42
,

1

2
−
√

147− 42
√

7

42
,

1

2
+

√
147− 42

√
7

42
,

1

2
+

√
147 + 42

√
7

42
;

the corresponding coefficients:

1

30
,

14−
√

7

60
,

14 +
√

7

60
,

14 +
√

7

60
,

14−
√

7

60
,

1

30
.

Casen = 12 (right hand side inequality)
The zeros ofQ5:

1

2
−
√

495 + 66
√

15

66
,

1

2
−
√

495− 66
√

15

66
,

1

2
,

1

2
+

√
495− 66

√
15

66
,

1

2
+

√
495 + 66

√
15

66
;

the corresponding coefficients:

1

42
,

124− 7
√

15

700
,

124 + 7
√

15

700
,

128

525
,

124 + 7
√

15

700
,

124− 7
√

15

700
,

1

42
.

During the investigations of the higher–order cases above, we can use the symmetry of the
zeros of the orthogonal polynomials with respect to1/2, and therefore the calculations lead
to solving linear or quadratic equations. The first case where “casus irreducibilis” appears
is n = 7; similarly, this is the reason for presenting only the right hand side inequality for
polynomially12-convex functions.
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3. GENERALIZED 2-CONVEXITY

In terms of geometry, the Chebyshev property of a two dimensional system can equivalently
be formulated: the linear combinations of the members of the system (briefly:generalized
lines) are continuous; furthermore, any two points of the plain with distinct first coordinates can
be connected by a unique generalized line. That is, generalized lines have the most important
properties of affine functions. These properties turn out to be so strong that most of the classical
results of standard convexity, can be generalized for this setting.

First we investigate some basic properties of generalized lines of two dimensional Chebyshev
systems. Then the most important tool of the section, a characterization theorem is proved for
generalized2-convex functions. Two consequences of this theorem, namely the existence of
generalized support lines and the property of generalized chords are crucial to verify Hermite–
Hadamard-type inequalities. Another result states a tight connection between standard and
(ω1, ω2)-convexity, and also guarantees the integrability of(ω1, ω2)-convex functions. Some
classical results of the theory of convex functions, like their representation and stability are also
generalized for this setting.

3.1. Characterizations via generalized lines.Let us recall that(ω1, ω2) is said to be aCheby-
shev systemover an intervalI if ω1, ω2 : I → R are continuous functions and, for all elements
x < y of I, ∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ > 0.

Some concrete examples on Chebyshev systems are presented in the last section of the section.
Given a Chebyshev system(ω1, ω2), a functionf : I → R is calledgeneralized convex with
respect to(ω1, ω2) or briefly: generalized2-convexif, for all elementsx < y < z of I, it
satisfies the inequality ∣∣∣∣∣∣

f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ≥ 0.

Clearly, in the standard setting this definition reduces to the notion of (ordinary) convexity. Let
(ω1, ω2) be a Chebyshev system on an intervalI, and denote the set of all linear combinations
of the functionsω1 andω2 by L (ω1, ω2). We say that a functionω : I → R is ageneralized
line if it belongs to the linear hullL (ω1, ω2). The properties of generalized lines play the key
role in our further investigations; first we need the following simple but useful ones.

Lemma 3.1. Let (ω1, ω2) be a Chebyshev system over an intervalI. Then, two different gener-
alized lines ofL (ω1, ω2) have at most one common point; moreover, if two different generalized
lines have the same value at someξ ∈ I◦, then the difference of the lines is positive on one side
of ξ while negative on the other side ofξ. In particular, ω1 and ω2 have at most one zero;
moreover, ifω1 (resp.,ω2) vanishes at someξ ∈ I◦, thenω1 is positive on one side ofξ while
negative on the other.

Proof. Due to the linear structure ofL (ω1, ω2), without loss of generality we may assume that
one of the lines is the constant zero line. Then, the other generalized lineω has the representa-
tion αω1 + βω2, with α2 + β2 > 0.

The first assertion of the theorem is equivalent to the property thatω has at most one zero. To
show this, assume indirectly thatω(ξ) andω(η) equal zero forξ 6= η; that is,

αω1(ξ) + βω2(ξ) = 0,

αω1(η) + βω2(η) = 0.
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By the Chebyshev property of(ω1, ω2), the base determinant of the system is nonvanishing,
therefore the system has only trivial solutionsα = 0 andβ = 0 which contradicts the property
α2 + β2 > 0.

An equivalent formulation of the second assertion is the following: ifω(ξ) = 0 for some
interior pointξ, thenω > 0 on one side ofξ while ω < 0 on the other. If this is not true, then,
according to the previous result and Bolzano’s theorem,ω is strictly positive (or negative) on
both sides ofξ. For simplicity, assume thatω(t) > 0 for t 6= ξ. Define the generalized lineω∗

by ω∗ := −βω1 + αω2. Then,(ω, ω∗) is also a Chebyshev system: ifx < y are elements ofI,
then ∣∣∣∣ ω(x) ω(ξ)

ω∗(x) ω∗(y)

∣∣∣∣ =

∣∣∣∣ α β
−β α

∣∣∣∣ · ∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
= (α2 + β2)

∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ > 0.

Therefore, taking the elementsx < ξ < y of I, we arrive at the inequalities

0 <

∣∣∣∣ ω(x) ω(ξ)
ω∗(x) ω∗(ξ)

∣∣∣∣ = ω(x)ω∗(ξ),

0 <

∣∣∣∣ ω(ξ) ω(y)
ω∗(ξ) ω∗(y)

∣∣∣∣ = −ω(y)ω∗(ξ),

which yields the contradiction thatω∗(ξ) is simultaneously positive and negative.
For the last assertion, notice thatω1, ω2 and the constant zero functions are special generalized

lines and apply the previous part of the theorem. �

The most important property ofL (ω1, ω2) guarantees the existence of a generalized line
“parallel” to the constant zero function, which itself is a generalized line as well (see below).
Moreover, as it can also be shown,L (ω1, ω2) fulfills the axioms of hyperbolic geometry.

Lemma 3.2. If (ω1, ω2) is a Chebyshev system on an intervalI, then there existsω ∈ L (ω1, ω2)
such thatω is positive onI◦.

Proof. If ω1 has no zero inI◦, thenω := ω1 or ω := −ω1 (according to the sign ofω1) will do.
Suppose thatω1(ξ) = 0 for someξ ∈ I◦. Due to Lemma 3.1, without loss of generality we may
assume that

ω1(x) < 0 (x < ξ, x ∈ I),

ω1(y) > 0 (y > ξ, y ∈ I).

Choose the elementsx < ξ < y of I. The Chebyshev property of(ω1, ω2) and the negativity of
ω1(x)ω2(y) implies the inequality

ω2(y)

ω1(y)
<

ω2(x)

ω1(x)
.

Hence

(3.1) α := sup
y>ξ

[
ω2(y)

ω1(y)

]
≤ inf

x<ξ

[
ω2(x)

ω1(x)

]
;

moreover, both sides are real numbers. We show that the generalized line defined byω :=
αω1 − ω2 is positive on the interior ofI.

First observe thatω takes a positive value at the pointξ. Indeed, by the definition ofω we
haveω(ξ) := αω1(ξ) − ω2(ξ) = −ω2(ξ); on the other hand, fory > ξ, the positivity ofω1(y)
and the Chebyshev property of(ω1, ω2) yields−ω2(ξ) > 0.
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If y > ξ, then the definition ofα implies

α ≥ ω2(y)

ω1(y)
;

multiplying both sides by the positiveω1(y) and rearranging the terms we get,ω(y) := αω1(y)−
ω2(y) ≥ 0.

If x < ξ, then inequality (3.1) gives that

α ≤ ω2(x)

ω1(x)
;

multiplying both sides by the negativeω1(x) and rearranging the obtained terms, we arrive at
the inequalityω(x) := αω1(x)− ω2(x) ≥ 0.

To complete the proof, it suffices to show thatω always differs from zero on the interior of
the domain. Assume indirectly thatω(η) := αω1(η) − ω2(η) = 0 for someη ∈ I◦. Clearly,
η 6= ξ sinceω(ξ) > 0. Therefore,ω1(η) 6= 0 andα can be expressed explicitly:

α =
ω2(η)

ω1(η)
.

If ξ < η, choosey ∈ I such thatη < y hold. By the positivity ofω1(η)ω1(y) and the Chebyshev
property of(ω1, ω2),

α =
ω2(η)

ω1(η)
<

ω2(y)

ω1(y)

which contradicts the definition ofα. Similarly, if ξ > η, choosex ∈ I such thatx < η is valid.
Then, the positivity ofω1(x)ω1(η) and the Chebyshev property of(ω1, ω2) imply the inequality

α =
ω2(η)

ω1(η)
>

ω2(x)

ω1(x)
,

which contradicts (3.1). �

As an important consequence of Lemma 3.2, a Chebyshev system can always be replaced
equivalently by a “regular” one. In other words, assuming positivity on the first component of a
Chebyshev system, as is required in many further results, is not an essential restriction. More-
over, the next lemma also gives a characterization of pairs of functions to form a Chebyshev
system.

Lemma 3.3. Let (ω1, ω2) be a Chebyshev system on an intervalI ⊂ R. Then, there exists a
Chebyshev system(ω∗

1, ω
∗
2) on I that possesses the following properties:

(i) ω∗
1 is positive onI◦;

(ii) ω∗
2/ω

∗
1 is strictly monotone increasing onI◦;

(iii) (ω1, ω2)-convexity is equivalent to(ω∗
1, ω

∗
2)-convexity.

Conversely, ifω1, ω2 : I → R are continuous functions such thatω1 is positive andω2/ω1 is
strictly monotone increasing, then(ω1, ω2) is a Chebyshev system overI.

Proof. Lemma 3.2 guarantees the existence of real constantsα andβ such thatαω1 + βω2 > 0
holds for allx ∈ I◦. Define the functionsω∗

1, ω
∗
2 : I → R by the formulae

ω∗
1 := αω1 + βω2, ω∗

2 := −βω1 + αω2.
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Choosing the elementsx < y of I and applying the product rule of determinants, we get∣∣∣∣ ω∗
1(x) ω∗

1(y)
ω∗

2(x) ω∗
2(y)

∣∣∣∣ =

∣∣∣∣ α β
−β α

∣∣∣∣ · ∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
= (α2 + β2)

∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ > 0.

Therefore,(ω∗
1, ω

∗
2) is also a Chebyshev system overI. Assuming thatω∗

1 is positive, as it can
easily be checked, the Chebyshev property of(ω∗

1, ω
∗
2) yields that the functionω∗

2/ω
∗
1 is strictly

monotone increasing on the interior ofI.
Lastly, letf : I → R be an arbitrary function andx < y < z be arbitrary elements ofI.

Then, by the product rule of determinants,∣∣∣∣∣∣
f(x) f(y) f(z)
ω∗

1(x) ω∗
1(y) ω∗

1(z)
ω∗

2(x) ω∗
2(y) ω∗

2(z)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
0 α β
0 −β α

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣
= (α2 + β2) ·

∣∣∣∣∣∣
f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ,
which shows that the functionf is generalized convex with respect to the Chebyshev system
(ω1, ω2) if and only if it is generalized convex with respect to the Chebyshev system(ω∗

1, ω
∗
2).

The proof of the converse assertion is a simple calculation, therefore it is omitted. �

The following result gives various characterizations of(ω1, ω2)-convexity via the monotonic-
ity of the generalized divided difference, the generalized support property and the “local” and
the “global” generalized chord properties.

Theorem 3.1.Let (ω1, ω2) be a Chebyshev system over an intervalI such thatω1 is positive on
I◦. The following statements are equivalent:

(i) f : I → R is (ω1, ω2)-convex;
(ii) for all elementsx < y < z of I we have that∣∣∣∣ f(y) f(z)

ω1(y) ω1(z)

∣∣∣∣∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣ ≤
∣∣∣∣ f(x) f(y)

ω1(x) ω1(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ ;
(iii) for all x0 ∈ I◦ there existα, β ∈ R such that

αω1(x0) + βω2(x0) = f(x0),

αω1(x) + βω2(x) ≤ f(x) (x ∈ I);

(iv) for all n ∈ N, x0, x1, . . . , xn ∈ I andλ1, . . . , λn ≥ 0 satisfying the conditions
n∑

k=1

λkω1(xk) = ω1(x0),

n∑
k=1

λkω2(xk) = ω2(x0),

we have that

f(x0) ≤
n∑

k=1

λkf(xk);
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(v) for all x0, x1, x2 ∈ I andλ1, λ2 ≥ 0 satisfying the conditions

λ1ω1(x1) + λ2ω1(x2) = ω1(x0),

λ1ω2(x1) + λ2ω2(x2) = ω2(x0),

we have that

f(x0) ≤ λ1f(x1) + λ2f(x2);

(vi) for all elementsx < p < y of I

f(p) ≤ αω1(p) + βω2(p),

where the constantsα, β are the solutions of the system of linear equations

f(x) = αω1(x) + βω2(x),

f(y) = αω1(y) + βω2(y).

Proof. (i) ⇒ (ii). Assume indirectly that(ii) is not true. Then, considering the positivity of
the denominators, there exist elementsx < y < z of I such that the inequality∣∣∣∣ f(y) f(z)

ω1(y) ω1(z)

∣∣∣∣ · ∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ > ∣∣∣∣ f(x) f(y)
ω1(x) ω1(y)

∣∣∣∣ · ∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣
holds or equivalently,

f(y)

(
ω1(x)

∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣+ ω1(z)

∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣)
> ω1(y)

(
f(x)

∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣+ f(z)

∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣) .

Subtracting

f(y)ω1(y)

∣∣∣∣ ω1(x) ω1(z)
ω2(x) ω2(z)

∣∣∣∣
from both sides and applying the expansion theorem “backwards”, we get

f(y)

∣∣∣∣∣∣
ω1(x) ω1(y) ω1(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ > ω1(y)

∣∣∣∣∣∣
f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ .
The (ω1, ω2)-convexity off implies that the right hand side of the inequality is nonnegative,
while the left hand side equals zero, which is a contradiction.

(ii) ⇒ (iii). Fix x0 ∈ I◦. Then, for all elementsξ < x0 < x of I,

−

∣∣∣∣ f(ξ) f(x0)
ω1(ξ) ω1(x0)

∣∣∣∣∣∣∣∣ ω1(ξ) ω1(x0)
ω2(ξ) ω2(x0)

∣∣∣∣ ≤ −

∣∣∣∣ f(x0) f(x)
ω1(x0) ω1(x)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣
holds, therefore

β := inf
x>x0

−
∣∣∣∣ f(x0) f(x)

ω1(x0) ω1(x)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣
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is a real number. The positivity assumption onω1 guarantees that the coefficientα can be chosen
such thatαω1(x0) + βω2(x0) = f(x0) is satisfied. Rewrite the desired inequalityαω1(x) +
βω2(x) ≤ f(x) in the equivalent form

(3.2) β

∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣+ ∣∣∣∣ f(x0) f(x)
ω1(x0) ω1(x)

∣∣∣∣ ≤ 0.

The definition ofβ guarantees that it is valid ifx0 < x. Assume thatx < x0 and chooseξ ∈ I
such thatx < x0 < ξ hold. Then, applying(ii), we have the inequality∣∣∣∣ f(x0) f(ξ)

ω1(x0) ω1(ξ)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(ξ)
ω2(x0) ω2(ξ)

∣∣∣∣ ≤
∣∣∣∣ f(x) f(x0)

ω1(x) ω1(x0)

∣∣∣∣∣∣∣∣ ω1(x) ω1(x0)
ω2(x) ω2(x0)

∣∣∣∣ .
Observe that the denominator of the right hand side is positive, therefore, after rearranging this
inequality, we get

−

∣∣∣∣ f(x0) f(ξ)
ω1(x0) ω1(ξ)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(ξ)
ω2(x0) ω2(ξ)

∣∣∣∣
∣∣∣∣ ω1(x0) ω1(x)

ω2(x0) ω2(x)

∣∣∣∣+ ∣∣∣∣ f(x0) f(x)
ω1(x0) ω1(x)

∣∣∣∣ ≤ 0,

which, and the choice ofβ immediately implies (3.2).
(iii) ⇒ (iv). First assume thatx0 = x1 = · · · = xn. We recall thatω1(x0) andω2(x0)

cannot be equal to zero simultaneously due to Lemma 3.1; therefore one of the conditions gives
the identity

∑n
k=1 λk = 1, and the inequality to be proved trivially holds. Ifx0, x1, . . . , xn are

distinct points ofI, then it necessarily followsx0 ∈ I◦. Indeed, ifinf(I) ∈ I and indirectly
x0 = inf(I), then we have the inequalities

ω1(x0)ω2(xk)− ω1(xk)ω2(x0) ≥ 0

for all k = 1, . . . , n since(ω1, ω2) is a Chebyshev system onI; furthermore, at least one of
them is strict. Multiplying thekth inequality by the positiveλk and summing from1 to n, we
obtain

ω1(x0)
n∑

k=1

λkω2(xk) > ω2(x0)
n∑

k=1

λkω1(xk).

But, due to the conditions, both sides have the common valueω1(x0)ω2(x0), which is a contra-
diction. An analogous argument gives that the casex0 = sup(I) is also impossible, therefore it
follows thatx0 ∈ I◦.

Chooseα, β ∈ R so that the relations

αω1(x0) + βω2(x0) = f(x0),

αω1(x) + βω2(x) ≤ f(x) (x ∈ I)

are valid. Then, substitutingx = xk into the last inequality and applying the conditions, we get
that

n∑
k=1

λkf(xk) ≥
n∑

k=1

λkαω1(xk) +
n∑

k=1

λkβω2(xk)

= αω1(x0) + βω2(x0) = f(x0),

which gives the desired implication.
(iv) ⇒ (v). Taking the particular casen = 2 in (iv), we arrive at(v).
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(v) ⇒ (vi). According to Cramer’s rule, for all elementsx < p < y of I, the system of linear
equations

λ1ω1(x) + λ2ω1(y) = ω1(p),

λ1ω2(x) + λ2ω2(y) = ω2(p),

has unique nonnegative solutionsλ1 andλ2. Therefore, using the definition ofα andβ,

f(p) ≤ λ1f(x) + λ2f(y)

= λ1

(
αω1(x) + βω2(x)

)
+ λ2

(
αω1(y) + βω2(y)

)
= α

(
λ1ω1(x) + λ2ω1(y)

)
+ β

(
λ1ω2(x) + λ2ω2(y)

)
= αω1(p) + αω2(p).

(vi) ⇒ (i). Expressing the unknownsα andβ with ωj(x), ωj(y) andωj(p), the inequality
f(p) ≤ αω1(p) + βω2(p) can be rewritten into the form∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ f(p) ≤
∣∣∣∣ f(x) f(y)

ω2(x) ω2(y)

∣∣∣∣ω1(p) +

∣∣∣∣ f(x) f(y)
ω1(x) ω1(y)

∣∣∣∣ω2(p)

or equivalently

0 ≤

∣∣∣∣∣∣
f(x) f(p) f(y)
ω1(x) ω1(p) ω1(y)
ω2(x) ω2(p) ω2(y)

∣∣∣∣∣∣ ,
which completes the proof. �

In the particular setting whereω1(x) := 1 andω2(x) := x, this theorem reduces to the well
known characterization properties of standard convex functions. Now the last two assertions
coincide: both of them state that the function’s graph is under the chord joining the endpoints of
the graph. Let us note that in most of the literature, the notion of (standard) convexity is defined
exactly by this property (see the last assertion of the obtained corollary).

Corollary 3.1. Let I ⊂ R be an interval. The following statements are equivalent:

(i) f : I → R is convex (in the standard sense);
(ii) for all elementsx < y < z of I we have that

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
;

(iii) for all x0 ∈ I◦ there existα, β ∈ R such that

α + βx0 = f(x0), α + βx ≤ f(x) (x ∈ I);

(iv) for all n ∈ N, x0, x1, . . . , xn ∈ I andλ1, . . . , λn ≥ 0 satisfying the conditions
n∑

k=1

λk = 1,
n∑

k=1

λkxk = x0,

we have that

f(x0) ≤
n∑

k=1

λkf(xk);

(v) for all x0, x1, x2 ∈ I andλ1, λ2 ≥ 0 satisfying the conditions

λ1 + λ2 = 1, λ1x1 + λ2x2 = x0,

we have that
f(x0) ≤ λ1f(x1) + λ2f(x2).
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If the base functionsω1 andω2 are twice differentiable with a positive Wronski determinant,
then a twice differentiable functionf : I → R is (ω1, ω2)-convex if and only if the Wronski
determinant of the system(f, ω1, ω2) is nonnegative (Bonsall, [2]). This result can also be
deduced from Theorem 3.1.

As it is well known, (standard) convex functions are exactly those ones that can be obtained
as the pointwise supremum of families of affine functions. As a direct consequence (and also
another application) of Theorem 3.1, an analogous statement holds for(ω1, ω2)-convex func-
tions.

Corollary 3.2. Let (ω1, ω2) be a Chebyshev system over an open intervalI. Then, a function
f : I → R is generalized convex with respect to(ω1, ω2) if and only if

f(x) = sup{ω(x) |ω ∈ L (ω1, ω2), ω ≤ f }.

Proof. Assertion(iii) of Theorem 3.1 immediately implies the representation above. For the
sufficiency part, assertion(v) of Theorem 3.1 is applied. Fix the elementx0 of the open interval
I. Take a generalized lineω = αω1 + βω2 such thatω ≤ f , with the elementsx1, x2 of I and
the nonnegative coefficientsλ1, λ2 that fulfill the conditions

λ1ω1(x1) + λ2ω1(x2) = ω1(x0)

λ1ω2(x1) + λ2ω2(x2) = ω2(x0).

Then,

λ1f(x1) + λ2f(x2) ≥ λ1ω(x1) + λ2ω(x2)

= λ1

(
αω1(x1) + βω2(x1)

)
+ λ2

(
αω1(x2) + βω2(x2)

)
= α

(
λ1ω1(x1) + λ2ω1(x2)

)
+ β

(
λ1ω2(x1) + λ2ω2(x2)

)
= αω1(x0) + βω2(x0) = ω(x0).

That is,λ1f(x1) + λ2f(x2) ≥ ω(x0) for all ω ≤ f , hence, according to the representation, it
follows thatλ1f(x1) + λ2f(x2) ≥ f(x0). Thereforef is convex with respect to(ω1, ω2). �

3.2. Connection with standard convexity. The convexity notion induced by two dimensional
Chebyshev systems turns out to be always reducible to standard convexity with the help of a
composite function. This connection enables us to generalize many classical results for the case
of (ω1, ω2)-convexity directly.

Theorem 3.2.Let(ω1, ω2) be a Chebyshev system on an open intervalI such thatω1 is positive.
The functionf : I → R is (ω1, ω2)-convex if and only if the functiong : ω2/ω1(I) → R defined
by the formula

g :=
f

ω1

◦
(

ω2

ω1

)−1

is convex in the standard sense.

Proof. In this case the functionω2/ω1 is continuous and strictly monotone increasing, according
to Lemma 3.3. Therefore, the image of the intervalI by the functionω2/ω1 is a nonempty open
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interval. Consider the identity∣∣∣∣∣∣
f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣
= ω1(x)ω1(y)ω1(z)

∣∣∣∣∣∣
(f/ω1)(x) (f/ω1)(y) (f/ω1)(z)

1 1 1
(ω2/ω1)(x) (ω2/ω1)(y) (ω2/ω1)(z)

∣∣∣∣∣∣
= ω1(x)ω1(y)ω1(z)

∣∣∣∣∣∣
g(u) g(v) g(w)

1 1 1
u v w

∣∣∣∣∣∣
where

u = (ω2/ω1)(x) v = (ω2/ω1)(y) w = (ω2/ω1)(z).

The positivity ofω1 forces both sides to be simultaneously positive, negative or zero. That is, the
functionf is (ω1, ω2)-convex if and only if the functiong is convex in the standard sense.�

Theorem 3.2 yields strong regularity properties for generalized convexity. For example,
(ω1, ω2)-convex functions defined on compact intervals are integrable, which is essential in
formulating the main result of the section.

Theorem 3.3. Let (ω1, ω2) be a Chebyshev system on an intervalI. If a functionf : I →
R is (ω1, ω2)-convex, then it is continuous onI◦. Moreover,f is bounded on each compact
subinterval ofI.

Proof. Without loss of generality we may assume thatω1 is positive onI◦. If the functionf is
(ω1, ω2)-convex onI, then the composite functiong in the previous theorem is convex in the
standard sense onJ := ω2/ω1(I). Therefore, by the well known regularity properties of convex
functions,g is continuous onJ◦. On the other hand, we have that

f = ω1 · g ◦
(

ω2

ω1

)
,

and the right hand side is continuous onI◦ whence the continuity of the functionf follows.
To prove thatf is bounded on the compact subinterval[a, b] of I, we shall apply Theorem 3.1.

Take a generalized line which supportsf at an arbitrary pointx0 ∈ I◦. Then, inequality(iii)
implies thatf is bounded from below on thewholeintervalI. On the other hand, puttingx := a
andy := b into (vi), we get thatf is also bounded by a certain generalized line from above on
[a, b]. Hencef is bounded. �

Definition 3.1. Let (ω1, ω2) be a Chebyshev system on an intervalI, andω ∈ L (ω1, ω2) a
generalized line which is positive onI◦. A functionf : I → R is calledgeneralizedω-convex
with respect to(ω1, ω2) if, for all elementsx < y < z of I, the following inequality holds:∣∣∣∣∣∣

f(x) + ω(x) f(y)− ω(y) f(z) + ω(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ≥ 0.

Substitutingω1(x) := 1, ω2(x) := x andω := ε/2, the definition gives the notion ofε-
convexity. By well known results,ε-convexity is stable: everyε-convex function is “close” to
a (standard) convex function. As another application of Theorem 3.2, we prove an analogous
result for(ω1, ω2)-convex functions.
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Corollary 3.3. Let(ω1, ω2) be a Chebyshev system on an intervalI furthermoreω ∈ L (ω1, ω2)
be a generalized line which is positive onI◦. A functionf : I → R is generalizedω-convex with
respect to(ω1, ω2) if and only if there exist functionsf, g : I → R such thatg is (ω1, ω2)-convex,
‖h‖ ≤ ‖ω‖, andf = g + h.

Proof. Assume thatω has the representationω = αω1 + βω2 and define the generalized lines
ω∗

1 andω∗
2 by ω∗

1 := αω1 + βω2 andω∗
2 := −βω1 + αω2, respectively. Then, according to

Lemma 3.3, the functionω∗
2/ω

∗
1 is strictly monotone increasing and the generalizedω-convexity

of f is equivalent to the inequality∣∣∣∣∣∣
f(x) + ω∗

1(x) f(y)− ω∗
1(y) f(z) + ω∗

1(z)
ω∗

1(x) ω∗
1(y) ω∗

1(z)
ω∗

2(x) ω∗
2(y) ω∗

2(z)

∣∣∣∣∣∣ ≥ 0.

Dividing both sides by the positiveω∗
1(x)ω∗

1(y)ω∗
1(z), then substituting the argumentsu =

(ω∗
2/ω

∗
1)(x), v = (ω∗

2/ω
∗
1)(y) andw = (ω∗

2/ω
∗
1)(z), we get the inequality∣∣∣∣∣∣

F (u) + 1 F (v)− 1 F (w) + 1
1 1 1
u v w

∣∣∣∣∣∣ ≥ 0

where

F :=
f

ω∗
1

◦
(

ω∗
2

ω∗
1

)−1

.

That is,F satisfies the inequality ofε-convexity withε = 1. Therefore, there exist functions
G, H : I → R such thatG is convex (in the standard sense),‖H‖ ≤ 1 andF = G + H or
equivalently,

f = ω∗
1 ·G ◦

(
ω∗

2

ω∗
1

)
+ ω∗

1 ·H ◦
(

ω∗
2

ω∗
1

)
=: g + h.

Then, Theorem 3.2 and Lemma 3.3 guarantee the(ω1, ω2)-convexity ofg, while simple calcu-
lations imply‖h‖ ≤ ‖ω‖. �

3.3. Hermite–Hadamard-type inequalities. The main result provides Hermite–Hadamard-
type inequalities for generalized2-convex functions.

Theorem 3.4. Let (ω1, ω2) be a Chebyshev system on an interval[a, b] such thatω1 is positive
on ]a, b[, furthermore, letρ : [a, b] → R be a positive integrable function. Define the pointξ
and the coefficientsc, c1, c2 by the formulae

ξ =

(
ω2

ω1

)−1
(∫ b

a
ω2ρ∫ b

a
ω1ρ

)
, c =

∫ b

a
ω1ρ

ω1(ξ)

and

c1 =

∣∣∣∣∣
∫ b

a
ω1ρ ω1(b)∫ b

a
ω2ρ ω2(b)

∣∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣ , c2 =

∣∣∣∣∣ ω1(a)
∫ b

a
ω1ρ

ω2(a)
∫ b

a
ω2ρ

∣∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣ .

If f : [a, b] → R is an (ω1, ω2)-convex function, then the following Hermite–Hadamard-type
inequality holds

cf(ξ) ≤
∫ b

a

fρ ≤ c1f(a) + c2f(b).
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Proof. By the definitions of the pointξ and the constantc, we have the formulae∫ b

a
ω2ρ∫ b

a
ω1ρ

=
ω2(ξ)

ω1(ξ)

and ∫ b

a

ω1ρ = cω1(ξ),

which yields the identity ∫ b

a

ω2ρ = cω2(ξ).

That is, the left hand side of the Hermite–Hadamard-type inequality to be proved is exact for
f = ω1 andf = ω2, respectively. Letf : [a, b] → R be an arbitrary(ω1, ω2)-convex function
and chooseα, β ∈ R such that the relations

αω1(ξ) + βω2(ξ) = f(ξ),

αω1(x) + βω2(x) ≤ f(x),

are satisfied for allx ∈ [a, b]. By Theorem 3.1, such real numbers exist sinceξ is an interior
point of the domain. Multiplying the last inequality by the positive weight functionρ, we arrive
at ∫ b

a

fρ ≥ α

∫ b

a

ω1ρ + β

∫ b

a

ω2ρ = α
(
cω1(ξ)

)
+ β

(
cω2(ξ)

)
= cf(ξ)

which results in the left hand side inequality.
To verify the right hand side one, observe first that the coefficientsc1 andc2 are the solutions

of the following system of linear equations∫ b

a

ω1ρ = c1ω1(a) + c2ω1(b),∫ b

a

ω2ρ = c1ω1(a) + c2ω2(b).

In other words, the right hand side of the Hermite–Hadamard-inequality is exact, again, forf =
ω1 andf = ω2. Let f : [a, b] → R be an arbitrary(ω1, ω2)-convex function. By Theorem 3.1, if
the real numbersα andβ are the solutions of the system of linear equations

f(a) = αω1(a) + βω2(a),

f(b) = αω1(b) + βω2(b),

then

f(x) ≤ αω1(x) + βω2(x)

for all x ∈ [a, b]. Multiplying this inequality by the positive weight functionρ, we get that∫ b

a

fρ ≤ α

∫ b

a

ω1ρ + β

∫ b

a

ω2ρ

= α
(
c1ω1(a) + c2ω1(b)

)
+ β

(
c1ω2(a) + c2ω2(b)

)
= c1

(
αω1(a) + βω2(a)

)
+ c2

(
αω1(b) + βω2(b)

)
= c1f(a) + c2f(b),

thus the proof is complete. �
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3.4. Applications. Simple calculations show that by settingω1(x) := 1, ω2(x) := x andρ ≡ 1,
Theorem 3.4 reduces to the classical Hermite–Hadamard inequality.

Corollary 3.4. If f : [a, b] → R is a (standard) convex function, then

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

The subsequent corollaries present further Hermite–Hadamard-type inequalities for general-
ized convex functions where the underlying Chebyshev systems of the induced convexity are
the hyperbolic, trigonometric, exponential and power systems (to see that the pairs(ω1, ω2)
form a Chebyshev system in each case, consult the converse part of Lemma 3.3).

Corollary 3.5. If f : [a, b] → R is a (cosh, sinh)-convex function, then

2 sinh

(
b− a

2

)
f

(
a + b

2

)
≤
∫ b

a

f(x)dx ≤ tanh

(
b− a

2

)
(f(a) + f(b)) .

Proof. If ω1 := cosh andω2 := sinh, thenω1 is positive andω2/ω1 = tanh is strictly monotone
increasing; hence, according to Lemma 3.3,(ω1, ω2) is a Chebyshev system and(ω2/ω1)

−1 =
artanh. Applying the addition properties of hyperbolic functions for the identitiesb = (b +
a)/2 + (b− a)/2 anda = (b + a)/2− (b− a)/2, the integrals ofω1 andω2 can be written into
product form via the formulae∫ b

a

cosh xdx = sinh(b)− sinh(a) = 2 cosh

(
b + a

2

)
sinh

(
b− a

2

)
,∫ b

a

sinh xdx = cosh(b)− cosh(a) = 2 sinh

(
b + a

2

)
sinh

(
b− a

2

)
.

Therefore,

ξ = artanh

(∫ b

a
sinh xdx∫ b

a
cosh xdx

)
=

b + a

2

and

c =

∫ b

a
cosh xdx

cosh ξ
= 2 sinh

b + a

2
.

To determine the coefficients of the right hand side, first we calculate the numerator ofc1:∣∣∣∣ 2 cosh
(

b+a
2

)
sinh

(
b−a
2

)
cosh b

2 sinh
(

b+a
2

)
sinh

(
b−a
2

)
sinh b

∣∣∣∣
= 2 sinh

(
b− a

2

)(
cosh

(
b + a

2

)
sinh b− sinh

(
b + a

2

)
cosh b

)
= 2 sinh

(
b− a

2

)
sinh

(
b− b + a

2

)
= 2 sinh2

(
b− a

2

)
.

Similarly, the numerator of the coefficientc2 can be obtained as follows:∣∣∣∣ cosh a 2 cosh
(

b+a
2

)
sinh

(
b−a
2

)
sinh a 2 sinh

(
b+a
2

)
sinh

(
b−a
2

) ∣∣∣∣
= 2 sinh

(
b− a

2

)(
sinh

(
b + a

2

)
cosh a− cosh

(
b + a

2

)
sinh a

)
= 2 sinh

(
b− a

2

)
sinh

(
b + a

2
− a

)
= 2 sinh2

(
b− a

2

)
.
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On the other hand, the denominators in both cases coincide and have the common value∣∣∣∣ cosh a cosh b
sinh a sinh b

∣∣∣∣ = sinh(b− a) = 2 sinh

(
b− a

2

)
cosh

(
b− a

2

)
,

therefore

c1 = c2 = tanh

(
b− a

2

)
.

�

Replacing the Chebyshev system(cosh, sinh) with (cos, sin), the obtained Hermite–Hadamard-
type inequality is analogous to the previous one due to the similar additional properties of
trigonometric and hyperbolic functions.

Corollary 3.6. If f : [a, b] ⊂]− π
2
, π

2
[→ R is a (cos, sin)-convex function, then

2 sin

(
b− a

2

)
f

(
a + b

2

)
≤
∫ b

a

f(x)dx ≤ tan

(
b− a

2

)
(f(a) + f(b)) .

Observe that both of the previous two Hermite–Hadamard-type inequalities involve the mid-
point of the domain; moreover, dividing byb− a and taking the limita → b, the coefficient of
the left hand sides tends to1, while the coefficient of the right hand sides tends to1/2. Therefore
these inequalities can be considered as the “local” version of the Hermite–Hadamard inequality.

We say that a functionf : I → R is log-convexif the composite functionf◦log : exp(I) → R
is convex (in the standard sense). In terms of generalized convexity, log-convex functions are
exactly the(1, exp)-convex ones (consult Theorem 3.2). The next corollary gives a Hermite–
Hadamard-type inequality for log-convex functions ([9], [10]).

Corollary 3.7. If f : [a, b] → R is a (1, exp)-convex function, then

(b− a)f

(
log

exp(b)− exp(a)

b− a

)
≤
∫ b

a

f(x)dx

≤
(

(b− a) exp(b)

exp(b)− exp(a)
− 1

)
f(a) +

(
1− (b− a) exp(a)

exp(b)− exp(a)

)
f(b).

The last corollary concerning the case of “power convexity” also reduces to the classical
Hermite–Hadamard inequality on substitutingp = 0 andq = 1:

Corollary 3.8. If p < q, p, q 6= −1 andf : [a, b] ⊂]0,∞[→ R is an(xp, xq)-convex function,
then(

bp+1 − ap+1

p + 1

)q(
q + 1

bq+1 − aq+1

)p

f

(
q−p

√
(p + 1)(bq+1 − aq+1)

(q + 1)(bp+1 − ap+1)

)

≤
∫ b

a

f(x)dx

≤
(bp+1−ap+1)bq

p+1
− (bq+1−aq+1)bp

q+1

apbq − aqbp
f(a) +

(bq+1−aq+1)ap

q+1
− (bp+1−ap+1)aq

q+1

apbq − aqbp
f(b).

The proofs of the last three corollaries need similar calculations as the first one, therefore
they are omitted.
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4. GENERALIZED CONVEXITY I NDUCED BY CHEBYSHEV SYSTEMS

In this section we formulate Hermite–Hadamard-type inequalities for generalized convex
functions where the underlying Chebyshev system of the induced convexity isarbitrary. The
proofs of the main results are based on the Krein–Markov theory of moment spaces induced
by Chebyshev systems. According to this theory, the vector integral of a Chebyshev system
can uniquely be represented as the linear combination of the values of the system in certain
base points of the domain. The number of the points and also the points themselves, depend
only on the Chebyshev system and its dimension: it turns out that the cases of odd and even
order convexity must be investigated separately. In fact, this is exactly the deeper reason for
the analogous phenomenon in the case of polynomial convexity. Once the base points of the
representations are determined, its coefficients are obtained as the solutions of a system of linear
equations. With the help of the representations and the notion of generalized convexity, the
Hermite–Hadamard-type inequalities can be verified using integration and pure linear algebraic
methods.

In the previous sections when the basis or the dimension of the studied Chebyshev systems
was quite special, the base points of the Hermite–Hadamard-type inequalities could be explic-
itly given. Unfortunately, under the present general circumstances, we can guarantee only the
existence(and the uniqueness) of the base points, butcannot give any explicit formulae for
them.

Lastly, motivated by Rolle’s mean-value theorem, an alternative and elementary approach
is presented for the cases when the Hermite–Hadamard-type inequalities involve at most one
interior base point of the domain. Some examples are also presented of these particular cases.

4.1. Characterizations and regularity properties. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev
system over an intervalI and denote the set of all linear combinations of its members by
L (ω1, . . . , ωn). A function is calledgeneralized polynomial(belonging to the system in ques-
tion) if it is the element of the linear spanL (ω1, . . . , ωn). In terms of generalized polynomials,
generalized convexity can be characterized in a geometrical manner. Namely, a function is
generalized convex if and only if it intersects its generalized polynomial that interpolates the
function in any prescribed points alternately. (The number of the points depends on the dimen-
sion of the underlying Chebyshev system.) More precisely, we have the following

Theorem 4.1. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system over an intervalI. Then, for a
functionf : I → R, the following statements are equivalent:

(i) f is generalized convex with respect toωωωωωωωωω;
(ii) for all y1 < · · · < yn in I, the generalized polynomialω of ω1, . . . , ωn determined

uniquely by the interpolation conditions

f(yk) = ω(yk) (k = 1, . . . , n)

satisfies the inequalities

(−1)n+k(f(y)− ω(y)) ≥ 0 (yk < y < yk+1, k = 0, . . . , n)

under the conventionsy0 := inf I andyn+1 := sup I;
(iii) keeping the previous notations and settings, for fixedk ∈ {0, . . . , n}, the following

inequality holds

(−1)n+k(f(y)− ω(y)) ≥ 0 (yk ≤ y ≤ yk+1).

Proof. First of all, in order to simplify the proof, two useful formulas are derived. Denote the
n − 1 tuple obtained by dropping thekth component ofωωωωωωωωω by ωωωωωωωωωk, and define the determinants
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D0, D1, . . . , Dn, and the generalized polynomialω of ω1, . . . , ωn by

D0 :=
∣∣ ωωωωωωωωω(y1) · · · ωωωωωωωωω(yn)

∣∣
Dk :=

∣∣∣∣ f(y1) · · · f(yn)
ωωωωωωωωωk(y1) · · · ωωωωωωωωωk(yn)

∣∣∣∣
ω :=

n∑
k=1

(−1)k+1Dk

D0

ωk.

Due to the Chebyshev property ofωωωωωωωωω, the determinantD0 is positive, hence the definition of
ω is correct. Fixy ∈ I. Applying the expansion theorem to the first column of the following
determinant, we get the identity

(4.1)

∣∣∣∣ f(y) f(y1) · · · f(yn)
ωωωωωωωωω(y) ωωωωωωωωω(y1) · · · ωωωωωωωωω(yn)

∣∣∣∣ = D0(f(y)− ω(y)).

Moreover, if yk ≤ y ≤ yk+1 and (x0, x1, . . . , xn) denotes the increasing rearrangement of
(y; y1, . . . , yn), the previous identity can be written into the form

(4.2)

∣∣∣∣ f(x0) f(x1) · · · f(xn)
ωωωωωωωωω(x0) ωωωωωωωωω(x1) · · · ωωωωωωωωω(xn)

∣∣∣∣ = (−1)kD0(f(y)− ω(y)).

For the implication(i) =⇒ (ii), observe that (4.1) guarantees the required interpolation
property ofω in the pointsy1, . . . , yn. Clearly,ω is uniquely determined. Suppose thatf : I →
R is generalizedn-convex with respect toωωωωωωωωω. Then, the positivity ofD0 and formula (4.2) yield
the inequalities to be proved. The implication(ii) =⇒ (iii) is trivial. The proof of(iii) =⇒ (i)
is completely the same as the proof of the first assertion. �

In the standard setting and fixingk = 1, assertion(iii) gives the classical definition of
standard convexity: a function is convex (in the standard sense) if and only if it is “under”
the chord of the graph. Moreover, substitutingn = 2, we also get a new characterization of
generalized2-convexity that completes Theorem 3.1. However, the most important application
of Theorem 4.1 guarantees strong regularity properties for generalized convex functions.

Theorem 4.2.Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system over an intervalI. If f : I → R is
a generalizedn-convex function with respect to this system andn ≥ 2, thenf is continuous on
the interior ofI. Furthermore,f is bounded on each compact subinterval ofI.

Proof. Choosey0 ∈ I◦ and fix x0 < x1 < · · · < xn in I so thatx1 = y0 hold. Denote
the generalized polynomials ofω1, . . . , ωn that interpolateω0 in the pointsx0 . . . , xn−1 and
x1, . . . , xn by ω(1) andω(2), respectively. We assume thatn is even (the argument in the odd
case is analogous). Then, according to(ii) of Theorem 4.1, we have the inequalities

ω(1)(y) ≥ ω0(y) ≥ ω(2)(y) y ∈ [x0, x1],

ω(1)(y) ≤ ω0(y) ≤ ω(2)(y) y ∈ [x1, x2].

On the other hand,ω(1)(y0) = ω0(y0) andω(2)(y0) = ω0(y0). Therefore, due to the continuity
of the generalized polynomialsω(1) andω(2), we get that both the left and right hand side limits
of ω0 exist at the pointy0 and

lim
y→yo−0

ω0(y) = ω0(y0),

lim
y→yo+0

ω0(y) = ω0(y0),

which yields the continuity ofω0 at the interior pointy0 of I.
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To prove the second assertion, we may assume thatI = [a, b]. It is sufficient to show thatω0

is locally bounded at the endpoints ofI. Fix x0 < x1 < · · · < xn in I so thatx0 = a hold, and
denote the generalized polynomials ofω1, . . . , ωn that interpolateω0 in the pointsx0 . . . , xn−1

andx1, . . . , xn by ω(1) andω(2), respectively. We assume thatn is even (the odd case is very
similar). Then, by the previous theorem again, we have the inequalities

ω(1)(y) ≥ ω0(y) ≥ ω(2)(y) y ∈ [x0, x1].

On the other hand, the functionsω(1) andω(2) are continuous, therefore bounded on[a, b]. Hence
ω0 is bounded in a right neighborhood of the endpointa. It can be similarly proved thatω0 is
locally bounded at the left endpointb. �

In particular, generalized convex functions are integrable on any compact subset of the do-
main. Let us also mention that the special casen = 2 gives the statement of Theorem 3.3 via
another approach in the proof.

4.2. Moment spaces induced by Chebyshev systems.The geometric study of moment spaces
induced by Chebyshev systems was systematically developed by M. G. Krein. Independently
and simultaneously, S. Karlin and L. S. Shapley elaborated the geometry of moment spaces
induced by the polynomial system. Some of the results of their research play a key role in
further investigations.

Definition 4.1. Let ωωωωωωωωω := (ω1, . . . , ωn) be a Chebyshev system on[a, b] and denote the set of all
nondecreasing right continuous functions defined on[a, b] byB([a, b]). The set

Mn :=

{
c ∈ Rn

∣∣∣ c =

∫ b

a

ωωωωωωωωωdσ, σ ∈ B([a, b])

}
is called themoment space ofωωωωωωωωω.

It can be shown thatMn is a closed convex cone. More precisely, it is the smallest closed
convex cone that contains the parameterized curveωωωωωωωωω(t) wheret traverses the interval[a, b]. For
details, see [16, pp. 38-41]. The following notion makes the formulation of many theorems
quite convenient.

Definition 4.2. TheindexI(c) of a pointc ∈ Mn is the minimal number of pointsξ1, . . . , ξn0

in a representation

c =

n0∑
k=1

αkωωωωωωωωω(ξk)

under the convention thatωωωωωωωωω(a) and ωωωωωωωωω(b) are counted with half multiplicity, whileωωωωωωωωω(ξ) for
ξ ∈]a, b[ receives a full count. The pointsξ1, . . . , ξn0 are called therootsof the representation.

By the celebrated theorem of Carathéodory (see [37]), each point belonging to the conical
hull of a given subset ofRn can be represented as a cone combination involving at mostn
points of the subset. Due to the Chebyshev property ofωωωωωωωωω, a surprisingly better upper bound can
be established: it turns out that the elements ofMn are cone combinations of approximately
n/2 points of the range ofωωωωωωωωω. More precisely, the boundary and the interior ofMn, denoted
by BdMn and IntMn, can be characterized via the subsequent two theorems due to Krein and
Markov.

Theorem C. ([16, Theorem 2.1. p. 42])A vectorc ∈ Mn is a boundary point ofMn if and only
if I(c) < n/2. Moreover, everyc ∈ BdMn admits a unique representation

c =

n0∑
k=1

αkωωωωωωωωω(ξk) (ξk ∈ [a, b], αk > 0, k = 1, . . . , n0)
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wheren0 ≤ n+1
2

.

Theorem D. ([16, Theorem 3.1. p. 44; Remark 3.1. pp. 45-46; Corollary 3.1. p. 47.])For each
c ∈ Int Mn there exist precisely two representations of indexI(c) = n/2. Distinguishing the
even and odd cases, the representations in question are the following.
Casen = 2m:

c =
m∑

k=1

αkωωωωωωωωω(ξk) ( ξk ∈]a, b[ ),

c = β0ωωωωωωωωω(a) +
m−1∑
k=1

βkωωωωωωωωω(ηk) + βmωωωωωωωωω(b) ( ηk ∈]a, b[ );

Casen = 2m + 1:

c = α0ωωωωωωωωω(a) +
m∑

k=1

αkωωωωωωωωω(ξk) ( ξk ∈]a, b[ ),

c =
m∑

k=1

βkωωωωωωωωω(ηk) + βm+1ωωωωωωωωω(b) ( ηk ∈]a, b[ ).

The roots of the representations in both cases strictly interlace.

Let I ⊂ R be a real interval andωωωωωωωωω := (ω1, . . . , ωn) be a Chebyshev system overI. Then, for
pairwise distinct elementst1, . . . , tn of I, the vectorsωωωωωωωωω(t1), . . . , ωωωωωωωωω(tn) are linearly independent.
This simple observation immediately implies

Theorem 4.3. The coefficients and the roots of the representations above are uniquely deter-
mined.

Now we present a sufficient condition for a pointc to belong to the interior of the setMn.
This condition guarantees that the inequalities of the main results have exactly the required
form.

Theorem 4.4. Let ωωωωωωωωω = (ω1, . . . , ωn) be a Chebyshev system on[a, b] and letρ : [a, b] → R be
a positive integrable function. Then,

c :=

∫ b

a

ωωωωωωωωωρ ∈ Int Mn.

Proof. Let us recall thatMn is a closed subset ofRn. On the other hand, the positivity ofρ
yields c ∈ Mn, therefore it suffices to prove thatc 6∈ BdMn. Assume indirectly thatc ∈
BdMn. We shall distinguish two cases according to the parity ofn.

Casen = 2m + 1. The indirect assumption and Theorem C impliesI(c) ≤ m sinceI(c)
increases at most1/2. For simplicity, assume thatI(c) = m. Then there are two further
possibilities: the representation ofc involves eitherm pairwise distinct interior base points
ξ1 < · · · < ξm or m − 1 pairwise distinct interior base pointsξ1 < · · · < ξm−1 plus both the
endpointsa andb, respectively. In the first case we have the representation

c =
m∑

k=1

αkωωωωωωωωω(ξk).

Due to the Chebyshev property ofωωωωωωωωω and the positivity ofρ, we arrive at

0 <
∣∣ ωωωωωωωωω(t1)ρ(t1) ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(tm)ρ(tm) ωωωωωωωωω(ξm) ωωωωωωωωω(tm+1)ρ(tm+1)

∣∣
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for tk ∈]ξk−1, ξk[ (k = 1, . . . ,m) whereξ0 := a andξm+1 := b. After integration with respect
to (t1, . . . , tm+1) and using the above representation ofc, we have

0 <
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣
=
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∑m+1
k=1

∫ ξk

ξk−1
ωωωωωωωωωρ

∣∣∣
=
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ b

a
ωωωωωωωωωρ

∣∣∣
=
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∑m
k=1 αkωωωωωωωωω(ξk)

∣∣∣ = 0

since the last column is the linear combination of the even indexed columns. Thus we get the
desired contradiction.

Now consider the other case whenc has the representation

c = α0ωωωωωωωωω(a) +
m−1∑
k=1

αkωωωωωωωωω(ξk) + αmωωωωωωωωω(b).

Due to the Chebyshev property ofωωωωωωωωω and the positivity ofρ again, we arrive at

0 <
∣∣ ωωωωωωωωω(a) ωωωωωωωωω(t1)ρ(t1) ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm−1) ωωωωωωωωω(tm)ρ(tm) ωωωωωωωωω(b)

∣∣
for tk ∈]ξk−1, ξk[ (k = 1, . . . ,m) whereξ0 := a andξm := b. An analogous argument to the
previous one leads to contradiction.

Casen = 2m. Similarly to the odd case, now we may assume thatI(c) = m − 1/2. Then
there are two possibilities: the representation ofc involves either the endpointa andm − 1
pairwise distinct interior base pointsξ1 < · · · < ξm−1 or the endpointb andm − 1 pairwise
distinct interior base pointsξ1 < · · · < ξm−1. Applying the same method as above, both cases
lead to contradiction again. �

4.3. Hermite–Hadamard-type inequalities. The main results concern the cases of even and
odd order generalized convexity separately. First we establish Hermite–Hadamard-type inequal-
ities for the odd order one.

Theorem 4.5. Let ωωωωωωωωω = (ω1, . . . , ω2m+1) be a Chebyshev system on[a, b] andρ : [a, b] → R
be a positive integrable function. There exist uniquely determined base pointsξ1, . . . , ξm and
η1, . . . , ηm of ]a, b[ such that

α0ωωωωωωωωω(a) +
m∑

k=1

αkωωωωωωωωω(ξk) =

∫ b

a

ωωωωωωωωωρ =
m∑

k=1

βkωωωωωωωωω(ηk) + βm+1ωωωωωωωωω(b).

The coefficientsα0, . . . , αm andβ1, . . . , βm+1 are positive and uniquely determined, too. Fur-
thermore, for any generalizedωωωωωωωωω-convex functionf : [a, b] → R, the following Hermite–
Hadamard-type inequality holds

α0f(a) +
m∑

k=1

αkf(ξk) ≤
∫ b

a

fρ ≤
m∑

k=1

βkf(ηk) + βm+1f(b).

Proof. Let us note thatfρ is integrable on[a, b] by Theorem 4.2. The proofs of the left and right
hand side inequalities need similar methods, therefore, we shall verify only the left hand side
one. Theorem 4.4 guarantees that

∫ b

a
ωωωωωωωωωρ is an interior point of the moment spaceMn hence

(see Theorem D and Theorem 4.3) it has the representation

(4.3)
∫ b

a

ωωωωωωωωωρ = α0ωωωωωωωωω(a) +
m∑

k=1

αkωωωωωωωωω(ξk)
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where the coefficientsα0, . . . , αm and interior base pointsξ1, . . . , ξm are determined uniquely.
Definingξ0 := a andξm+1 := b, consider the following system of linear equations∫ ξm+1

ξm

ωωωωωωωωωρ = c0ωωωωωωωωω(ξ0) +
m∑

k=1

(
c∗k

∫ ξk

ξk−1

ωωωωωωωωωρ + ckωωωωωωωωω(ξk)
)

where the unknowns arec0, c
∗
1, c1, . . . , c

∗
m, cm. Due to the Chebyshev property ofωωωωωωωωω and the

positivity of ρ, its base determinant

D :=
∣∣∣ ωωωωωωωωω(ξ0)

∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∣∣∣
is positive. Therefore, the system has a unique solution(c0, c

∗
1, c1, . . . , c

∗
m, cm). On the other

hand, representation (4.3) shows that(α0,−1, α1, . . . ,−1, αm) is also a solution. Thus,α0, α1,
. . . , αn can be obtained by Cramer’s Rule:

α0 =
1

D

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣ ,
αk =

1

D

∣∣∣ ωωωωωωωωω(ξ0) · · ·
∫ ξk

ξk−1
ωωωωωωωωωρ

∫ ξk+1

ξk
ωωωωωωωωωρ · · ·

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣ .
Suppose now thatω0 : [a, b] → R is a generalized(2m + 1)-convex function with respect to

ωωωωωωωωω. Then, for all elementstk of ]ξk, ξk+1[, the following inequality holds:

0 ≥
∣∣∣∣ f(ξ0) f(t0) · · · f(ξm) f(tm)

ωωωωωωωωω(ξ0) ωωωωωωωωω(t0) · · · ωωωωωωωωω(ξm) ωωωωωωωωω(tm)

∣∣∣∣ .
Multiplying both sides by the positiveρ(t1) · · · ρ(tm) and integrating on the product[ξ0, ξ1] ×
· · · × [ξm, ξm+1] with respect to(t0, . . . , tm), we arrive at the inequality

0 ≥

∣∣∣∣∣ f(ξ0)
∫ ξ1

ξ0
fρ · · · f(ξm)

∫ ξm+1

ξm
fρ

ωωωωωωωωω(ξ0)
∫ ξ1

ξ0
ωωωωωωωωωρ · · · ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣∣∣
=

∣∣∣∣∣ f(ξ0)
∫ ξ1

ξ0
fρ · · · f(ξm)

∫ ξ1
ξ0

fρ + · · ·+
∫ ξm+1

ξm
fρ

ωωωωωωωωω(ξ0)
∫ ξ1

ξ0
ωωωωωωωωωρ · · · ωωωωωωωωω(ξm)

∫ ξ1
ξ0

ωωωωωωωωωρ + · · ·+
∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣∣∣
=

∣∣∣∣∣ f(ξ0)
∫ ξ1

ξ0
fρ · · · f(ξm)

∫ b

a
fρ

ωωωωωωωωω(ξ0)
∫ ξ1

ξ0
ωωωωωωωωωρ · · · ωωωωωωωωω(ξm)

∫ b

a
ωωωωωωωωωρ

∣∣∣∣∣ .
Observe that the adjoint determinants of each element

∫ ξk+1

ξk
fρ in the last expression are equal to

zero since their columns are linearly dependent due to (4.3). Therefore, applying the expansion
theorem to the first row, it follows that

0 ≤
∣∣∣ ωωωωωωωωω(ξ0)

∫ ξ1
ξ0

ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∣∣∣ · ∫ b

a

fρ

−
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ b

a
ωωωωωωωωωρ

∣∣∣ f(ξ0)

−
m∑

k=1

∣∣∣ ωωωωωωωωω(ξ0) · · ·
∫ ξk

ξk−1
ωωωωωωωωωρ

∫ ξk+1

ξk
ωωωωωωωωωρ · · ·

∫ b

a
ωωωωωωωωωρ

∣∣∣ f(ξk).

Here the coefficient of
∫ b

a
fρ is the positive determinantD, while the the coefficients off(ξ0),

. . . , f(ξm) are exactly the numerators ofα0, . . . , αm (see above), since the last column
∫ b

a
ωωωωωωωωω

can be replaced by
∫ ξm+1

ξm
ωωωωωωωωωρ. After rearranging, we get the left hand side of the Hermite–

Hadamard-type inequality. �
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Theorem 4.6. Let ωωωωωωωωω = (ω1, . . . , ω2m) be a Chebyshev system on[a, b] andρ : [a, b] → R be a
positive integrable function. Then, there exist uniquely determined base pointsξ1, . . . , ξm and
η1, . . . , ηm−1 of ]a, b[ such that

m∑
k=1

αkωωωωωωωωω(ξk) =

∫ b

a

ωωωωωωωωωρ = β0ωωωωωωωωω(a) +
m−1∑
k=1

βkωωωωωωωωω(ηk) + βmωωωωωωωωω(b).

The coefficientsα1, . . . , αm andβ0, . . . , βm are positive and uniquely determined, too. Further-
more, for any generalizedωωωωωωωωω-convex functionf : [a, b] → R, the following Hermite–Hadamard-
type inequality holds

m∑
k=1

αkf(ξk) ≤
∫ b

a

fρ ≤ β0f(a) +
m−1∑
k=1

βkf(ηk) + βmf(b).

Proof. To prove the left hand side inequality, take the unique interior base pointsξ1, . . . , ξm and
coefficientsα1, . . . , αm fulfilling the representation

(4.4)
∫ b

a

ωωωωωωωωωρ =
m∑

k=1

αkωωωωωωωωω(ξk)

guaranteed by Theorem 4.4. Definingξ0 := a andξm+1 := b, consider the following system of
linear equations ∫ ξm+1

ξm

ωωωωωωωωωρ =
m∑

k=1

(
c∗k

∫ ξk

ξk−1

ωωωωωωωωωρ + ckωωωωωωωωω(ξk)
)

where the unknowns arec∗1, c1, . . . , c
∗
m, cm. Due to the Chebyshev property ofωωωωωωωωω and the posi-

tivity of ρ, its base determinant

D1 :=
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∣∣∣
is positive, hence the system has a unique solution(c∗1, c1, . . . , c

∗
m, cm). On the other hand, the

representation (4.4) shows that(−1, α1, . . . ,−1, αm) is also a solution. Thus, the coefficients
can be obtained by Cramer’s Rule:

α1 =
1

D1

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ
∫ ξ2

ξ1
ωωωωωωωωωρ · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣ ,
αk =

1

D1

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ · · ·
∫ ξk

ξk−1
ωωωωωωωωωρ

∫ ξk+1

ξk
ωωωωωωωωωρ · · ·

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣ .
Suppose now thatf : [a, b] → R is a generalized(2m)-convex function with respect toωωωωωωωωω.

Then, for all elementstk of ]ξk, ξk+1[, the following inequality holds:

0 ≤
∣∣∣∣ f(t0) f(ξ1) · · · f(ξm) f(tm)

ωωωωωωωωω(t0) ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm) ωωωωωωωωω(tm)

∣∣∣∣ .
Therefore,

0 ≤

∣∣∣∣∣
∫ ξ1

ξ0
fρ f(ξ1) · · · f(ξm)

∫ ξm+1

ξm
fρ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm)

∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣∣∣
=

∣∣∣∣∣
∫ ξ1

ξ0
fρ f(ξ1) · · · f(ξm)

∫ ξ1
ξ0

fρ + · · ·+
∫ ξm+1

ξm
fρ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm)

∫ ξ1
ξ0

ωωωωωωωωωρ + · · ·+
∫ ξm+1

ξm
ωωωωωωωωωρ

∣∣∣∣∣
=

∣∣∣∣∣
∫ ξ1

ξ0
fρ f(ξ1) · · · f(ξm)

∫ b

a
fρ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · · ωωωωωωωωω(ξm)

∫ b

a
ωωωωωωωωωρ

∣∣∣∣∣ .

J. Inequal. Pure and Appl. Math., 9(3) (2008), Art. 63, 51 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


40 M. BESSENYEI

In the last expression, the adjoint determinant of each element
∫ ξk+1

ξk
fρ are equal to zero since

their columns are linearly dependent due to (4.4). Applying the expansion theorem to the first
row, we arrive at the inequality

0 ≤
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ ωωωωωωωωω(ξ1) · · ·

∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∣∣∣ · ∫ b

a

fρ

−
∣∣∣ ∫ ξ1

ξ0
ωωωωωωωωωρ

∫ ξ2
ξ1

ωωωωωωωωωρ · · ·
∫ ξm

ξm−1
ωωωωωωωωωρ ωωωωωωωωω(ξm)

∫ b

a
ωωωωωωωωωρ

∣∣∣ f(ξ1)

−
m∑

k=2

∣∣∣ ∫ ξ1
ξ0

ωωωωωωωωωρ · · ·
∫ ξk

ξk−1
ωωωωωωωωωρ

∫ ξk+1

ξk
ωωωωωωωωωρ · · ·

∫ b

a
ωωωωωωωωωρ

∣∣∣ f(ξk).

Here the coefficient of
∫ b

a
fρ is the positiveD1; moreover, the coefficients off(ξ1), . . . , f(ξm)

are exactly the numerators ofα1, . . . , αm since the last column
∫ b

a
ωωωωωωωωωρ can be replaced by∫ ξm+1

ξm
ωωωωωωωωωρ. After rearranging, we get the left hand side of the Hermite–Hadamard-type inequal-

ity.
For the right hand side inequality, take the uniquely determined interior base pointsη1, . . . , ηm−1

and coefficientsβ0, . . . , βm so that the representation

(4.5)
∫ b

a

ωωωωωωωωωρ = β0ωωωωωωωωω(a) +
m−1∑
k=1

βkωωωωωωωωω(ηk) + βmωωωωωωωωω(b)

holds. Definingη0 := a andηm := b, consider the following system of linear equations∫ ηm

ηm−1

ωωωωωωωωωρ = c0ωωωωωωωωω(η0) +
m−1∑
k=1

(
c∗k

∫ ηk

ηk−1

ωωωωωωωωωρ + ckωωωωωωωωω(ηk)
)

+ cmωωωωωωωωω(ηm),

where the unknowns arec0, c
∗
1, c1, . . . , c

∗
m−1, cm−1, cm. Due to the Chebyshev property ofωωωωωωωωω and

the positivity ofρ, its base determinant

D2 :=
∣∣∣ ωωωωωωωωω(η0)

∫ η1

η0
ωωωωωωωωωρ ωωωωωωωωω(η1) · · ·

∫ ηm−1

ηm−2
ωωωωωωωωωρ ωωωωωωωωω(ηm−1) ωωωωωωωωω(ηm)

∣∣∣
is positive, hence the system has a unique solutionc0, c

∗
1, c1, . . . , c

∗
m−1, cm−1, cm. The repre-

sentation (4.5) shows that(β0,−1, β1, . . . , βm−1,−1, βm) is also a solution, therefore Cramer’s
Rule can be applied:

β0 =
1

D2

∣∣∣ ∫ η1

η0
ωωωωωωωωωρ ωωωωωωωωω(η1) · · · ωωωωωωωωω(ηm−1)

∫ ηm

ηm−1
ωωωωωωωωωρ ωωωωωωωωω(ηm)

∣∣∣ ,
βk =

1

D2

∣∣∣ ωωωωωωωωω(η0) · · ·
∫ ηk

ηk−1
ωωωωωωωωωρ

∫ ηk+1

ηk
ωωωωωωωωωρ · · ·

∫ ηm

ηm−1
ωωωωωωωωωρ ωωωωωωωωω(ηm)

∣∣∣ ,
βm =

1

D2

∣∣∣ ωωωωωωωωω(η0)
∫ η1

η0
ωωωωωωωωωρ · · ·

∫ ηm−1

ηm−2
ωωωωωωωωωρ ωωωωωωωωω(ηm−1)

∫ ηm

ηm−1
ωωωωωωωωωρ

∣∣∣ .
These coefficients are positive since even changes are needed to transfer the column

∫ ηm

ηm−1
ωωωωωωωωωρ

to the adequate place.
If a functionf : [a, b] → R is a generalized(2m)-convex with respect toωωωωωωωωω, then we arrive at

the inequality

0 ≤

∣∣∣∣∣ f(η0)
∫ η1

η0
fρ f(η1) · · ·

∫ ηm−1

ηm−2
fρ f(ηm)

∫ b

a
fρ

ωωωωωωωωω(η0)
∫ η1

η0
ωωωωωωωωωρ ωωωωωωωωω(η1) · · ·

∫ ηm−1

ηm−2
ωωωωωωωωωρ ωωωωωωωωω(ηm)

∫ b

a
ωωωωωωωωωρ

∣∣∣∣∣ ,
whence an analogous argument to the previous one completes the proof. �
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4.4. An alternative approach in a particular case. To prove the main results, the main point
is the existence of the representations of Theorem D. These representations can also be con-
sidered as systems of nonlinear equations where the unknowns are the coefficients and the base
points. The number of the equations and the unknowns coincide in each case. In those cases
when only one interior base point is involved, the solubility of the system of equations can
directly be verified without applying the Krein–Markov theory of moment spaces.

Theorem 4.7. Let ωωωωωωωωω = (ω1, ω2, ω3) be a Chebyshev system on[a, b] and ρ : [a, b] → R be
a positive integrable function. Then, there exist unique elementsξ, η of ]a, b[ and uniquely
determined positive coefficientsc1, c2 andd1, d2 such that

c1ωωωωωωωωω(a) + c2ωωωωωωωωω(ξ) =

∫ b

a

ωωωωωωωωωρ = d1ωωωωωωωωω(η) + d2ωωωωωωωωω(b).

Furthermore, if a functionf : [a, b] → R is generalized3-convex with respect toωωωωωωωωω, then the
following Hermite–Hadamard-type inequality holds

c1f(a) + c2f(ξ) ≤
∫ b

a

fρ ≤ d1f(η) + d2f(b).

Proof. We shall restrict the process of the proof only on the existence of the interior pointξ. To
do this, define the functionF : [a, b] → R by the formula

F (x) :=
∣∣∣ ωωωωωωωωω(a)

∫ x

a
ωωωωωωωωωρ

∫ b

a
ωωωωωωωωωρ

∣∣∣ :=

∣∣∣∣∣∣∣
ω1(a)

∫ x

a
ω1ρ

∫ b

a
ω1ρ

ω2(a)
∫ x

a
ω2ρ

∫ b

a
ω2ρ

ω3(a)
∫ x

a
ω3ρ

∫ b

a
ω3ρ

∣∣∣∣∣∣∣ .
Then,F is continuous on[a, b] andF (a) = F (b) = 0. Further on,F (x) 6= 0 if x ∈]a, b[ due to
the Chebyshev property ofωωωωωωωωω and the positivity ofρ. For simplicity, we may assume thatF is
positive on]a, b[. Therefore, by Weierstrass’ theorem, there existsξ ∈]a, b[ such that

F (ξ) = max
[a,b]

F.

Assume thatx ∈]ξ, b]. Then, the maximal property ofξ yields the inequality

0 ≥ F (x)− F (ξ)∫ x

ξ
ρ

=

∣∣∣∣∣ ωωωωωωωωω(a)

∫ x

ξ
ωωωωωωωωωρ∫ x

ξ
ρ

∫ b

a
ωωωωωωωωωρ

∣∣∣∣∣ .
The central column of the determinant tends toωωωωωωωωω(ξ) asx tends toξ since the following estima-
tions are valid fork = 1, 2, 3:

min
[ξ,x]

ωk =
min[ξ,x] ωk

∫ x

ξ
ρ∫ x

ξ
ρ

≤
∫ x

ξ
ωkρ∫ x

ξ
ρ

≤
max[ξ,x] ωk

∫ x

ξ
ρ∫ x

ξ
ρ

= max
[ξ,x]

ωk.

Therefore ∣∣∣ ωωωωωωωωω(a) ωωωωωωωωω(ξ)
∫ b

a
ωωωωωωωωωρ

∣∣∣ ≤ 0.

Choosingx ∈ [a, ξ[ and using the maximal property ofξ again, we get the opposite inequality
with the same argument and arrive at the identity∣∣∣ ωωωωωωωωω(a) ωωωωωωωωω(ξ)

∫ b

a
ωωωωωωωωωρ

∣∣∣ = 0.

Thus, the linear independence ofωωωωωωωωω(a) and ωωωωωωωωω(ξ) yields that there exist coefficientsc1 andc2

such that

c1ωωωωωωωωω(a) + c2ωωωωωωωωω(ξ) =

∫ b

a

ωωωωωωωωωρ.
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The right hand side inequality can be verified with an analogous argument, therefore the proof
is omitted. �

Let us note, that if the weight functionρ is continuous, then the functionF is differentiable
and Rolle’s mean-value theorem can directly be applied.

The representations of Theorem 4.7 are linear with respect to the coefficients. Therefore, in
concrete cases, the main difficulty lies in determining the interior base pointsξ andη. Without
claiming completeness, we list some examples of when they can be determined explicitly.

Example 1. If the Chebyshev system(ω1, ω2, ω3) is defined on[a, b] by ω1(x) = 1, ω2(x) =
sinh x, ω3(x) = cosh x andρ ≡ 1, then

ξ = 2 artanh

(
sinh b− sinh a− (b− a) cosh a

cosh b− cosh a− (b− a) sinh a

)
− a,

η = 2 artanh

(
sinh b− sinh a− (b− a) cosh b

cosh b− cosh a− (b− a) sinh b

)
− b.

Proof. With the above setting, the left hand side representation of Theorem 4.5 reduces to the
following system of nonlinear equations

c1 + c2 =

∫ b

a

1dx = b− a,

c1 sinh a + c2 sinh ξ =

∫ b

a

sinh xdx = cosh b− cosh a,

c1 cosh a + c2 cosh ξ =

∫ b

a

cosh xdx = sinh b− sinh a,

where the three unknowns arec1, c2 andξ, respectively. Multiplying the first equation bysinh a
and subtracting it from the second one, then multiplying again the first equation bycosh a and
subtracting it from the third one, the coefficientc1 can be eliminated and it follows

c2(sinh ξ − sinh a) = cosh b− cosh a− (b− a) sinh a

c2(cosh ξ − cosh a) = sinh b− sinh a− (b− a) cosh a.

Applying the well known additional properties of hyperbolic functions for the identitiesξ =
(ξ + a)/2 + (ξ − a)/2 anda = (ξ + a)/2− (ξ − a)/2, the left hand side of both equations can
be written in product form:

2c2 cosh

(
ξ + a

2

)
sinh

(
ξ − a

2

)
= cosh b− cosh a− (b− a) sinh a,

2c2 sinh

(
ξ + a

2

)
sinh

(
ξ − a

2

)
= sinh b− sinh a− (b− a) cosh a.

The left hand side of the first equation differs from zero sinceξ 6= a. Therefore, dividing the
second equation by the first one, we get the equation

tanh

(
ξ + a

2

)
=

sinh b− sinh a− (b− a) cosh a

cosh b− cosh a− (b− a) sinh a
,
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whence the desired expression ofξ is obtained. For determiningη, we shall consider the fol-
lowing system of nonlinear equations:

d1 + d2 = b− a,

d1 sinh η + d2 sinh b = cosh b− cosh a,

d1 cosh η + d2 cosh b = sinh b− sinh a.

In this case, the coefficientd2 can be eliminated with a similar method to the previous one. The
new system of equations, due to the additional formulae again, can be written in the form

2d1 cosh

(
b + η

2

)
sinh

(
b− η

2

)
= cosh b− cosh a− (b− a) sinh b,

2d1 sinh

(
b + η

2

)
sinh

(
b− η

2

)
= sinh b− sinh a− (b− a) cosh b.

This system, analogously to the previous case, yields the equation

tanh

(
b + η

2

)
=

sinh b− sinh a− (b− a) cosh b

cosh b− cosh a− (b− a) sinh b
,

whence the base pointη can be expressed easily. �

The proofs of the subsequent examples are similar to the previous one, therefore they are
omitted.

Example 2. If the Chebyshev system(ω1, ω2, ω3) is defined on[a, b] ⊂] − π, π[ by ω1(x) = 1,
ω2(x) = sin x, ω3(x) = cos x andρ ≡ 1, then

ξ = 2 arctan

(
sin a− sin b + (b− a) cos a

cos a− cos b− (b− a) sin a

)
− a,

η = 2 arctan

(
sin a− sin b + (b− a) cos b

cos a− cos b− (b− a) sin b

)
− b.

Example 3. If the Chebyshev system(ω1, ω2, ω3) is defined on[a, b] by ω1(x) = 1, ω2(x) =
exp x, ω3(x) = exp 2x andρ ≡ 1, then

ξ = log

(
exp 2b− exp 2a− 2(b− a) exp 2a

2(exp b− exp a− (b− a) exp a)
− exp a

)
,

η = log

(
exp 2b− exp 2a− 2(b− a) exp 2b

2(exp b− exp a− (b− a) exp b)
− exp b

)
.

Example 4. If, for p > 0, the Chebyshev system(ω1, ω2, ω3) is defined on[a, b] ⊂ [0, +∞[ by
ω1(x) = 1, ω2(x) = xp, ω3(x) = x2p andρ ≡ 1, then

ξ =

(
p + 1

2p + 1
· b2p+1 − a2p+1 − (2p + 1)(b− a)a2p

bp+1 − ap+1 − (p + 1)(b− a)ap
− ap

)1/p

,

η =

(
p + 1

2p + 1
· b2p+1 − a2p+1 − (2p + 1)(b− a)b2p

bp+1 − ap+1 − (p + 1)(b− a)bp
− bp

)1/p

.

The particular casep = 1 of the last example gives a corollary of Theorem 2.8 for polyno-
mially 3-convex functions. For3 dimensional Chebyshev systems generated by arbitrary power
functions, the interior base points in general, cannot be expressed explicitly.

The proof of Theorem 4.7 is applicable for generalized2-convexity, and gives a different
approach to that followed in Theorem 3.4. We can also state the right hand side Hermite–
Hadamard-type inequality for generalized4-convex functions.
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Theorem 4.8. Let ωωωωωωωωω = (ω1, ω2, ω3, ω4) be a Chebyshev system on[a, b] and ρ : [a, b] → R
be a positive integrable function. Then, there exist a unique elementξ of ]a, b[ and uniquely
determined positive coefficientsc1, c2, c3 such that∫ b

a

ωωωωωωωωωρ = c1ωωωωωωωωω(a) + c2ωωωωωωωωω(ξ) + c3ωωωωωωωωω(b).

Furthermore, if a functionf : [a, b] → R is generalized4-convex with respect toωωωωωωωωω, then the
following Hermite–Hadamard-type inequality holds∫ b

a

fρ ≤ c1f(a) + c2f(ξ) + c3f(b).

Hint. Apply the same argument as in the proof of Theorem 4.7 for the functionF : [a, b] → R
defined by the formula

F (x) :=
∣∣∣ ωωωωωωωωω(a)

∫ x

a
ωωωωωωωωωρ ωωωωωωωωω(b)

∫ b

a
ωωωωωωωωωρ
∣∣∣ :=

∣∣∣∣∣∣∣∣∣
ω1(a)

∫ x

a
ω1ρ ω1(b)

∫ b

a
ω1ρ

ω2(a)
∫ x

a
ω2ρ ω2(b)

∫ b

a
ω2ρ

ω3(a)
∫ x

a
ω3ρ ω3(b)

∫ b

a
ω3ρ

ω4(a)
∫ x

a
ω4ρ ω4(b)

∫ b

a
ω4ρ

∣∣∣∣∣∣∣∣∣ .
�

For example, ifωωωωωωωωω(x) := (cosh x, sinh x, cosh 2x, sinh 2x), then one can check that the in-
terior base point of the inequality is exactly the midpoint of the domain. Unfortunately, the
method fails if someone tries to use it for proving the left hand side of the Hermite–Hadamard-
type inequality for a generalized4-convex function since, by the even case of Theorem D, the
existence of two interior base points should be guaranteed. For similar reasons, the “existence”
part in the proof of Theorem 4.7 cannot be applied for generalizedn-convex functions ifn > 4.

5. CHARACTERIZATIONS VIA HERMITE –HADAMARD I NEQUALITIES

Under some weak regularity conditions, the Hermite–Hadamard-inequalitycharacterizes
(standard) convexity (see [17, Excersice 8. p. 205]). The aim of this section is to verify analo-
gous results for(ω1, ω2)-convexity. To do this, the most important auxiliary tool turns out to be
some characterization properties of continuous,nongeneralized2-convex functions.

5.1. Further properties of generalized lines. In what follows, two properties of generalized
lines are crucial. The first one improves the statement of Lemma 3.2 and states that, on compact
intervals, generalized lines are uniformly non bounded.

Lemma 5.1. Let (ω1, ω2) be a Chebyshev system on an intervalI. Then, for any compact
subinterval ofI and positive numberK, there existsω ∈ L (ω1, ω2) such thatω > K on the
compact subinterval.

Proof. According to Lemma 3.2, there exist coefficientsα, β such that the generalized line
αω1 + βω2 is positive on the interior ofI. Therefore, if[x, y] is a compact subinterval of
I, m := min{αω1(t) + βω2(t) | t ∈ [x, y]} > 0. Defining the coefficientsα∗ andβ∗ by the
formulae

α∗ :=
αK

m
β∗ :=

βK

m
,

the generalized lineω := α∗ω1 + β∗ω2 is strictly greater thanK on [x, y]. �
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The second important property concerns the convergence of generalized lines. It turns out
that pointwise convergence is not only a necessary but a sufficient condition for the uniform
convergence of sequences of generalized lines. Let us note that an analogous result remains
true for generalized polynomials in the higher-order case.

Lemma 5.2. Let (ω1, ω2) be a Chebyshev system on an intervalI, furthermore, letω = αω1 +
βω2 andωn = αnω1 + βnω2 (n ∈ N) be generalized lines. Then, the following statements are
equivalent:

(i) there exist elementsx < y of I such thatωn(x) → ω(x) andωn(y) → ω(y);
(ii) the sequencesαn andβn are convergent, withαn → α andβn → β;

(iii) ωn → ω uniformly on each compact subset ofI.

Proof. (i) ⇒ (ii). Applying Cramer’s Rule and the convergence properties ofωn(x) andωn(y),
one can easily get that

α =

∣∣∣∣ ω(x) ω2(x)
ω(y) ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω2(x)
ω1(y) ω2(y)

∣∣∣∣ = lim
n→∞

∣∣∣∣ ωn(x) ω2(x)
ωn(y) ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω2(x)
ω1(y) ω2(y)

∣∣∣∣ = lim
n→∞

αn.

The convergence ofβn can be obtained similarly.
(ii) ⇒ (iii). Let [x, y] be a compact subinterval ofI, andt ∈ [x, y] arbitrary. Due to the

continuity of the functionsω1 andω2, there existsK > 0 such that

max

{
sup
[x,y]

|ω1(t) |, sup
[x,y]

|ω2(t) |

}
≤ K.

Therefore,

|ωn(t)− ω(t) | = |αnω1(t)− αω1(t) + βnω2(t)− βω2(t) |
≤ |αn − α ||ω1(t) |+ | βn − β ||ω2(t) |
≤ K

(
|αn − α |+ | βn − β |

)
→ 0

asn →∞; henceωn → ω uniformly on[x, y].
(iii) ⇒ (i). Trivial. �

Under the assumption of continuity, if a function is not convex, then it must be locally strictly
concave somewhere. The following theorem generalizes this result for non(ω1, ω2)-convexity.

Theorem 5.1.Let(ω1, ω2) be a Chebyshev system on an intervalI. Furthermore, letf : I → R
be a continuous function. Then, the following assertions are equivalent:

(i) f is not(ω1, ω2)-convex;
(ii) there exist elementsx < y of I such thatω < f on ]x, y[ whereω is the generalized line

determined by the properties

ω(x) = f(x), ω(y) = f(y);

(iii) there exist elementsx < p < y of I and a generalized lineω such thatω ≥ f on [x, y].
Moreover

f(x) < ω(x), f(p) = ω(p), f(y) < ω(y);
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(iv) there existsp ∈ I◦ such thatf is locally strictly(ω1, ω2)-concave atp, that is, there exist
elementsx < p < y of I such that, for allx < u < p < v < y, the following inequality
holds: ∣∣∣∣∣∣

f(u) f(p) f(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ < 0.

Proof. (i) ⇒ (ii). If f is not(ω1, ω2)-convex, then there exist elementsx0 < p < y0 of I such
thatω(p) < f(p), whereω is the generalized line determined by the propertiesω(x0) = f(x0)
andω(y0) = f(y0) (see assertion(vi) of Theorem 3.1). Define the functionF : [x0, y0] → R
by F := f − ω , and the elementsx andy by the formulae

x := sup{ t |F (t) = 0, x0 ≤ t < p },
y := inf{ t |F (t) = 0, p < t ≤ y0 }.

Clearly,x0 ≤ x < p < y ≤ y0 hold; moreover,F (x) = F (y) = 0 andF > 0 on ]x, y[ due to
the continuity ofF . That is,ω(x) = f(x), ω(y) = f(y) andf(t) > ω(t) for all t ∈]x, y[.

(ii) ⇒ (iii). Take the elementsx < y of I and the generalized lineω fulfilling the properties
ω(x) = f(x), ω(y) = f(y) andω|]x,y[ < f |]x,y[. Define, for allt ∈ R, the family of “parallel”
generalized linesωt by the conditions

ωt(x) = ω(x) + t, ωt(y) = ω(y) + t.

Observe first thatωt|[x,y] > f |[x,y] for “sufficiently large”t. Indeed, take the generalized lineω∗

satisfying the inequalityω∗|[x,y] > max f |[x,y] and chooset > 0 such thatωt(x) > ω∗(x) and
ωt(y) > ω∗(y) hold. (The existence ofω∗ is guaranteed by Lemma 5.1.) Then,ωt|[x,y] > ω∗|[x,y]

due to Lemma 3.1 henceωt|[x,y] > f |[x,y]. On the other hand, a similar argument to the previous
one yields the inequalitiesωt|[x,y] < ω|[x,y] ≤ f |[x,y] for all t < 0. Therefore,

t0 := inf{t ∈ R |ωt|[x,y] > f |[x,y]} ∈ R.

By definition,ωt0 ≥ f on [x, y]. Assume indirectly that this inequality is strict. Then, according
to the continuity ofωt0 andf , there existsε > 0 such that

f + ε < ωt0

on [x, y]. Consider the sequence of generalized linesωn determined by the conditions

ωn(x) := ω(x) + t0 −
1

n
, ωn(y) := ω(y) + t0 −

1

n
.

Lemma 3.1 implies that(ωn) is strictly monotone increasing; further, according to Lemma 5.2,
ωn → ωt0 uniformly on the compact interval[x, y] sinceωn(x) → ωt0(x) andωn(y) → ωt0(y).
Hence, there exists ann0 ∈ N satisfying the inequalities

ωn0 < ωt0 < ωn0 +
ε

2
.

Comparing this to the previous one, it follows that

f +
ε

2
< ωn0 < ωt0 ,

which contradicts the definition oft0 sinceωn can also be written in the formωt0−1/n. Therefore,
the choiceωt0 satisfies the requirements.

(iii) ⇒ (iv). Due to the continuity of the functionsf andω, we may assume thatp is
the minimal element of]x, y[ fulfilling the properties of the assertion. Then,f(u) < ω(u) if

J. Inequal. Pure and Appl. Math., 9(3) (2008), Art. 63, 51 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


HERMITE-HADAMARD -TYPE INEQUALITIES 47

x < u < p andf(v) ≤ ω(v) if p < v < y. Therefore,∣∣∣∣∣∣
f(u) f(p) f(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ <
∣∣∣∣∣∣

ω(u) ω(p) ω(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣
since the adjoint determinants off(u) andf(v) are positive, furthermore,f andω coincide at
p. However,ω is a linear combination ofω1 andω2, hence the left hand side of the previous
inequality equals zero.

(iv) ⇒ (i). Trivial. �

The next result shows that(ω1, ω2)-convexity, similarly to the standard one, is a pointwise
property.

Corollary 5.1. Let (ω1, ω2) be a Chebyshev system over the open intervalI, furthermoref :
I → R is a given function. Then, the following assertions are equivalent:

(i) f is (ω1, ω2)-convex;
(ii) f is locally (ω1, ω2)-convex, that is, each element of the domain has a neighborhood

where it is(ω1, ω2)-convex;
(iii) f is continuous and, for allp ∈ I, there exist elementsx < p < y of I such that∣∣∣∣∣∣

f(u) f(p) f(v)
ω1(u) ω1(p) ω1(v)
ω2(u) ω2(p) ω2(v)

∣∣∣∣∣∣ ≥ 0

for all x < u < p < v < y (i. e.,f is locally convexat each point).

Hint. The implications(i) ⇒ (ii) and(ii) ⇒ (iii) are trivial. For the implication(iii) ⇒ (i),
the last assertion of Corollary 5.1 can be applied, which, in the case of indirect assumption,
immediately leads to contradiction. �

5.2. Hermite–Hadamard-type inequalities and(ω1, ω2)-convexity. The main results are pre-
sented in three theorems. The first and the second ones concern the left and right hand side in-
equalities of Theorem 3.4 independently, while the third one is analogous to the classical Jensen
inequality.

Theorem 5.2. Let (ω1, ω2) be a Chebyshev system on an interval[a, b] such thatω1 is positive
on ]a, b[, furthermoreρ : [a, b] → R is a positive integrable function. Define, for all elements
x < y of [a, b], the functionsξ(x, y) andc(x, y) by the formulae

ξ(x, y) :=

(
ω2

ω1

)−1(∫ y

x
ω2ρ∫ y

x
ω1ρ

)
, c(x, y) =

∫ y

x
ω1ρ

ω1(ξ(x, y))
.

Then, a continuous functionf : [a, b] → R is generalized convex with respect to(ω1, ω2) if and
only if, for all elementsx < y of [a, b], it satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤
∫ y

x

fρ.

Proof. The necessity is due to Theorem 3.4. For the converse assertion, note first that the
mapping(x, y) 7→ ξ(x, y) is continuous in each variable and takes its value betweenx and
y since it is a Lagrange-type mean-value. Further,c(x, y) andξ(x, y) are constructed so that
all generalized lines (i.e., the linear combinations ofω1 andω2) are solutions of the functional
equation

(5.1) c(x, y)ω
(
ξ(x, y)

)
=

∫ y

x

ωρ (x < y).
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(For details, see the proof of Theorem 3.4.) Assume thatf satisfies the inequality of the theorem
and, indirectly, is not(ω1, ω2)-convex. Then, according to assertion(iii) of Theorem 5.1, there
exist elementsx < p < y of I and a generalized lineω such thatf ≤ ω on [x, y] and

f(x) < ω(x), f(p) = ω(p), f(y) < ω(y).

If, for example,p ≤ ξ(x, y), then there isu ∈]p, y] such thatp = ξ(x, u) sinceξ is a Lagrange-
type mean-value. The inequalityf(x) < ω(x) and the continuity off implies thatf < ω on a
right hand side neighborhood ofx hence, applying (5.1), it follows that

c(x, u)f
(
ξ(x, u)

)
≤
∫ u

x

fρ <

∫ u

x

ωρ = c(x, u)ω
(
ξ(x, u)

)
.

On the other hand, both sides have the common valuec(x, u)f(p), which is a contradiction. �

Theorem 5.3.Let(ω1, ω2) be a Chebyshev system over an interval[a, b] such thatω1 is positive
on ]a, b[, furthermoreρ : [a, b] → R is a positive integrable function. Define, for all elements
x < y of [a, b], the functionsc1(x, y) andc2(x, y) by the formulae

c1(x, y) =

∣∣∣∣ ∫ y

x
ω1ρ ω1(y)∫ y

x
ω2ρ ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ , c2(x, y) =

∣∣∣∣ ω1(x)
∫ y

x
ω1ρ

ω2(x)
∫ y

x
ω2ρ

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ .

Then, a continuous functionf : [a, b] → R is generalized convex with respect to(ω1, ω2) if and
only if, for all elementsx < y of [a, b], it satisfies the inequality∫ y

x

fρ ≤ c1(x, y)f(x) + c2(x, y)f(y).

Proof. The necessity is due to Theorem 3.4 again. Conversely, note first thatc1(x, y) and
c2(x, y) are constructed such that all generalized lines (i.e., the linear combinations ofω1 and
ω2) are the solutions of the functional equation

(5.2)
∫ y

x

ωρ = c1(x, y)ω(x) + c2(x, y)ω(y).

(For details, see the proof of Theorem 3.4.) Assume indirectly thatf is not (ω1, ω2)-convex.
Then, according to assertion(ii) of Theorem 5.1, there exist elementsx < y of I and a gener-
alized lineω such thatω(x) = f(x), ω(y) = f(y) andω < f on ]x, y[. Therefore,∫ y

x

ωρ <

∫ y

x

fρ ≤ c1(x, y)f(x) + c2(x, y)f(y)

= c1(x, y)ω(x) + c2(x, y)ω(y),

which contradicts (5.2). �

Theorem 5.4.Let(ω1, ω2) be a Chebyshev system onI andf : I → R be a continuous function.
Keeping the notations of Theorem 5.3 and Theorem 5.2,f is (ω1, ω2)-convex if and only if, for
all elementsx < y of I, it satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤ c1(x, y)f(x) + c2(x, y)f(y).

Proof. The necessity part has already been proved in Theorem 3.4. For the sufficiency, observe
first that the functionsc, c1, c2 andξ are constructed so that all the generalized lines are solutions
of the functional equation

c(x, y)ω
(
ξ(x, y)

)
= c1(x, y)ω(x) + c2(x, y)ω(y) (x < y)
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since both sides have the common value
∫ y

x
ωρ. Assume indirectly that a functionf : I → R

satisfies the inequality of the theorem and is not generalized convex with respect to(ω1, ω2).
Then, there exist elementsx < y of I and a generalized lineω fulfilling the conditions

ω(x) = f(x), ω|]x,y[ < f |]x,y[, ω(y) = f(y)

due to Theorem 5.1. Therefore, taking the above observation into consideration, one can imme-
diately get that

c(x, y)f
(
ξ(x, y)

)
≤ c1(x, y)f(x) + c2(x, y)f(y)

= c1(x, y)ω(x) + c2(x, y)ω(y)

= c(x, y)ω
(
ξ(x, y)

)
< c(x, y)f

(
ξ(x, y)

)
,

which is a contradiction. �

To give a unified view, the previous results are combined in the subsequent corollary. This
corollary, Theorem 3.1, Corollary 3.2, Theorem 3.2 and Corollary 5.1 together are a comprehen-
sive characterization of generalized convexity induced by two dimensional Chebyshev systems.

Corollary 5.2. Let (ω1, ω2) be a Chebyshev system onI such thatω1 is positive onI◦, further,
ρ : I → R is a positive integrable function. Keeping the notations of Theorem 5.2, Theorem 5.3
and Theorem 5.4, the following assertions are equivalent for any functionf : I → R:

(i) f is generalized convex with respect to(ω1, ω2);
(ii) f is continuous and, for all elementsx < y of I, satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤
∫ y

x

fρ;

(iii) f is continuous and, for all elementsx < y of I, satisfies the inequality∫ y

x

fρ ≤ c1(x, y)f(x) + c2(x, y)f(y);

(iv) f is continuous and, for all elementsx < y of I, satisfies the inequality

c(x, y)f
(
ξ(x, y)

)
≤ c1(x, y)f(x) + c2(x, y)f(y).

The question arises, quite evidently,whether Hermite–Hadamard-type inequalities also char-
acterize generalized convexity in the general case or not. To give an affirmative answer even in
the polynomial case remains an open problem and may be the subject of further studies.
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