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ABSTRACT. In this paper, we prove a variant of a general Hardy-Knopp type inequality. We
also formulate a convolution inequality in the language of topological groups. By our main
results we obtain a general form of multidimensional strengthened Hardy and Pólya-Knopp-type
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1. I NTRODUCTION

The well-known Hardy’s inequality is stated below (cf. [5, Theorem 327]):

(1.1)
∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

f(x)pdx, p > 1, f ≥ 0.

By replacingf with f
1
p in (1.1) and lettingp → ∞, we have the Pólya-Knopp inequality (cf.

[5, Theorem 335]):

(1.2)
∫ ∞

0

exp

(
1

x

∫ x

0

log f(t)dt

)
dx ≤ e

∫ ∞

0

f(x)dx.

The constants(p/(p − 1))p ande in (1.1) and (1.2), respectively, are the best possible. On the
other hand, the following Hardy-Knopp type inequality (1.3) was proved (cf. [1, Eq.(4.3)] and
[7, Theorem 4.1]):

(1.3)
∫ ∞

0

φ

(
1

x

∫ x

0

f(t)dt

)
dx

x
≤
∫ ∞

0

φ(f(x))
dx

x
,

whereφ is a convex function on(0,∞). In [7], S. Kaijser et al. also pointed out that (1.1)
and (1.2) can be obtained from (1.3). Furthermore, in [2] and [3],Čižmešija and Pěcaríc proved
the so-called strengthened Hardy and Pólya-Knopp-type inequalities and their multidimensional
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2 DAH-CHIN LUOR

forms. In [4, Theorem 1 & Theorem 2],̌Cižmešija et al. obtained a strengthened Hardy-
Knopp type inequality and its dual result. With suitable substitutions, they also showed that
the strengthened Hardy and Pólya-Knopp-type inequalities given in the paper [2] are special
cases of their results. In the paper [6], Kaijser et al. proved some multidimensional Hardy-type
inequalities. They also proved the following generalization of the Hardy and Pólya-Knopp-type
inequality:

(1.4)
∫ b

0

φ

(
1

K(x)

∫ x

0

k(x, t)f(t)dt

)
u(x)

dx

x
≤
∫ b

0

φ(f(x))v(x)
dx

x
,

where0 < b ≤ ∞, k(x, t) ≥ 0, K(x) =
∫ x

0
k(x, t)dt, u(x) ≥ 0, and

v(x) = x

∫ b

x

k(z, x)

K(z)
u(z)

dz

z
.

A dual inequality to (1.4) was also given. Inequality (1.4) can be obtained by using Jensen’s
inequality and the Fubini theorem. It is elementary but powerful. On the other hand, in the proof
of [8, Lemma 3.1], for proving a variant of Schur’s lemma, Sinnamon obtained an inequality of
the form

(1.5)

{∫
X

|Tkf(x)|qdx

} 1
q

≤
{∫

T

|f(t)|p(Hw(t))
p
q w(t)1−pdt

} 1
p

,

where1 < p ≤ q < ∞, X andT are measure spaces,Tkf(x) =
∫

T
k(x, t)f(t)dt, w is a positive

measurable function onT , and

(1.6) Hw(t) =

∫
X

k(x, t)m

(∫
T

k(x, y)mw(y)dy

)q− q
p

dx, m =
pq

pq + p− q
.

In this paper, let(X, µ) and(T, λ) be twoσ-finite measure spaces. Letk be a nonnegative
measurable function onX × T such that

(1.7)
∫

T

k(x, t)dλ(t) = 1 for µ−a.e.x ∈ X.

For a nonnegative measurable functionf on (T, λ), define

(1.8) Tkf(x) =

∫
T

k(x, t)f(t)dλ(t), x ∈ X.

The purpose of this paper is to establish a modular inequality of the form

(1.9)

{∫
X

φq(Tkf(x))dµ(x)

} 1
q

≤
{∫

T

φp(f(t))(Hsw(t))
p
q w(t)1−spdλ(t)

} 1
p

for 0 < p ≤ q < ∞, φ ∈ Φ+
s (I), s ≥ 1/p, andHsw(t) is defined by (2.1). As applications,

we prove a convolution inequality in the language of integration on a locally compact Abelian
group. We also show that by suitable choices ofw, we can obtain many forms of strengthened
Hardy and Pólya-Knopp-type inequalities. HereΦ+

s (I) denotes the class of all nonnegative
functionsφ on I ⊆ (0,∞) such thatφ1/s is convex onI andφ takes its limiting values, finite
or infinite, at the ends ofI. Note thatΦ+

s (I) ⊂ Φ+
r (I) for 0 < r < s and we denoteΦ+

∞(I) =⋂
s>0 Φ+

s (I).
The functions involved in this paper are all measurable on their domains. We work under the

convention that00 = ∞0 = 1 and∞/∞ = 0 · ∞ = 0.
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A VARIANT OF A GENERAL INEQUALITY OF THE HARDY-KNOPPTYPE 3

2. M AIN RESULTS

The following theorem is based on Jensen’s inequality and [8, Lemma 3.1]. For the conve-
nience of readers, we give a complete proof here.

Theorem 2.1. Let 0 < p ≤ q < ∞, 1/p ≤ s < ∞, andφ ∈ Φ+
s (I). Let f be a nonnegative

function on(T, λ) and the range of values off lie in the closure ofI. Suppose thatw is a
positive function on(T, λ) such that the function

(2.1) Hsw(t) =

∫
X

k(x, t)m

(∫
T

k(x, y)mw(y)dλ(y)

)sq− q
p

dµ(x),

wherem = spq/(spq + p− q), is finite forλ−a.e.t ∈ T . Then we have

(2.2)

{∫
X

φq(Tkf(x))dµ(x)

} 1
q

≤
{∫

T

φp(f(t))(Hsw(t))
p
q w(t)1−spdλ(t)

} 1
p

.

Proof. Sinceφ1/s is convex,φ(Tkf(x)) ≤ {Tk(φ
1/s(f))(x)}s for µ−a.e.x ∈ X and hence

(2.3)
∫

X

φq(Tkf(x))dµ(x) ≤
∫

X

(∫
T

k(x, t)φ1/s(f(t))dλ(t)

)sq

dµ(x).

Let m = spq/(spq + p − q) andw be a positive function on(T, λ) such thatHsw(t) defined
by (2.1) is finite forλ−a.e.t ∈ T . By Hölder’s inequality with indicessp and(sp)∗, we have∫

T

k(x, t)φ1/s(f(t))dλ(t)(2.4)

=

∫
T

k(x, t)1−m/(sp)∗+m/(sp)∗φ1/s(f(t))w(t)
1

(sp)∗−
1

(sp)∗ dλ(t)

≤
(∫

T

k(x, y)mw(y)dλ(y)

) 1
(sp)∗

×
(∫

T

k(x, t)(1−m/(sp)∗)spφp(f(t))w(t)−sp/(sp)∗dλ(t)

) 1
(sp)

and this implies{∫
X

φq(Tkf(x))dµ(x)

} 1
q

(2.5)

≤

{∫
X

(∫
T

k(x, t)(1−m/(sp)∗)spφp(f(t))w(t)−sp/(sp)∗dλ(t)

) q
p

×
(∫

T

k(x, y)mw(y)dλ(y)

)(sp−1) q
p

dµ(x)

} 1
q

≤
{∫

T

φp(f(t))(Hsw(t))
p
q w(t)1−spdλ(t)

} 1
p

.

The last inequality is based on the Minkowski’s integral inequality with indexq
p
. This completes

the proof. �

We can apply Theorem 2.1 to obtain some multidimensional strengthened Hardy and Pólya-
Knopp-type inequalities. These are discussed in Section 3. In the following corollary, we
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4 DAH-CHIN LUOR

consider the norm inequality

(2.6)

{∫
X

φq(Tkf(x))dµ(x)

} 1
q

≤ C

{∫
T

φp(f(t))dλ(t)

} 1
p

.

The results of Corollary 2.2 can be obtained by Theorem 2.1 and the fact thatΦ+
s (I) ⊂ Φ+

r (I)
for 0 < r < s.

Corollary 2.2. Let 0 < p ≤ q < ∞, 1/p ≤ s < ∞, andφ ∈ Φ+
s (I). Let f be given as in

Theorem 2.1.

(i) If there exists a positive functionw on (T, λ) such that the following condition (2.7)
holds for some1/p ≤ r ≤ s and for some positive constantAr:

(2.7) Hrw(t) ≤ Arw(t)(r−1/p)q for λ-a.e.t ∈ T,

then we have (2.6) where the best constantC satisfies

(2.8) C ≤ A
1
q
r .

(ii) If w satisfies (2.7) for each1/p ≤ r ≤ s, then we have (2.6) with

(2.9) C ≤ inf
1/p≤r≤s

A
1
q
r .

(iii) If φ ∈ Φ+
∞(I) andw satisfies (2.7) for each1/p ≤ r < ∞, then we have (2.6) with

(2.10) C ≤ inf
1/p≤r<∞

A
1
q
r .

In the case1 < p ≤ q < ∞ andφ(x) = x, chooses = r = 1 and then Corollary 2.2 can be
reduced to [8, Lemma 3.1].

In the following, we consider the particular caseX = T = G, whereG is a locally compact
Abelian group (written multiplicatively), with Haar measureµ. Leth be a nonnegative function
onG such that

∫
G

hdµ = 1. For a nonnegative functionf onG, define the convolution operator

(2.11) h ∗ f(x) =

∫
G

h(xt−1)f(t)dµ(t), x ∈ G.

Moreover, if
∫

G
hmdµ is also finite, wherem is given in Theorem 2.1, then by (2.1) with

k(x, y) = h(xy−1) andw ≡ 1, we have

Hsw(t) =

∫
G

h(xt−1)m

(∫
G

h(xy−1)mdµ(y)

)sq− q
p

dµ(x)(2.12)

=

(∫
G

h(x)mdµ(x)

) sq
m

.

We then obtain the following result:

Corollary 2.3. Let 0 < p ≤ q < ∞, 1/p ≤ s < ∞, andφ ∈ Φ+
s (I). Leth be a nonnegative

function onG such that
∫

G
hdµ = 1 and

∫
G

hmdµ < ∞, wherem = spq/(spq + p− q). Letf
be given as in Theorem 2.1. Then we have

(2.13)

{∫
G

φq(h ∗ f(x))dµ(x)

} 1
q

≤
{∫

G

h(x)mdµ(x)

} s
m
{∫

G

φp(f(t))dµ(t)

} 1
p

.
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A VARIANT OF A GENERAL INEQUALITY OF THE HARDY-KNOPPTYPE 5

Moreover, ifp < q, φ ∈ Φ+
∞(I) and

∫
G

hrdµ < ∞ for somer > 1, then

(2.14)

{∫
G

φq(h ∗ f(x))dµ(x)

} 1
q

≤
{

exp

(∫
G

h(x) log h(x)dµ(x)

)} 1
p
− 1

q
{∫

G

φp(f(t))dµ(t)

} 1
p

.

Inequality (2.14) can be obtained by lettings →∞ in (2.13). In the caseφ(x) = x ands = 1
in (2.13), the condition

∫
G

hdµ = 1 is not necessary and (2.13) can be reduced to Young’s
inequality:

(2.15)

{∫
G

(h ∗ f(x))qdµ(x)

} 1
q

≤
{∫

G

h(x)mdµ(x)

} 1
m
{∫

G

f(t)pdµ(t)

} 1
p

,

where1 ≤ p ≤ q < ∞ andm = pq/(pq + p − q). If φ(x) = ex andf is replaced bylog f
in (2.14), then for0 < p < q < ∞,

(2.16)

{∫
G

{
exp

(∫
G

h(xt−1) log f(t)dµ(t)

)}q

dµ(x)

} 1
q

≤
{

exp

(∫
G

h(x) log h(x)dµ(x)

)} 1
p
− 1

q
{∫

G

f(t)pdµ(t)

} 1
p

.

Let G = Rn under addition andµ be the Lebesgue measure. Then (2.15) can be reduced to

(2.17)

{∫
Rn

(∫
Rn

h(x− t)f(t)dt

)q

dx

} 1
q

≤
{∫

Rn

h(x)mdx

} 1
m
{∫

Rn

f(t)pdt

} 1
p

.

Moreover, if
∫

Rn h(x)dx = 1 and
∫

Rn h(x)rdx < ∞ for somer > 1, then by (2.16),

(2.18)

{∫
Rn

{
exp

(∫
Rn

h(x− t) log f(t)dt

)}q

dx

} 1
q

≤
{

exp

(∫
Rn

h(x) log h(x)dx

)} 1
p
− 1

q
{∫

Rn

f(t)pdt

} 1
p

.

Let G = (0,∞) under multiplication anddµ = x−1dx. Then by (2.15),

(2.19)

{∫ ∞

0

(∫ ∞

0

h(x/t)f(t)
dt

t

)q
dx

x

} 1
q

≤
{∫ ∞

0

h(x)m dx

x

} 1
m
{∫ ∞

0

f(t)p dt

t

} 1
p

.

Moreover, if
∫∞

0
h(x)x−1dx = 1 and

∫∞
0

h(x)rx−1dx < ∞ for somer > 1, then (2.16) can be
reduced to

(2.20)

{∫ ∞

0

{
exp

(∫ ∞

0

h(x/t) log f(t)
dt

t

)}q
dx

x

} 1
q

≤
{

exp

(∫ ∞

0

h(x) log h(x)
dx

x

)} 1
p
− 1

q
{∫ ∞

0

f(t)p dt

t

} 1
p

.
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6 DAH-CHIN LUOR

There are multidimensional cases corresponding to (2.19) and (2.20). For example, the 2-
dimensional analogue of (2.19) is

(2.21)

{∫ ∞

0

∫ ∞

0

(∫ ∞

0

∫ ∞

0

h
(x

s
,
y

t

)
f(s, t)

ds

s

dt

t

)q
dx

x

dy

y

} 1
q

≤
{∫ ∞

0

∫ ∞

0

h(x, y)m dx

x

dy

y

} 1
m
{∫ ∞

0

∫ ∞

0

f(s, t)p ds

s

dt

t

} 1
p

,

and we can also obtain similar results to (2.20).

3. M ULTIDIMENSIONAL HARDY AND PÓLYA -K NOPP-TYPE I NEQUALITIES

In this section, we apply our main results to the caseX = T = RN and obtain some multi-
dimensional forms of the strengthened Hardy and Pólya-Knopp-type inequalities. LetΣN−1 be
the unit sphere inRN , that is,ΣN−1 = {x ∈ RN : |x| = 1}, where|x| denotes the Euclidean
norm ofx. Let A be a Lebesgue measurable subset ofΣN−1, 0 < b ≤ ∞, and define

E = {x ∈ RN : x = sρ, 0 ≤ s < b, ρ ∈ A}.
Forx ∈ E, we define

Sx = {y ∈ RN : y = sρ, 0 ≤ s ≤ |x|, ρ ∈ A},
and denote by|Sx| the Lebesgue measure ofSx. We have the following result:

Theorem 3.1. Let 0 < p ≤ q < ∞, 1/p ≤ s < ∞, andφ ∈ Φ+
s (I). Let g be a nonnegative

function onRN × RN such that
∫

Sx
g(x, t)dt = 1 for almost allx ∈ E and letf be a nonneg-

ative function onRN and the range of values off lie in the closure ofI. Suppose thatu is a
nonnegative function onRN andw is a positive function onE such that the function

(3.1) Hsw(t) =

∫
E

g(x, t)m

(∫
Sx

g(x, y)mw(y)dy

)sq− q
p

u(x)χSx(t)dx,

wherem = spq/(spq + p− q), is finite for almost allt ∈ E. Then we have

(3.2)

{∫
E

φq

(∫
Sx

g(x, t)f(t)dt

)
u(x)dx

} 1
q

≤
{∫

E

φp(f(t))(Hsw(t))
p
q w(t)1−spdt

} 1
p

.

Proof. Let X = T = RN , dµ = u(x)χE(x)dx, dλ = χE(x)dx, andk(x, t) = g(x, t)χSx(t)
in Theorem 2.1. ThenHsw defined by (2.1) can be reduced to (3.1) and we have (3.2) by
Theorem 2.1. �

In the casep = q = s = 1, thenm = 1 and we have

(3.3)
∫

E

φ

(∫
Sx

g(x, t)f(t)dt

)
u(x)dx ≤

∫
E

φ(f(t))

(∫
E

g(x, t)u(x)χSx(t)dx

)
dt.

In particular, ifN = 1, E = [0, b), Sx = [0, x), andu(x) is replaced byu(x)/x, then (3.3) can
be reduced to

(3.4)
∫ b

0

φ

(∫ x

0

g(x, t)f(t)dt

)
u(x)

x
dx ≤

∫ b

0

φ(f(t))

(∫ b

t

g(x, t)
u(x)

x
dx

)
dt.

Inequality (3.4) was also obtained in [6, Theorem 4.1].
Now we consider (3.2) withu(x) = |Sx|a and g(x, t) = |Sx|−1h(|St|/|Sx|), wherea ∈

R, h is a nonnegative function defined on[0, 1) and
∫ 1

0
h(x)dx = 1. By (3.1) with w(y) =

|Sy|m( q
p
−a−2)/(sq), we have
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(3.5) Hsw(t) =

(∫ 1

0

h(ξ)mξm(q/p−a−2)/(sq)dξ

)sq− q
p

|St|−1+m(a+2−q/p)/(sq)

×
∫ 1

(|t|/b)N

h(ξ)mξm(q/p−a−2)/(sq)dξ.

As a consequence of Theorem 3.1, we have the following result:

Corollary 3.2. Let 0 < p ≤ q < ∞, 1/p ≤ s < ∞, φ ∈ Φ+
s (I), and f be given as in

Theorem 3.1. Leta ∈ R, h be given as above, and
∫ 1

0
h(ξ)mξm(q/p−a−2)/(sq)dξ < ∞, where

m = spq/(spq + p− q). Then we have

(3.6)

{∫
E

φq

(
1

|Sx|

∫
Sx

h

(
|St|
|Sx|

)
f(t)dt

)
|Sx|adx

} 1
q

≤
(∫ 1

0

h(ξ)mξm(q/p−a−2)/(sq)dξ

)s− 1
p
{∫

E

φp(f(t))|St|(a+1) p
q
−1v(t)

p
q dt

} 1
p

,

where

v(t) =

∫ 1

(|t|/b)N

h(ξ)mξm(q/p−a−2)/(sq)dξ.

By (3.6), we see that

(3.7)

{∫
E

φq

(
1

|Sx|

∫
Sx

h

(
|St|
|Sx|

)
f(t)dt

)
|Sx|adx

} 1
q

≤ C

{∫
E

φp(f(t))|St|(a+1) p
q
−1dt

} 1
p

,

whereC satisfies

(3.8) C ≤
(∫ 1

0

h(ξ)mξm( q
p
−a−2)/(sq)dξ

)s− 1
p
+ 1

q

.

Moreover, ifφ ∈ Φ+
∞(I) andp < q, then the estimation given in (3.8) can be replaced by

(3.9) C ≤
{

exp

(∫ 1

0

h(ξ) log[h(ξ)ξ(q−(a+2)p)/(q−p)]dξ

)} 1
p
− 1

q

.

In the following, we consider the particular casep = q. In this case,m = 1 and (3.6) can be
reduced to

(3.10)
∫

E

φp

(
1

|Sx|

∫
Sx

h

(
|St|
|Sx|

)
f(t)dt

)
|Sx|adx

≤
(∫ 1

0

h(ξ)ξ(−a−1)/(sp)dξ

)sp−1 ∫
E

φp(f(t))

(∫ 1

(|t|/b)N

h(ξ)ξ(−a−1)/(sp)dξ

)
|St|adt.

In the caseφ ∈ Φ+
∞(I), by lettings →∞ in (3.10), we have

(3.11)
∫

E

φp

(
1

|Sx|

∫
Sx

h

(
|St|
|Sx|

)
f(t)dt

)
|Sx|adx

≤
{

exp

(∫ 1

0

h(ξ) log ξdξ

)}−a−1 ∫
E

φp(f(t))

(∫ 1

(|t|/b)N

h(ξ)dξ

)
|St|adt.

If h(ξ) = αξα−1, α > 0, then we have the following corollary.

Corollary 3.3. Let 0 < p < ∞, 1/p ≤ s < ∞, φ ∈ Φ+
s (I), α > 0, a + 1 < αsp, andf be

given as in Theorem 3.1. Then we have
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(3.12)
∫

E

φp

(
α

|Sx|α

∫
Sx

|St|α−1f(t)dt

)
|Sx|adx

≤
(

αsp

αsp− a− 1

)sp ∫
E

φp(f(t))

(
1−

(
|t|
b

)N(αsp−a−1)/(sp)
)
|St|adt.

Moreover, ifφ ∈ Φ+
∞(I), then fora ∈ R, we have

(3.13)
∫

E

φp

(
α

|Sx|α

∫
Sx

|St|α−1f(t)dt

)
|Sx|adx

≤ e(a+1)/α

∫
E

φp(f(t))

(
1−

(
|t|
b

)Nα
)
|St|adt.

Inequality (3.12) was obtained in [3, Theorem 1(i)] for the caseφ(x) = x, p > 1, s = 1, a <
p− 1, α = 1, andE is the ball inRN centered at the origin and of radiusb. If φ(x) = ex, p = 1,
andf is replaced bylog f in (3.13), then we have [3, Theorem 2(i)]. Ifh(ξ) = α(1 − ξ)α−1,
α > 0, then we have the following corollary.

Corollary 3.4. Let0 < p < ∞, 1/p ≤ s < ∞, φ ∈ Φ+
s (I), α > 0, a + 1 < sp, andf be given

as in Theorem 3.1. Then we have

(3.14)
∫

E

φp

(
α

|Sx|α

∫
Sx

(|Sx| − |St|)α−1f(t)dt

)
|Sx|adx

≤
{

αB

(
sp− a− 1

sp
, α

)}sp−1 ∫
E

φp(f(t))|St|av(t)dt,

whereB(δ, η) is the Beta function and

v(t) =

∫ 1

(|t|/b)N

α(1− ξ)α−1ξ(−a−1)/(sp)dξ.

Moreover, ifφ ∈ Φ+
∞(I), then fora ∈ R we have

(3.15)
∫

E

φp

(
α

|Sx|α

∫
Sx

(|Sx| − |St|)α−1f(t)dt

)
|Sx|adx

≤
{

exp

(∫ 1

0

α(1− ξ)α−1 log ξdξ

)}−a−1 ∫
E

φp(f(t))

(
1−

(
|t|
b

)N
)α

|St|adt.

In the following, we consider the dual result of Theorem 3.1. Let0 ≤ b < ∞ and

Ẽ = {x ∈ RN : x = sρ, b ≤ s < ∞, ρ ∈ A}.
Forx ∈ Ẽ, we define

S̃x = {y ∈ RN : y = sρ, |x| ≤ s < ∞, ρ ∈ A}.
Let u be a nonnegative function onRN , dµ = u(x)χẼ(x)dx, dλ = χẼ(t)dt, andk(x, t) =
g(x, t)χS̃x

(t), whereg is a nonnegative function onRN × RN such that
∫

S̃x
g(x, t)dt = 1 for

almost allx ∈ Ẽ. Suppose thatw is a positive function oñE. ThenHsw defined by (2.1) can
be reduced to

(3.16) Hsw(t) =

∫
Ẽ

g(x, t)m

(∫
S̃x

g(x, y)mw(y)dy

)sq− q
p

u(x)χS̃x
(t)dx.

We have the following theorem.
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Theorem 3.5. Let 0 < p ≤ q < ∞, 1/p ≤ s < ∞, φ ∈ Φ+
s (I), andg, u, w be given as above.

Let f be given as in Theorem 3.1. Suppose thatHsw(t) given in (3.16) is finite for almost all
t ∈ Ẽ. Then we have

(3.17)

{∫
Ẽ

φq

(∫
S̃x

g(x, t)f(t)dt

)
u(x)dx

} 1
q

≤
{∫

Ẽ

φp(f(t))(Hsw(t))
p
q w(t)1−spdt

} 1
p

.

In the casep = q = s = 1, thenm = 1 and we have

(3.18)
∫

Ẽ

φ

(∫
S̃x

g(x, t)f(t)dt

)
u(x)dx ≤

∫
Ẽ

φ(f(t))

(∫
Ẽ

g(x, t)u(x)χS̃x
(t)dx

)
dt.

In particular, if N = 1, Ẽ = [b,∞), S̃x = [x,∞), andu(x) is replaced byu(x)/x, then
by (3.18) we have

(3.19)
∫ ∞

b

φ

(∫ ∞

x

g(x, t)f(t)dt

)
u(x)

x
dx ≤

∫ ∞

b

φ(f(t))

(∫ t

b

g(x, t)
u(x)

x
dx

)
dt.

Inequality (3.19) was also obtained in [6, Theorem 4.3]. Using a similar method, we can also
obtain companion results of (3.6) – (3.15). We omit the details.
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[2] A. ČIŽMEŠIJA AND J. PĚCARIĆ, Some new generalisations of inequalities of Hardy and Levin-
Cochran-Lee,Bull. Austral. Math. Soc., 63 (2001), 105–113.
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