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1. INTRODUCTION

In the Euclidean case, the Littlewood-Palefunction is given by

/0 h (‘%u(m,t}

whereu is the Poisson integral gf andV is the usual gradient. The”-norm of this operator
is comparable with thé?-norm of f for p €]1, 00| (see [19]). Next, this operator plays an
important role in questions related to multipliers, Sobolev spaces and Hardy spaces|(see [19]).

Over the past twenty years considerable effort has been made to extend the Littlewood-Paley
g-function on generalized hypergroups|[20, 1, 2], and complete Riemannian manifolds [4].

In this paper we consider the differential-difference operaforsj = 1,...,d, onR? in-
troduced by Dunkl in[[5] and aptly called Dunkl operators in the literature. These operators
extend the usual partial derivatives by additional reflection terms and give generalizations of
many multi-variable analytic structures like the exponential function, the Fourier transform, the
convolution product and the Poisson integral (§eel[12, 23, 16] and [13]).

During the last years, these operators have gained considerable interest in various fields of
mathematics and in certain parts of quantum mechanics; one expects that the results in this paper
will be useful when discussing the boundedness property of the Littlewood-g&letion in
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2 FETHI SOLTANI

the Dunkl analysis ofiR?. Moreover they are naturally connected with certain Schrodinger
operators for Calogero-Sutherland-type quantum many body systems [3, 9].

The main purpose of this paper is to give the-inequality for the Littlewood-Paley-
function in the Dunkl case oR? by using continuity properties of the Dunkl transfotf,
the Dunkl translation operators of radial functions and the generalized convolution ptduct
We will adapt to this case techniques Stein used in([18, 19].

The paper is organized as follows. In Sectign 2 we recall some basic harmonic analysis
results related to the Dunkl operatorsRfr In particular, we list some basic properties of the
Dunkl transformF;, and the generalized convolution produgt(see [8] 23, 15]).

In Sectior] B we study the Littlewood-Paleyfunction:

o)) = [ | (\%umw

whereu(+, t) is the generalized Poisson integralfof
We prove thay is LP-boundedness fgr € |1, 2].
Throughout the paperdenotes a positive constant whose value may vary from line to line.

1
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+ |quk(m,t)|2> tdt] , xR

2

2. THE DUNKL ANALYSIS ON R¢

We consideiR? with the Euclidean inner product, -) and norm||z|| = /{x, z).
Fora € R4\ {0}, leto, be the reflection in the hyperpla#&, C R? orthogonal tax:

<2<a, x})
Oq := X — 5 a
[ler]
A finite setR C R?\{0} is called a root system, RN R, « = {—a,a} ando,R = R for
all & € R. We assume that it is normalized bg||? = 2 for all « € R.
For a root systenR?, the reflectionsr,, « € R generate a finite groupr C O(d), the

reflection group associated witk. All reflections inG, correspond to suitable pairs of roots.
Fora givens € H := R*\J,.x Ha ., We fix the positive subsystem:

R, :={a € R/ {(a,p) >0}

Then for eachy € R eithera € R, or —a € R,
Let% : R — C be a multiplicity function onk (i.e. a function which is constant on the orbits
under the action ofy). For brevity, we introduce the index:

y=7k) = k).

aERL

Moreover, letw;, denote the weight function:

wp@) = ] le,a)*@, o eRre,

a€R4

which isG-invariant and homogeneous of degee
We introduce the Mehta-type constapt by

(2.1) Cp = (/ e”””Qduk(:C))_ . where du(z) := wg(z)dz.
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LITTLEWOOD-PALEY G-FUNCTION IN THE DUNKL ANALYSIS 3

The Dunkl operatorg}; j = 1,...,d, onR? associated with the finite reflection groGpand
multiplicity function £ are given for a functiorf of cIassO1 onRR?, by

Tif(@):= (913J Z kla (a J;(;ax)'

acR

The generalized Laplaciafy, associated witli; andk, is defined byA, := E;’:l Tf. Itis
given explicitly by

2.2) Aef(@) = Lef() ~2 Y k()LD T02)

2
acRy >

with the singular elliptic operator:

(2.3) Lif(z) = Af(z) +2 ) k(o

acER

(Vf(z), o)
> :

whereA denotes the usual Laplacian.
The operatol.;, can also be written in divergence form:

(2.4 L) = s> (e )

This is a canonical multi-variable generalization of the Sturm-Liouville operator for the classical
spherical Bessel function![d} 2,120].

Fory € RY, the initial value problenTju(z, )(y) = x; u(z,y); j = 1,...,d, with u(0,y) =
1 admits a unique analytic solution @&¢, which will be denoted byz,.(z, y) and called a Dunkl
kernel [6)14] 16, 23].

This kernel has the Bochner-type representation (see [12]):

(2.5) Ei(z,2) = / e<y’z>de(y); reRY zeCY
Rd

where(y, z) := Zle y;z; andl,, is a probability measure di? with support in the closed ball
By(o, ||z||) of centero and radiug|z||.

Example 2.1(seel[23, p. 21]))If G = Z,, the Dunkl kernel is given by

DY) sl [,
B = ey |,

Notation. We denote byD(R?) the space of’>—functions onR? with compact support.
The Dunkl kernel gives an integral transform, called the Dunkl transforfnrvhich was
studied by de Jeu in[8]. The Dunkl transform of a functjpim D(R?) is given by

D) = [ Bcing)i@dn). oe R
R
Note thatF, agrees with the Fourier transforfmonR?:
F)@ = [ ey, x e R
Rd

The Dunkl transform of a functiorf € D(R?) which is radial is again radial, and could be
computed via the associated Fourier-Bessel transﬁéﬁg /o—1 [11, p. 586] that is:

Fi(f) (@) = 27PN FR 1 (F)(l2])),

—y*) =z + y)dy.

el
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wheref(z) = F(||z

), and

oy izl e
7:5+d/2—1(F)(||$||) = /O F(r)%:d/z/_lr o9 p2Hd=1 g,

Herej, is the spherical Bessel functian [24].
Notations. We denote by.? (R%), p € [1, oo], the space of measurable functighen R?, such
that

|wq:L@uwmer<m,peme

HfHLzO = esssup |f(x)] < oo,
xER4

wherey, is the measure given by (2.1).
Theorem 2.1(seel[7])

i) Plancherel theoremthe normalized Dunkl transforar—%/2¢, F;. is an isometric au-
tomorphism or’.2(R9). In particular,

1£llzz = 2772 |7 ()l 2.
i) Inversion formula: let f be a function inZ} (R?), such thatF;(f) € L.(R?). Then
Fo () x) =272 G F(f)(—z), aexeR™

In [6], Dunkl defines the intertwining operatdf, on P := C[R? (the C-algebra of polyno-
mial functions orR?), by

W)@ = [ o), « e R

whereT, is the representing measure &fi given by [2.5).

Next, Rosler proved the positivity properties of this operator (see [12]).
Notation. We denote by¢(R¢) and by&’(R?) the spaces of’>—functions onRR¢ and of
distributions orR¢ with compact support respectively.

In [22, Theorem 6.3], Triméche has proved the following results:

Proposition 2.2.

i) The operatofi;, can be extended to a topological automorphisn€6R?).
i) Forall z € RY, there exists a unique distribution .. in &'(R?) with supgn:..) C {y €
R/ [ly|l < ||/}, such that

(Vi) (@) = (s 1), [ € ERY).
Next in [23], the author defines:
e The Dunkl translation operators, = € R?, onE(R?), by

Tof () = (Vi)o ® (Vi) (Vi)' (f) (@ +y)], y € RY
These operators satisfy fory andz € R? the following properties:

(2.6) nof =1 7fly)=71f(2),

(7, 2) Ex(y, 2) = T2(Er(-, 2))(2),
and
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LITTLEWOOD-PALEY G-FUNCTION IN THE DUNKL ANALYSIS 5

Thus by ), the Dunkl translation operators can be extendefi;@R?), and for
r € R? we have

I7efllz < W fllez,  f € LR(RY).
e The generalized convolution produgt of two functionsf andg in LZ(R%), by

[ g(x) = /Rd 7 f(=y)9(y)dp(y), xR

Note thatx, agrees with the standard convolutien R¢:

frg@):= | flo—yglydy, =€ R?.
The generalized convolutiof), satisfies the following properties:
Proposition 2.3.
i) Letf,g € D(RY). Then
Fi(f *1 9) = Fi(f)Fr(g)-

i) Letf,g € Li(R%). Thenf x; g belongs tal.?(R?) if and only if 7. ( f)F.(g) belongs to
L%(R%) and we have

Fi(f *1 9) = Fr(f)Frlg), intheL? — case

Proof. The assertion i) is shown in [23, Theorem 7.2]. We can prove ii) in the same manner
demonstrated in[21, p. 101-103]. O

Theorem 2.4.Letp, ¢, r € [1, o] satisfy the Young’s condition;/p+ 1/¢ = 1+ 1/r. Assume
that f € Li(R?) andg € L{(R?). If |7, f[ls < c| fll.q forall z € RY then

1 e gl < cllflleellgllze-

Proof. The assumption that, is a bounded operator dtf (R?) ensures that the usual proof of
Young'’s inequality (see [25, p. 37]) works. O

Proposition 2.5.
i) If f(x) = F(]|z|) in ERY), then we have

rf@ = [ F(VIFT W+ 20.8) da(e oy ere

Ay

where
Ay, = R? / min ||z + gy|| < ||€]| < m +
w {6 € R/ min |lz + gy|| < [|¢]] < max [z gy||},

andT, the representing measure given (@y5).
i) Forall z € R?and for f € L} (RY), radial, p € [1, o0],

172 fllee < 1 f] e

i) Letp,q,r € [1, 0] satisfy the Young’s conditiort:/p + 1/q = 1 + 1/r. Assume that
f € LE(RY), radial, andg € L{(R?), then

1 #x gl < Iz llglcg-
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Proof. The assertion i) is shown by Rdésler in [13, Theorem 5.1].
i) Since f is a radial function, the explicit formula of, f shows that

7o f ()] < (£ ()
Hence, it follows readily from2.6)) that

17 f Il < 1z

By duality the same inequality holds fpr= oc.
Thus by interpolation we obtain the result foE |1, co|.
iii) follows directly from Theorenj 2}4.

Notation. For allz, y, z € R, we put
Wo(z,y,2) = [1 = 0wy + Oony + 022 By(|2], Y], |2]),

where
2% 4 y? — 22
Opy = 2xy
0, otherwise
andB, is the Bessel kernel given by

o ]+ 1yD? = 2%) (22 = (2] = )"

, if x,y € R\{0}

if |[2] € A
v 2y—1 9 x,y
BW(|JJ|,’y|,|zD = |ZEyZ|
0, otherwise
27T (v + )
dy = = A =H|ﬂf|—|y|7|a:|+]y|]
! Vrl(7) v

Remark 2.6 (see[10]) The signed kerndll’, is even and satisfies:
WV(I7 Y, Z) = W’y(yu x, Z) - W’y(_xv Z, ?J)7

W7($7y7z) - W’y(_zaya —l') = W’y(_xa -v, _Z)a
and

/ W, (2,9, 2)| d= < 4.
R
We consider the signed measurgg (see [10]) defined by
W, (2, y, 2)[2|dz,  if 2,y € R\{0}
dvyy(2) == ¢ doy(2), ify=0
doy(z), if x =0.
The measures, , have the following properties:
SUPP(7,) = Aay U (=Aay). agli= [ dlvay) <4

Proposition 2.7(seel[10, 15]) If d = 1 and G = Z,, then
i) Forall z,y € R and for f a continuous function oR, we have

rof(y) = /A F()dusy (€) + / 1) (©).

(—Az,y)
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i) Forallz € Randforf € L2(R), p € [1, 0],

17afllze < 411 f| -

iif) Assume thap, ¢, r € [1, oo| satisfy the Young’s condition:/p + 1/g = 1+ 1/r. Then
the map(f, g) — f *, g extends to a continuous map frabj(R) x LI(R) to L’ (R)
and we have

1f #y gl < 4 flleellgllze-
3. THE LITTLEWOOD -PALEY g-FUNCTION

By analogy with the case of Euclidean space [19, p. 61] we definé, fob), the functions
W, and P, onRY, by

Wy(z) =272 / e e By (i, €)dpx(€), = € RY,

Rd
and

Py(z) :=27274¢2 /Rd e By (i, €)dpr (€), = € RY

The functionlV;, may be called the generalized heat kernel and the funéjicihe generalized
Poisson kernel respectively.
From [23, p. 37] we have

Wi(x) = W@x||2/4t, r € R%
Writing
(3.1) Pi(z) = \/1_ h i/_swtms( r)ds, x¢€RY
we obtain
(3.2) P(x) = @ ¢ ag ‘= M.

(12 + HxH2)7+(d+1)/2’
However, fort > 0 and for allf € LY(R?), p € [1, o0, we put:
ug(x,t) = Py# f(z), x€R%

The functionu,, is called the generalized Poisson integraf pwhich was studied by Rdsler in
[11,/13].

Let us consider the Littlewood-Palgyfunction (in the Dunkl case). This auxiliary operator
is defined initially forf € D(R?), by

o)) = [ I (\%( 0

whereu,, is the generalized Poisson integral.
The main result of the paper is:

Theorem 3.1.For p €11, 2], there exists a constant, > 0 such that, forf € L} (R),
lg(llze < Ap 1l o-
For the proof of this theorem we need the following lemmas:

1
2

—i—]Vzuk(x,t)\Q)tdt] , x€RY

2

Lemma 3.2. Let f € D(R?) be a positive function.

) un(z,t) = 0 and| 5 (2,1)| < i k € Nanda € R,
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ii) For ||z|| large we have

Ouy, c
and ‘ Dy & '”' @+ a2z

Proof. i) If the generalized Poisson kernglis a positive radial function, then from Proposition

i) we obtainu(z,t) > 0.
On the other hand from Propositipn 2.5 iii) we have

g, ) < -
CEATIRE

8Nuk 8NPt
G| <1l |G|
Then we obtain the result from the fact that
aNPt &
8tN oo — t2’y+d+N'
k

ii) From Proposition 2J5 i) we can write
tdl'y(§)
R = | G o

whereqy, is the constant given by (3.2).
Sincef € D(R?), there exists > 0, such that sup(pf) C By(o,a). Then

)
(@,1) = a / / tF(y)dTe(€)dpn(y) |
Butoa Ja, [+ 2l + yl2 = 20y, D7

It is easily verified forj|z|| large andy € Bd(o, a) that
1 < &
[ + [l? + [yl — 2(y, D2 = (82 + [[f|2)r+ @D/
Therefore and using the fact that (2 + ||z(|?)/2, we obtain
ct < c
(% + [J||2)r @D = (82 o [|a2)r /2

Thus the first inequality is proven.
From [2.6) we can write

) )0, () (v)
0= f, Lo TR 2

By derivation under the integral sign we obtain
O () — / / (22 + ) (=)L, () dpi ()
Or; Ba(oa) Jauy [+ 1217 + [lyl]* + 2z, ]+
But for ||z|| large andy € By(o, a) we have
t|2z; + &l < t(2]zi| + &)
[+ TalP + Tyl + 2(a, P72 = (@ + P+
Using the fact that(2|z;| + |&|) < (1 + |&])(¢* + ||=||?) when||z|| large, we obtain

8 k(l‘ t) C
O (& + ||z[|2) @D/

x,y € R,

ug(z,t) <

which proves the second inequality. O

Lemma 3.3. Let f € D(R?) be a positive function ang €]1, oo].
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) Nh_IPOO de (0,N) fN da; (,t) tdtdpn(z) = [ga fP(x)dpn().
i) Jim fo de oy Lty () (@) duk(x)tdt =0,
whereLk is the singular elliptic operator given bj2.4]).

Proof. i) Integrating by parts, we obtain

2
/ / 0 “’f () tdtdyu(z)
By(o,N)

_ / TR / 2, N)dpi (2)

Bd(O7N)

+ pN w? (2, N)——(
Ba(o,N) ot

From Lemma 32 i), we easily get

/ up(z, N)dp(z) < ¢ N~(p=D2r+d)
By(o,N)

and

which gives i).
i) We have

N
Lkup )( dﬂk tdt ]”\7,
/0 /Bd(o,N) k Z

N p
0 ou
I; :/ / (w r)—~ x,t)dwtdt, 1=1,...,d.
S Ba(o,N) O kl )alﬁl( )

Let us study/; y:

" W) [t (™) ) Q% ()
Lin=p wi(z'™) |y (2 ) (2", 8)
0 JBy_1(o,N) g

Ouk

oz,

where

- “2_1(_$(N), t) (_17(N), t) dl’Q ... d[L'd tdt,

Wherex(N)_< NQ—Zd 22, X9, ..., 24

=2 1

Then, by using Lemma 3.2 ii) and the fact that =) < 27N> we obtain forN large,
dxry...dxgtdt
27 d
IlN <cN / /B,i (o) (tz _|_N2)('y+d/2)p+1/2

< ¢ N7P@rtd)+2y- 1/ / To...drgtdt
By_ 1(0N

< ¢ N~ D@y+d)—(d-1)/2

The same result holds fdy v, i = 2,. .., d, which proves ii).
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Lemma 3.4. Let f € D(R?) be a positive function. Define the maximal functioty,(f), by
(3.3) Mi(f)(z) = stug) (up(z,t)), xeR
>

Then forp €]1, oo, there exists a constant, > 0 such that, forf € L} (R?),
[Mi(N)llzz < Coll fllez,

moreover the operatai, is of weak type1,1).

Proof. From (3.1) it follows that

t > 2
up(z,t) = ﬁ/o Wi f(a)e 155732 ds,
which implies, as in[[18, p. 49] that

M) < esup (5 ["Qupis), wers
y>0

whereQ, f(z) = W, x;. f(x), which is a semigroup of operators @fj(R?). Hence using the

Hopf-Dunford-Schwartz ergodic theorem aslinl[18, p. 48], we get the boundedn#4s oh

LP(RY) for p €]1, 0] and weak typé1, 1). O

Proof of Theorer 3]1Let f € D(R?) be a positive function. From Lemrha B.2 i) the general-
ized Poisson integral, of f is positive.
First step Estimate of the quantity? u (z, t)| 2+ |V, (z, t)| 2.

Let ;. be the operator:

82
=1L
T =Lt 5

whereL, is the singular elliptic operator given By (2.3).

Using the fact that

2
Agug(-,1)(z) + %uk(x, t) =0,
we obtain forp € |1, o],
2 2l
Hyup(z,t) = p(p — Dup (2, 1) [—ukmt) + | Voug(z, t)| —|—ka
acR

where
Uy(,t) = 202 (2, 1) [ug(, t) — up(oaz, )], a € Ry.
Let A, B > 0, then the inequality
2AP"Y(A — B) > (A*"' + B (A - B)
is equivalent to
(AP~ — B (A - B) >0,
which holds ifA > B or A < B. Thus we deduce that
Ua(,t) > [uf” Y, t) + ub” (Uoéz,t)} [ug(z,t) — ug(oax, t)],

and therefore we get
2
4—|‘7xUk($,t)F S

(3.4) %uk(x, t)

uy, P(x,t) (2, t) + Hyub(x,t)],

1 2
plp—1) "
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where
vp(x,t) =p Z % [ui_l(aax,t) + uﬁ_l(x,t)} [ug(oqx, t) — ug(z, t)].
acRy !

Second steprhe inequalityl|g(f)|z» < A, || fl|z, forp €]1,2].
From (3.4), we have

(@) < — ) /Owuzp(:n,t)[vk@,t)+Hkug<x,t>]tdt

pp—1
Li(f)(x) M (f)(2)]*P, zeR%

p(p—1)
where

L) i= [ lonleont) + P, )] et

and M ( f) the maximal function given by (3.3).
Thus it is proven that

oDl < (5ot ) B D@2 (o),

By applying Holder’s inequality, we obtain

p

) IR LM

Sinceuv,(x,t) + Hyuj (z,t) > 0, we can apply Fubini-Tonnelli’s Theorem to obtain

35) IOl < (5o

N
|Ze(F)llp = lim /0 /B - vk (2, ) + Hyul (2, )] dpg ()t

N—oo

Puttingy = 0,2 and using the fact that’> = id; (o,y,a) = —(y, a), then as in the argument
of [16, p. 390] we obtain

[ wendn@ == [ u0du).
Bd(O,N) Bd(O,N)

/ vg(x, t)dug(z) = 0.
Bd(O,N)

Hence from Lemmp 3|3, we deduce that

Thus

N
(3.6) oy = Jim [ [ et @) = 171
=% JBy(o,N) JO k
On the other hand from Lemna 8.4 we have
(3.7) IMe(O)lle < Cp [l £l -

Finally, from (3.%), [(3.5) and (3} 7), we obtain

1 3
e Al a4 — (2-p)/2.
9 < 415z, 4= (555 )

Since the operatoy is sub-linear, we obtain the inequality fgr € D(R¢). And by an easy
limiting argument one shows that the result is also true for asyL?; (RY), p €]1,2].
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For the case = 2, using [(3.4) and (3]6) we get

1

1 o
o <5 [ [ [onont) + Mo )] titdn(a) = 511,

which completes the proof of the theorem. O
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