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ABSTRACT. We prove an extension of Newton’s inequalities for self-adjoint families of complex
numbers in the half planeRe z > 0. The connection of our results with some inequalities on
eigenvalues of nonnegative matrices is also discussed.
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1. I NTRODUCTION

The well known inequalities of Newton represent quadratic relations among the elementary
symmetric functions ofn real variables. One of the various consequences of these inequalities
is the arithmetic mean-geometric mean (AM-GM) inequality for real nonnegative numbers. The
classical book [2] contains different proofs and a detailed study of these results. In the more
recent literature, reference [5] offers new families of Newton-type inequalities and an extended
treatment of various related issues.

This paper presents an extension of Newton’s inequalities involving elementary symmetric
functions of complex variables. In particular, we considern−tuples of complex numbers which
are symmetric with respect to the real axis and obtain a complex variant of Newton’s inequalities
and the AM-GM inequality. Families of complex numbers which satisfy the inequalities of
Newton in their usual form are also studied and some relations with inequalities on matrix
eigenvalues are pointed out.

Let X be ann-tuple of real numbersx1, . . . , xn. The i-th elementary symmetric function of
x1, . . . , xn will be denoted byei(X ), i = 0, . . . , n, i.e.

e0(X ) = 1, ei(X ) =
∑

1≤ν1<···<νi≤n

xν1xν2 . . . xνi
, i = 1, . . . , n.
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2 VLADIMIR V. M ONOV

By Ei(X ) we shall denote the arithmetic mean of the products inei(X ), i.e.

Ei(X ) =
ei(X )(

n
i

) , i = 0, . . . , n.

Newton’s inequalities are stated in the following theorem [2, Ch. IV].

Theorem 1.1. If X is ann-tuple of real numbersx1, . . . , xn, xi 6= 0, i = 1, . . . , n then

(1.1) E2
i (X ) > Ei−1(X )Ei+1(X ), i = 1, . . . , n− 1

unless all entries ofX coincide.

The requirement thatxi 6= 0 actually is not a restriction. In general, for realxi, i = 1, . . . , n

E2
i (X ) ≥ Ei−1(X )Ei+1(X ), i = 1, . . . , n− 1

and only characterizing all cases of equality is more complicated.
Inequalities (1.1) originate from the problem of finding a lower bound for the number of

imaginary (nonreal) roots of an algebraic equation. Such a lower bound is given by the Newton’s
rule: Given an equation with real coefficients

a0x
n + a1x

n−1 + · · ·+ an = 0, a0 6= 0

the number of its imaginary roots cannot be less than the number of sign changes that occur in
the sequence

a2
0,

(
a1(
n
1

))2

− a2(
n
2

) · a0(
n
0

) , . . . ,( an−1(
n

n−1

))2

− an(
n
n

) · an−2(
n

n−2

) , a2
n.

According to this rule, if all roots are real, then all entries in the above sequence must be
nonnegative which yields Newton’s inequalities.

A chain of inequalities, due to Maclaurin, can be derived from (1.1), e.g. see [2] and [5].

Theorem 1.2. If X is ann-tuple of positive numbers, then

(1.2) E1(X ) > E
1/2
2 (X ) > · · · > E1/n

n (X )

unless all entries ofX coincide.

The above theorem implies the well known AM-GM inequalityE1(X ) ≥ E
1/n
n (X ) for every

X with nonnegative entries.
Newton did not give a proof of his rule and subsequently inequalities (1.1) and (1.2) were

proved by Maclaurin. A proof of (1.1) based on a lemma of Maclaurin is given in Ch. IV of [2]
and an inductive proof is presented in Ch. II of [2]. In the same reference it is also shown that
the differenceE2

i (X )−Ei−1(X )Ei+1(X ) can be represented as a sum of obviously nonnegative
terms formed by the entries ofX which again proves (1.1). Yet another equality which implies
Newton’s inequalities is the following.

Let f(z) =
∑n

i=0 aiz
n−i be a monic polynomial withai ∈ C, i = 1, . . . , n. For eachi =

1, . . . , n− 1 such thatai+1 6= 0, we have

(1.3)

(
ai(
n
i

))2

− ai−1(
n

i−1

) · ai+1(
n

i+1

) =
1

i(i + 1)2

(
i+1∏
k=1

λk

)2∑
j<k

(
λ−1

j − λ−1
k

)2
,

whereλk, k = 1, . . . , i+1 are zeros of the(n− i−1)-st derivativef (n−i−1)(z) of f(z). Indeed,
let ek, k = 0, . . . , i + 1 denote the elementary symmetric functions ofλ1, . . . , λi+1. Since

f (n−i−1)(z) =
i+1∑
k=0

(n− k)!

(i + 1− k)!
akz

i+1−k,
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we have

ek = (−1)k (i + 1)!(n− k)!

n!(i + 1− k)!
ak, k = 0, . . . , i + 1

and hence

(1.4)

(
ai(
n
i

))2

− ai−1(
n

i−1

) · ai+1(
n

i+1

) =
e2

i+1

i(i + 1)2

(
i

(
ei

ei+1

)2

− 2(i + 1)
ei−1

ei+1

)
which gives equality (1.3).

Now, if all zeros off(z) are real, then by the Rolle theorem all zeros of each derivative of
f(z) are also real and thus Newton’s inequalities follow from (1.3).

2. COMPLEX NEWTON ’ S I NEQUALITIES

In what follows, we shall considern-tuples of complex numbersz1, . . . , zn denoted byZ.
As in the real case,ei(Z) will be the i-th elementary symmetric function ofZ andEi(Z) =
ei(Z)

/(
n
i

)
, i = 0, . . . , n. In the next theorem, it is assumed thatZ satisfies the following two

conditions.

Re zi ≥ 0, i = 1, . . . , n whereRe zi = 0 only if zi = 0;(C1)

Z is self-conjugate, i.e. the non-real entries ofZ appear in complex conjugate pairs.(C2)

Note thatZ satisfies (C2) if and only if all elementary symmetric functions ofZ are real.
Conditions (C1) and (C2) together imply thatei(Z) ≥ 0, i = 0, . . . , n.

Theorem 2.1. LetZ be ann-tuple of complex numbersz1, . . . , zn satisfying conditions (C1)
and (C2) and let−ϕ ≤ arg zi ≤ ϕ, i = 1, . . . , n where0 ≤ ϕ < π/2. Then

(2.1) c2E2
i (Z) ≥ Ei−1(Z)Ei+1(Z), i = 1, . . . , n− 1

and

(2.2) cn−1E1(Z) ≥ cn−2E
1/2
2 (Z) ≥ · · · ≥ cE

1/(n−1)
n−1 (Z) ≥ E1/n

n (Z)

wherec = (1 + tan2 ϕ)1/2.

Proof. Let Wϕ be defined by

Wϕ = {z ∈ C : −ϕ ≤ arg z ≤ ϕ}
and consider the polynomial

(2.3) f(z) =
n∏

i=1

(z − zi) =
n∑

i=0

aiz
n−i

with coefficients

(2.4) ai = (−1)i

(
n

i

)
Ei(Z), i = 0, . . . , n.

If for somei = 1, . . . , n−1, Ei+1(Z) = 0 then the corresponding inequality in (2.1) is obviously
satisfied. For eachi = 1, . . . , n− 1 such thatEi+1(Z) 6= 0 let λ1, . . . , λi+1 denote the zeros of
f (n−i−1)(z). As in (1.4), it is easily seen that

(2.5) c2E2
i (Z)− Ei−1(Z)Ei+1(Z)

=
1

i(i + 1)2

(
i+1∏
k=1

λk

)2
i(1 + tan2 ϕ)

(
i+1∑
k=1

λ−1
k

)2

− 2(i + 1)
∑
j<k

λ−1
j λ−1

k

 .
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4 VLADIMIR V. M ONOV

Let αk = Re λ−1
k andβk = Im λ−1

k , k = 1, . . . , i + 1. Since the zeros off(z) lie in the convex
areaWϕ, by the Gauss-Lucas theorem,λk, and henceλ−1

k , k = 1, . . . , i+1 also lie inWϕ which
implies that

(2.6) αk ≥
|βk|

tan ϕ
, k = 1, . . . , i + 1.

Using (2.6) and the inequalityRe λ−1
j λ−1

k ≤ αjαk + |βj| |βk| in (2.5), it is obtained

c2E2
i (Z)− Ei−1(Z)Ei+1(Z) ≥ 1

i(i + 1)2

(
i+1∏
k=1

λk

)2∑
j<k

(
(αj − αk)

2 + (|βj| − |βk|)2
)
,

which proves (2.1).
Inequalities (2.2) can be obtained from (2.1) similarly as in the real case. From (2.1) we have

c2E2
1c

4E4
2 · · · c2iE2i

i ≥ E0E2(E1E3)
2 · · · (Ei−1Ei+1)

i

which givesci(i+1)Ei+1
i ≥ Ei

i+1, or equivalently

cE1 ≥ E
1/2
2 , cE

1/2
2 ≥ E

1/3
3 , . . . , cE

1/(n−1)
n−1 ≥ E1/n

n .

Multiplying each inequalitycE1/i
i ≥ E

1/(i+1)
i+1 by cn−i−1 for i = 1, . . . , n − 2, we obtain (2.2).

�

Inequalities (2.2) yield a complex version of the AM-GM inequality, i.e.

(2.7) cn−1E1(Z) ≥ E1/n
n (Z)

for everyZ satisfying conditions (C1) and (C2). It is easily seen that a case of equality occurs
in (2.1), (2.2) and (2.7) ifn = 2 andZ consists of a pair of complex conjugate numbers
z1 = α + iβ andz2 = α − iβ with tan ϕ = β/α. Another simple observation is that under
the conditions of Theorem 2.1, inequalities (2.1) also hold for−Z given by−z1, . . . ,−zn. This
follows immediately sinceEi(−Z) = (−1)iEi(Z), i = 0, . . . , n.

The next theorem indicates that ifZ satisfies an additional condition then one can findn-
tuples of complex numbers satisfying a complete analog of Newton’s inequalities.

Theorem 2.2.LetZ be ann-tuple of complex numbersz1, . . . , zn satisfying condition (C2) and
let

(2.8) E2
1(Z)− E2(Z) > 0.

Then there is a realr ≥ 0 such that the shiftedn-tupleZα

(2.9) z1 − α, z2 − α, . . . , zn − α

satisfies

(2.10) E2
i (Zα) > Ei−1(Zα)Ei+1(Zα), i = 1, . . . , n− 1

for all real α with |α| ≥ r.

Proof. The complex numbers (2.9) are zeros of the polynomial

f(z + α) =
f (n)(α)

n!
zn +

f (n−1)(α)

(n− 1)!
zn−1 + · · ·+ f(α),

wheref(z) is given by (2.3) and (2.4). Thus

Ei(Zα) =
(−1)i(

n
i

) · f (n−i)(α)

(n− i)!
, i = 0, . . . , n.
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By writing f (n−i)(α) in the form

f (n−i)(α) = (n− i)!
i∑

k=0

(
n− k

n− i

)
akα

i−k, i = 0, . . . , n

and taking into account (2.4), it is obtained

(2.11) Ei(Zα) = (−1)i

i∑
k=0

(−1)k

(
i

k

)
Ek(Z)αi−k, i = 0, . . . , n

Now, using (2.11) one can easily find that

(2.12) E2
i (Zα)− Ei−1(Zα)Ei+1(Zα)

= 0 · α2i + 0 · α2i−1 +
(
E2

1(Z)− E2(Z)
)
α2i−2 + · · ·+ E2

i (Z)− Ei−1(Z)Ei+1(Z).

From (2.8) and (2.12), it is seen that for eachi = 1, . . . , n − 1 there isri ≥ 0 such that the
right-hand side of (2.12) is greater than zero for all|α| ≥ ri. Hence, inequalities (2.10) are
satisfied for all|α| ≥ r, wherer = max{ri : i = 1, . . . , n− 1}. �

If α in the above proposition is chosen such thatRe(zi − α) > 0, i = 1, . . . , n then all the
elementary symmetric functions ofZα are positive and inequalities (2.10) yield

(2.13) E1(Zα) > E
1/2
2 (Zα) > · · · > E1/n

n (Zα).

In this case, the AM-GM inequality forZα follows from (2.13).

3. NEWTON ’ S I NEQUALITIES ON M ATRIX EIGENVALUES

In a recent work [3] the inequalities of Newton are studied in relation with the eigenvalues of
a special class of matrices, namely M-matrices. Ann× n real matrixA is an M-matrix iff [1]

(3.1) A = αI − P,

whereP is a matrix with nonnegative entries andα > ρ(P ), whereρ(P ) is the spectral radius
(Perron root) ofP. LetZ andZα denote then−tuplesz1, . . . , zn andα− z1, . . . , α− zn of the
eigenvalues ofP andA, respectively. In terms of this notation, it is proved in [3] that

(3.2) E2
i (Zα) ≥ Ei−1(Zα)Ei+1(Zα), i = 1, . . . , n− 1

for all α > ρ(P ), i.e. the eigenvalues ofA satisfy Newton’s inequalities. The proof is based
on inequalities involving principal minors ofA and nonnegativity of a quadratic form. As
a consequence of (3.2) and the property of M-matrices thatEi(Zα) > 0, i = 1, . . . , n, the
eigenvalues ofA satisfy the AM-GM inequality, a fact which can be directly seen from

detA ≤
n∏

i=1

aii ≤

(
1

n

n∑
i=1

aii

)n

,

whereaii > 0, i = 1, . . . , n are the diagonal entries ofA, the first inequality is the Hadamard
inequality for M-matrices and the second inequality is the usual AM-GM inequality.

In view of Theorem 2.2 above, it is easily seen that one can find other matrix classes described
in the form (3.1) and satisfying Newton’s inequalities. In particular, ifZ denotes then−tuple
of the eigenvalues of a real matrixB = [bij], i, j = 1, . . . , n then the left hand side of (2.8) can
be written as

(3.3) E2
1(Z)− E2(Z) =

1

n2

(
n∑

i=1

bii

)2

− 2

n(n− 1)

∑
i<j

(biibjj − bijbji).
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By the first inequality of Newton applied tob11, . . . , bnn, it follows from (3.3) that condition
(2.8) is satisfied if

(3.4) bijbji ≥ 0, 1 ≤ i < j ≤ n

with at least one strict inequality. According to Theorem 2.2, in this case there isr ≥ 0 such
that the eigenvalues ofA = αI − B satisfy (2.10) for|α| ≥ r. It should be noted that matrices
satisfying (3.4) include the class of weakly sign symmetric matrices.

Next, we consider the inequalities of Loewy, London and Johnson [1] (LLJ inequalities) on
the eigenvalues of nonnegative matrices and point out a close relation with Newton’s inequali-
ties.

Let A ≥ 0 denote an entry-wise nonnegative matrixA = [aij], i, j = 1, . . . , n, tr A be the
trace ofA, i.e. tr A =

∑n
i=1 aii and letSk denote thek−th power sum of the eigenvalues

z1, . . . , zn of A :

Sk =
n∑

i=1

zk
i , k = 1, 2, . . . .

Due to the nonnegativity ofA, we have

(3.5) tr(Ak) ≥
n∑

i=1

ak
ii

and sinceSk = tr(Ak), it follows that Sk ≥ 0 for eachk = 1, 2, . . . . The LLJ inequalities
actually show something more, i.e.

(3.6) nm−1Skm ≥ (Sk)
m, k, m = 1, 2, . . .

or equivalently,

(3.7) nm−1 tr
(
(Ak)m

)
≥
(
tr(Ak)

)m
, k,m = 1, 2, . . . .

Equalities hold in (3.6) and (3.7) ifA is a scalar matrixA = αI. Obviously, in order to prove
(3.7) it suffices to show that

(3.8) nm−1 tr(Am) ≥ (tr A)m, m = 1, 2, . . .

for everyA ≥ 0. The key to the proof of (3.8) are inequalities

(3.9) nm−1

n∑
i=1

xm
i −

(
n∑

i=1

xi

)m

≥ 0, m = 1, 2, . . .

which hold for nonnegativex1, . . . , xn and can be deduced from Hölder’s inequalities, e.g. see
[1], [4]. SinceA ≥ 0, (3.9) together with (3.5) imply (3.8).

From the point of view of Newton’s inequalities, it can be easily seen that the casem = 2 in
(3.9) follows from

E2
1(X )− E2(X ) =

1

n2(n− 1)

(
(n− 1) e2

1(X )− 2n e2(X )
)

=
1

n2(n− 1)

n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2


=
1

n2(n− 1)

∑
i<j

(xi − xj)
2 ≥ 0.
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Thus, (3.9) holds form = 1 (trivially), m = 2 and the rest of the inequalities can be obtained
by induction onm. Also, following this approach, the inequalities in (3.6) form = 2 and
k = 1, 2, . . . can be obtained directly from

n
n∑

i=1

z2k
i −

(
n∑

i=1

zk
i

)2

= (n− 1) e2
1(Zk)− 2n e2(Zk)

= (n− 1)

(
n∑

i=1

a
[k]
ii

)2

− 2n
∑
i<j

(
a

[k]
ii a

[k]
jj − a

[k]
ij a

[k]
ji

)

≥ (n− 1)

(
n∑

i=1

a
[k]
ii

)2

− 2n
∑
i<j

a
[k]
ii a

[k]
jj

=
∑
i<j

(
a

[k]
ii − a

[k]
jj

)2

≥ 0

whereZk is the n−tuple zk
1 , . . . , z

k
n of the eigenvalues ofAk anda

[k]
ij denotes the(i, j)−th

element ofAk, i, j = 1, . . . , n, k = 1, 2, . . . . Clearly, equalities hold if and only ifAk is a scalar
matrix.

REFERENCES

[1] A. BERMAN AND R.J. PLEMMONS,Nonnegative Matrices in the Mathematical Sciences,SIAM
edition, Philadelphia 1994.

[2] G. HARDY, J.I. LITTLEWOOD AND G. POLYA, Inequalities,Cambridge University Press, New
York, 1934.

[3] O. HOLTZ, M-matrices satisfy Newton’s inequalities,Proc. Amer. Math. Soc.,133(3) (2005), 711–
716.

[4] H. MINC, Nonnegative Matrices,Wiley Interscience, New York 1988.

[5] C.P. NICULESCU, A new look at Newton’s inequalities,J. Inequal. in Pure & Appl. Math.,1(2)
(2000), Article 17. [ONLINE:http://jipam.vu.edu.au/article.php?sid=111 ]

J. Inequal. Pure and Appl. Math., 6(3) Art. 78, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/article.php?sid=111
http://jipam.vu.edu.au/

	1. Introduction
	2. Complex Newton's Inequalities
	3. Newton's Inequalities on Matrix Eigenvalues
	References

