Journal of Inequalities in Pure and Applied Mathematics

A NOTE ON SÁNDOR TYPE FUNCTIONS

N. ANITHA

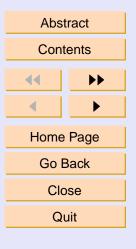
Department of Studies in Mathematics University of Mysore Manasagangotri Mysore 570006, India.

EMail: ani_lohith@yahoo.com

P A

volume 6, issue 4, article 127, 2005.

Received 14 June, 2005; accepted 28 July, 2005. Communicated by: J. Sándor



©2000 Victoria University ISSN (electronic): 1443-5756 183-05

Abstract

In this paper we introduce the functions G and G_* similar to Sándor's functions which are defined by,

$$G(x) = \min\{m \in \mathbb{N} : x \le e^m\}, \quad x \in [1, \infty),$$
$$G_*(x) = \max\{m \in \mathbb{N} : e^m \le x\}, \quad x \in [e, \infty).$$

We study some interesting properties of G and G_* . The main purpose of this paper is to show that

$$\pi(x) \sim \frac{x}{G_*(x)}$$

where $\pi(x)$ is the number of primes less than or equal to x.

2000 Mathematics Subject Classification: 40A05, 33E99. Key words: Asymptotic formula , Infinite Series.

Contents

1	Introduction	3		
2	Main Result	6		
3	Remark	8		
References				

A Note on Sándor Type Functions

J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au

1. Introduction

In his paper [1], J. Sándor discussed many interesting properties of the functions S and S_* defined by,

$$S(x) = \min\{m \in \mathbb{N} : x \le m!\}, \quad x \in (1, \infty),$$

and

$$S_*(x) = \max\{m \in \mathbb{N}: m! \le x\}, \quad x \in [1, \infty).$$

He also proved the following theorems:

Theorem 1.1.

$$S_*(x) \sim \frac{\log x}{\log \log x} \quad (x \to \infty).$$

Theorem 1.2. The series

$$\sum_{n=1}^{\infty} \frac{1}{n[S_*(n)]^{\alpha}}$$

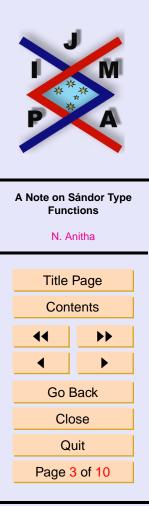
is convergent for $\alpha > 1$ and divergent for $\alpha \leq 1$.

Now we will define functions G(x) and $G_*(x)$ and discuss their properties. The functions are defined as follows:

$$G(x) = \min\{m \in \mathbb{N} : x \le e^m\}, \quad x \in [1, \infty),$$
$$G_*(x) = \max\{m \in \mathbb{N} : e^m \le x\}, \quad x \in [e, \infty).$$

Clearly,

$$G(x) = m + 1$$
, if $x \in [e^m, e^{m+1})$ for $m \ge 0$.



J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au

Similarly,

$$G_*(x) = m$$
, if $x \in [e^m, e^{m+1})$ for $m \ge 1$.

It is immediate that

$$G(x) = \begin{cases} G_*(x) + 1, & \text{if } x \in [e^k, e^{k+1}) & (k \ge 1) \\ G_*(x), & \text{if } x = e^{k+1} & (k \ge 1). \end{cases}$$

Therefore,

$$G_*(x) + 1 \ge G(x) \ge G_*(x).$$

It can be easily verified that the function $G_*(x)$ satisfies the following properties:

- 1. $G_*(x)$ is surjective and an increasing function.
- 2. $G_*(x)$ is continuous for all $x \in (e, \infty) \setminus A$, where $A = e^k, k \ge 1$ and since $\lim_{x \nearrow e^k} G_*(x) = k$, $\lim_{x \searrow e^k} G_*(x) = k 1$ for $k \ge 1$, $G_*(x)$ is continuous from the right at $x = e^k$ $(k \ge 1)$, but it is not continuous from the left.
- 3. $G_*(x)$ is differentiable on $[e, \infty) \setminus A$, and since

$$\lim_{x \searrow e^k} \frac{G_*(x) - G_*(e^k)}{x - (e^k)} = 0,$$

it has a right derivative at e^k .

••

Go Back

Close

Quit

Page 4 of 10

J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au 4. $G_*(x)$ is Reimann integtrable over $[a, b] \subset \mathbb{R}$ for all $a \leq b$. Also

$$\int_{e^k}^{e^l} G_*(x) dx = (e-1) \sum_{m=1}^{l-k} (e^k + m - 1)(k+m-1).$$

A Note on Sándor Type Functions

J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au

2. Main Result

The main purpose of this paper is to prove the following theorem:

Theorem 2.1.

$$\pi(x) \sim \frac{x}{G_*(x)}.$$

Proof. To prove our theorem first we will prove that

$$(2.1) G_*(x) \sim \log x.$$

By Stiriling's formula [2] we have

 $n! \sim c e^{-n} n^{n+1/2}$

i.e.,

$$e^n \sim \frac{cn^{n+1/2}}{n!}$$

Thus,

$$\log e^n \sim \log\left(\frac{cn^{n+1/2}}{n!}\right)$$

and hence,

$$n \sim n + \frac{1}{2}\log n + \log c - \log n!.$$

Also we have,

$$\log(n!) \sim n \log n \Rightarrow n \sim \log n \qquad \text{(cf. [1], Lemma 2)}.$$

A Note on Sándor Type Functions

J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au

If
$$x \ge e$$
 then $x \in [e^n, e^{n+1})$ for some $n \ge 1$.
Since $G_*(x) = n$ if $x \in [e^n, e^{n+1}), n \ge 1$, we have

$$\frac{n}{n+1} \le \frac{G_*(x)}{\log x} \le \frac{n}{n}.$$

As

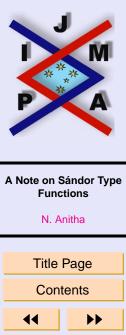
$$\lim_{n \to \infty} \frac{n}{n+1} = 1,$$

we have

 $G_*(x) \sim \log x.$

From the prime number theorem it follows that

$$\pi(x) \sim \frac{x}{G_*(x)}.$$



Contents				
••	••			
•				
Go Back				
Close				
Quit				
Page 7 of 10				

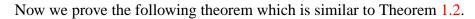
 \square

J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au

3. Remark

The following table compares the values of $\pi(x)$ and $\frac{x}{G_*(x)}$:

x	$\pi(x)$	$rac{x}{G_*(x)}$
10	5	3.3333
100	26	20.00000
1000	169	142.857143
10000	1230	1000
100000	9593	8333.3333
1000000	78499	71428.571429
1000000	664580	588235.294118



Theorem 3.1. *The series*

$$\sum_{n=1}^{\infty} \frac{1}{n[G_*(n)]^{\alpha}}$$

is convergent for $\alpha > 1$ and divergent for $\alpha \leq 1$.

Proof. By (2.1) we have

$$A\log n \le G_*(n) \le B\log n$$

where $(A, B \ge 0)$ for $n \ge 1$.

Therefore it is sufficient to study the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n(\log n)^{\alpha}}.$$

A Note on Sándor Type Functions

J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au

To study the convergence of the above series we use the following result: If $\phi(x)$ is positive for all positive 'x' and if

$$\lim_{x \to \infty} \phi(x) = 0$$

then the two infinite series

$$\sum_{n=1}^{\infty} \phi(n)$$
 and $\sum_{n=1}^{\infty} a^n \phi(a^n)$

behave alike for any positive integer 'a'.

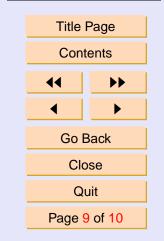
Therefore the two series

$$\sum_{n=1}^{\infty} \frac{1}{n(\log n)^{\alpha}} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{a^n}{(a^n)[\log (a^n)]^{\alpha}}$$

behave alike.

However, the second series converges for $\alpha > 1$ and diverges for $\alpha \le 1$. Hence the theorem is proved.

A Note on Sándor Type Functions



J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au

References

- J. SÁNDOR, On an additive analogue of the function S, Notes Numb. Th. Discr. Math., 7(2) (2001), 91–95.
- [2] W. RUDIN, *Principles of Mathematical Analysis*, Third ed., Mc Graw-Hill Co., Japan, 1976.

A Note on Sándor Type Functions

J. Ineq. Pure and Appl. Math. 6(4) Art. 127, 2005 http://jipam.vu.edu.au