Volume 6, Issue 3, Article 78, 2005

NEWTON'S INEQUALITIES FOR FAMILIES OF COMPLEX NUMBERS

VLADIMIR V. MONOV
Institute of Information Technologies
Bulgarian Academy of Sciences
1113 Sofia, Bulgaria
vmonov@iit.bas.bg

Received 02 June, 2005; accepted 20 June, 2005
Communicated by C.P. Niculescu

Abstract

We prove an extension of Newton's inequalities for self-adjoint families of complex numbers in the half plane $\operatorname{Re} z>0$. The connection of our results with some inequalities on eigenvalues of nonnegative matrices is also discussed.

Key words and phrases: Elementary symmetric functions, Newton's inequalities, Nonnegative matrices.

2000 Mathematics Subject Classification. 26C10, 26D05.

1. Introduction

The well known inequalities of Newton represent quadratic relations among the elementary symmetric functions of n real variables. One of the various consequences of these inequalities is the arithmetic mean-geometric mean (AM-GM) inequality for real nonnegative numbers. The classical book [2] contains different proofs and a detailed study of these results. In the more recent literature, reference [5] offers new families of Newton-type inequalities and an extended treatment of various related issues.

This paper presents an extension of Newton's inequalities involving elementary symmetric functions of complex variables. In particular, we consider $n-$ tuples of complex numbers which are symmetric with respect to the real axis and obtain a complex variant of Newton's inequalities and the AM-GM inequality. Families of complex numbers which satisfy the inequalities of Newton in their usual form are also studied and some relations with inequalities on matrix eigenvalues are pointed out.
Let \mathcal{X} be an n-tuple of real numbers x_{1}, \ldots, x_{n}. The i-th elementary symmetric function of x_{1}, \ldots, x_{n} will be denoted by $e_{i}(\mathcal{X}), i=0, \ldots, n$, i.e.

$$
e_{0}(\mathcal{X})=1, e_{i}(\mathcal{X})=\sum_{1 \leq \nu_{1}<\cdots<\nu_{i} \leq n} x_{\nu_{1}} x_{\nu_{2}} \ldots x_{\nu_{i}}, \quad i=1, \ldots, n .
$$

By $E_{i}(\mathcal{X})$ we shall denote the arithmetic mean of the products in $e_{i}(\mathcal{X})$, i.e.

$$
E_{i}(\mathcal{X})=\frac{e_{i}(\mathcal{X})}{\binom{n}{i}}, \quad i=0, \ldots, n .
$$

Newton's inequalities are stated in the following theorem [2, Ch. IV].
Theorem 1.1. If \mathcal{X} is an n-tuple of real numbers $x_{1}, \ldots, x_{n}, x_{i} \neq 0, i=1, \ldots, n$ then

$$
\begin{equation*}
E_{i}^{2}(\mathcal{X})>E_{i-1}(\mathcal{X}) E_{i+1}(\mathcal{X}), \quad i=1, \ldots, n-1 \tag{1.1}
\end{equation*}
$$

unless all entries of \mathcal{X} coincide.
The requirement that $x_{i} \neq 0$ actually is not a restriction. In general, for real $x_{i}, i=1, \ldots, n$

$$
E_{i}^{2}(\mathcal{X}) \geq E_{i-1}(\mathcal{X}) E_{i+1}(\mathcal{X}), \quad i=1, \ldots, n-1
$$

and only characterizing all cases of equality is more complicated.
Inequalities (1.1) originate from the problem of finding a lower bound for the number of imaginary (nonreal) roots of an algebraic equation. Such a lower bound is given by the Newton's rule: Given an equation with real coefficients

$$
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0, \quad a_{0} \neq 0
$$

the number of its imaginary roots cannot be less than the number of sign changes that occur in the sequence

$$
a_{0}^{2},\left(\frac{a_{1}}{\binom{n}{1}}\right)^{2}-\frac{a_{2}}{\binom{n}{2}} \cdot \frac{a_{0}}{\binom{n}{0}}, \ldots,\left(\frac{a_{n-1}}{\binom{n-1}{n-1}}\right)^{2}-\frac{a_{n}}{\binom{n}{n}} \cdot \frac{a_{n-2}}{\binom{n-2}{n-2}}, a_{n}^{2} .
$$

According to this rule, if all roots are real, then all entries in the above sequence must be nonnegative which yields Newton's inequalities.

A chain of inequalities, due to Maclaurin, can be derived from (1.1), e.g. see [2] and [5].
Theorem 1.2. If \mathcal{X} is an n-tuple of positive numbers, then

$$
\begin{equation*}
E_{1}(\mathcal{X})>E_{2}^{1 / 2}(\mathcal{X})>\cdots>E_{n}^{1 / n}(\mathcal{X}) \tag{1.2}
\end{equation*}
$$

unless all entries of \mathcal{X} coincide.
The above theorem implies the well known AM-GM inequality $E_{1}(\mathcal{X}) \geq E_{n}^{1 / n}(\mathcal{X})$ for every \mathcal{X} with nonnegative entries.
Newton did not give a proof of his rule and subsequently inequalities (1.1) and (1.2) were proved by Maclaurin. A proof of (1.1) based on a lemma of Maclaurin is given in Ch. IV of [2] and an inductive proof is presented in Ch. II of [2]. In the same reference it is also shown that the difference $E_{i}^{2}(\mathcal{X})-E_{i-1}(\mathcal{X}) E_{i+1}(\mathcal{X})$ can be represented as a sum of obviously nonnegative terms formed by the entries of \mathcal{X} which again proves (1.1). Yet another equality which implies Newton's inequalities is the following.

Let $f(z)=\sum_{i=0}^{n} a_{i} z^{n-i}$ be a monic polynomial with $a_{i} \in \mathbb{C}, i=1, \ldots, n$. For each $i=$ $1, \ldots, n-1$ such that $a_{i+1} \neq 0$, we have

$$
\begin{equation*}
\left(\frac{a_{i}}{\binom{n}{i}}\right)^{2}-\frac{a_{i-1}}{\binom{n}{i-1}} \cdot \frac{a_{i+1}}{\binom{n}{i+1}}=\frac{1}{i(i+1)^{2}}\left(\prod_{k=1}^{i+1} \lambda_{k}\right)^{2} \sum_{j<k}\left(\lambda_{j}^{-1}-\lambda_{k}^{-1}\right)^{2}, \tag{1.3}
\end{equation*}
$$

where $\lambda_{k}, k=1, \ldots, i+1$ are zeros of the $(n-i-1)$-st derivative $f^{(n-i-1)}(z)$ of $f(z)$. Indeed, let $e_{k}, k=0, \ldots, i+1$ denote the elementary symmetric functions of $\lambda_{1}, \ldots, \lambda_{i+1}$. Since

$$
f^{(n-i-1)}(z)=\sum_{k=0}^{i+1} \frac{(n-k)!}{(i+1-k)!} a_{k} z^{i+1-k}
$$

we have

$$
e_{k}=(-1)^{k} \frac{(i+1)!(n-k)!}{n!(i+1-k)!} a_{k}, k=0, \ldots, i+1
$$

and hence

$$
\begin{equation*}
\left(\frac{a_{i}}{\binom{n}{i}}\right)^{2}-\frac{a_{i-1}}{\binom{n}{i-1}} \cdot \frac{a_{i+1}}{\binom{n}{i+1}}=\frac{e_{i+1}^{2}}{i(i+1)^{2}}\left(i\left(\frac{e_{i}}{e_{i+1}}\right)^{2}-2(i+1) \frac{e_{i-1}}{e_{i+1}}\right) \tag{1.4}
\end{equation*}
$$

which gives equality (1.3).
Now, if all zeros of $f(z)$ are real, then by the Rolle theorem all zeros of each derivative of $f(z)$ are also real and thus Newton's inequalities follow from (1.3).

2. Complex Newton's Inequalities

In what follows, we shall consider n-tuples of complex numbers z_{1}, \ldots, z_{n} denoted by \mathcal{Z}. As in the real case, $e_{i}(\mathcal{Z})$ will be the i-th elementary symmetric function of \mathcal{Z} and $E_{i}(\mathcal{Z})=$ $e_{i}(\mathcal{Z}) /\binom{n}{i}, i=0, \ldots, n$. In the next theorem, it is assumed that \mathcal{Z} satisfies the following two conditions.
(C1)
$\operatorname{Re} z_{i} \geq 0, i=1, \ldots, n$ where $\operatorname{Re} z_{i}=0$ only if $z_{i}=0 ;$
(C2) \mathcal{Z} is self-conjugate, i.e. the non-real entries of \mathcal{Z} appear in complex conjugate pairs.
Note that \mathcal{Z} satisfies (C2) if and only if all elementary symmetric functions of \mathcal{Z} are real. Conditions (C1) and (C2) together imply that $e_{i}(\mathcal{Z}) \geq 0, i=0, \ldots, n$.
Theorem 2.1. Let \mathcal{Z} be an n-tuple of complex numbers z_{1}, \ldots, z_{n} satisfying conditions (Cl) and (C2) and let $-\varphi \leq \arg z_{i} \leq \varphi, i=1, \ldots, n$ where $0 \leq \varphi<\pi / 2$. Then

$$
\begin{equation*}
c^{2} E_{i}^{2}(\mathcal{Z}) \geq E_{i-1}(\mathcal{Z}) E_{i+1}(\mathcal{Z}), \quad i=1, \ldots, n-1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
c^{n-1} E_{1}(\mathcal{Z}) \geq c^{n-2} E_{2}^{1 / 2}(\mathcal{Z}) \geq \cdots \geq c E_{n-1}^{1 /(n-1)}(\mathcal{Z}) \geq E_{n}^{1 / n}(\mathcal{Z}) \tag{2.2}
\end{equation*}
$$

where $c=\left(1+\tan ^{2} \varphi\right)^{1 / 2}$.
Proof. Let W_{φ} be defined by

$$
W_{\varphi}=\{z \in \mathbb{C}:-\varphi \leq \arg z \leq \varphi\}
$$

and consider the polynomial

$$
\begin{equation*}
f(z)=\prod_{i=1}^{n}\left(z-z_{i}\right)=\sum_{i=0}^{n} a_{i} z^{n-i} \tag{2.3}
\end{equation*}
$$

with coefficients

$$
\begin{equation*}
a_{i}=(-1)^{i}\binom{n}{i} E_{i}(\mathcal{Z}), \quad i=0, \ldots, n . \tag{2.4}
\end{equation*}
$$

If for some $i=1, \ldots, n-1, E_{i+1}(\mathcal{Z})=0$ then the corresponding inequality in 2.1 is obviously satisfied. For each $i=1, \ldots, n-1$ such that $E_{i+1}(\mathcal{Z}) \neq 0$ let $\lambda_{1}, \ldots, \lambda_{i+1}$ denote the zeros of $f^{(n-i-1)}(z)$. As in 1.4, it is easily seen that

$$
\begin{align*}
& c^{2} E_{i}^{2}(\mathcal{Z})-E_{i-1}(\mathcal{Z}) E_{i+1}(\mathcal{Z}) \tag{2.5}\\
& \quad=\frac{1}{i(i+1)^{2}}\left(\prod_{k=1}^{i+1} \lambda_{k}\right)^{2}\left(i\left(1+\tan ^{2} \varphi\right)\left(\sum_{k=1}^{i+1} \lambda_{k}^{-1}\right)^{2}-2(i+1) \sum_{j<k} \lambda_{j}^{-1} \lambda_{k}^{-1}\right)
\end{align*}
$$

Let $\alpha_{k}=\operatorname{Re} \lambda_{k}^{-1}$ and $\beta_{k}=\operatorname{Im} \lambda_{k}^{-1}, k=1, \ldots, i+1$. Since the zeros of $f(z)$ lie in the convex area W_{φ}, by the Gauss-Lucas theorem, λ_{k}, and hence $\lambda_{k}^{-1}, k=1, \ldots, i+1$ also lie in W_{φ} which implies that

$$
\begin{equation*}
\alpha_{k} \geq \frac{\left|\beta_{k}\right|}{\tan \varphi}, \quad k=1, \ldots, i+1 \tag{2.6}
\end{equation*}
$$

Using (2.6) and the inequality $\operatorname{Re} \lambda_{j}^{-1} \lambda_{k}^{-1} \leq \alpha_{j} \alpha_{k}+\left|\beta_{j}\right|\left|\beta_{k}\right|$ in 2.5 , it is obtained

$$
c^{2} E_{i}^{2}(\mathcal{Z})-E_{i-1}(\mathcal{Z}) E_{i+1}(\mathcal{Z}) \geq \frac{1}{i(i+1)^{2}}\left(\prod_{k=1}^{i+1} \lambda_{k}\right)^{2} \sum_{j<k}\left(\left(\alpha_{j}-\alpha_{k}\right)^{2}+\left(\left|\beta_{j}\right|-\left|\beta_{k}\right|\right)^{2}\right)
$$

which proves (2.1).
Inequalities (2.2) can be obtained from (2.1) similarly as in the real case. From (2.1) we have

$$
c^{2} E_{1}^{2} c^{4} E_{2}^{4} \cdots c^{2 i} E_{i}^{2 i} \geq E_{0} E_{2}\left(E_{1} E_{3}\right)^{2} \cdots\left(E_{i-1} E_{i+1}\right)^{i}
$$

which gives $c^{i(i+1)} E_{i}^{i+1} \geq E_{i+1}^{i}$, or equivalently

$$
c E_{1} \geq E_{2}^{1 / 2}, c E_{2}^{1 / 2} \geq E_{3}^{1 / 3}, \ldots, c E_{n-1}^{1 /(n-1)} \geq E_{n}^{1 / n}
$$

Multiplying each inequality $c E_{i}^{1 / i} \geq E_{i+1}^{1 /(i+1)}$ by c^{n-i-1} for $i=1, \ldots, n-2$, we obtain 2.2.

Inequalities (2.2) yield a complex version of the AM-GM inequality, i.e.

$$
\begin{equation*}
c^{n-1} E_{1}(\mathcal{Z}) \geq E_{n}^{1 / n}(\mathcal{Z}) \tag{2.7}
\end{equation*}
$$

for every \mathcal{Z} satisfying conditions (C 1$)$ and (C 2$)$. It is easily seen that a case of equality occurs in (2.1), 2.2) and (2.7) if $n=2$ and \mathcal{Z} consists of a pair of complex conjugate numbers $z_{1}=\alpha+i \beta$ and $z_{2}=\alpha-i \beta$ with $\tan \varphi=\beta / \alpha$. Another simple observation is that under the conditions of Theorem 2.1, inequalities (2.1) also hold for $-\mathcal{Z}$ given by $-z_{1}, \ldots,-z_{n}$. This follows immediately since $E_{i}(-\mathcal{Z})=(-1)^{2} E_{i}(\mathcal{Z}), i=0, \ldots, n$.

The next theorem indicates that if \mathcal{Z} satisfies an additional condition then one can find n tuples of complex numbers satisfying a complete analog of Newton's inequalities.
Theorem 2.2. Let \mathcal{Z} be an n-tuple of complex numbers z_{1}, \ldots, z_{n} satisfying condition (C2) and let

$$
\begin{equation*}
E_{1}^{2}(\mathcal{Z})-E_{2}(\mathcal{Z})>0 \tag{2.8}
\end{equation*}
$$

Then there is a real $r \geq 0$ such that the shifted n-tuple \mathcal{Z}_{α}

$$
\begin{equation*}
z_{1}-\alpha, z_{2}-\alpha, \ldots, z_{n}-\alpha \tag{2.9}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
E_{i}^{2}\left(\mathcal{Z}_{\alpha}\right)>E_{i-1}\left(\mathcal{Z}_{\alpha}\right) E_{i+1}\left(\mathcal{Z}_{\alpha}\right), \quad i=1, \ldots, n-1 \tag{2.10}
\end{equation*}
$$

for all real α with $|\alpha| \geq r$.
Proof. The complex numbers (2.9) are zeros of the polynomial

$$
f(z+\alpha)=\frac{f^{(n)}(\alpha)}{n!} z^{n}+\frac{f^{(n-1)}(\alpha)}{(n-1)!} z^{n-1}+\cdots+f(\alpha)
$$

where $f(z)$ is given by (2.3) and 2.4. Thus

$$
E_{i}\left(\mathcal{Z}_{\alpha}\right)=\frac{(-1)^{i}}{\binom{n}{i}} \cdot \frac{f^{(n-i)}(\alpha)}{(n-i)!}, \quad i=0, \ldots, n
$$

By writing $f^{(n-i)}(\alpha)$ in the form

$$
f^{(n-i)}(\alpha)=(n-i)!\sum_{k=0}^{i}\binom{n-k}{n-i} a_{k} \alpha^{i-k}, \quad i=0, \ldots, n
$$

and taking into account (2.4), it is obtained

$$
\begin{equation*}
E_{i}\left(\mathcal{Z}_{\alpha}\right)=(-1)^{i} \sum_{k=0}^{i}(-1)^{k}\binom{i}{k} E_{k}(\mathcal{Z}) \alpha^{i-k}, \quad i=0, \ldots, n \tag{2.11}
\end{equation*}
$$

Now, using (2.11) one can easily find that

$$
\begin{align*}
& E_{i}^{2}\left(\mathcal{Z}_{\alpha}\right)-E_{i-1}\left(\mathcal{Z}_{\alpha}\right) E_{i+1}\left(\mathcal{Z}_{\alpha}\right) \tag{2.12}\\
& =0 \cdot \alpha^{2 i}+0 \cdot \alpha^{2 i-1}+\left(E_{1}^{2}(\mathcal{Z})-E_{2}(\mathcal{Z})\right) \alpha^{2 i-2}+\cdots+E_{i}^{2}(\mathcal{Z})-E_{i-1}(\mathcal{Z}) E_{i+1}(\mathcal{Z})
\end{align*}
$$

From (2.8) and (2.12), it is seen that for each $i=1, \ldots, n-1$ there is $r_{i} \geq 0$ such that the right-hand side of (2.12) is greater than zero for all $|\alpha| \geq r_{i}$. Hence, inequalities 2.10) are satisfied for all $|\alpha| \geq r$, where $r=\max \left\{r_{i}: i=1, \ldots, n-1\right\}$.
If α in the above proposition is chosen such that $\operatorname{Re}\left(z_{i}-\alpha\right)>0, i=1, \ldots, n$ then all the elementary symmetric functions of \mathcal{Z}_{α} are positive and inequalities (2.10) yield

$$
\begin{equation*}
E_{1}\left(\mathcal{Z}_{\alpha}\right)>E_{2}^{1 / 2}\left(\mathcal{Z}_{\alpha}\right)>\cdots>E_{n}^{1 / n}\left(\mathcal{Z}_{\alpha}\right) \tag{2.13}
\end{equation*}
$$

In this case, the AM-GM inequality for \mathcal{Z}_{α} follows from (2.13).

3. Newton's Inequalities on Matrix Eigenvalues

In a recent work [3] the inequalities of Newton are studied in relation with the eigenvalues of a special class of matrices, namely M-matrices. An $n \times n$ real matrix A is an M-matrix iff [1]

$$
\begin{equation*}
A=\alpha I-P, \tag{3.1}
\end{equation*}
$$

where P is a matrix with nonnegative entries and $\alpha>\rho(P)$, where $\rho(P)$ is the spectral radius (Perron root) of P. Let \mathcal{Z} and \mathcal{Z}_{α} denote the n-tuples z_{1}, \ldots, z_{n} and $\alpha-z_{1}, \ldots, \alpha-z_{n}$ of the eigenvalues of P and A, respectively. In terms of this notation, it is proved in [3] that

$$
\begin{equation*}
E_{i}^{2}\left(\mathcal{Z}_{\alpha}\right) \geq E_{i-1}\left(\mathcal{Z}_{\alpha}\right) E_{i+1}\left(\mathcal{Z}_{\alpha}\right), \quad i=1, \ldots, n-1 \tag{3.2}
\end{equation*}
$$

for all $\alpha>\rho(P)$, i.e. the eigenvalues of A satisfy Newton's inequalities. The proof is based on inequalities involving principal minors of A and nonnegativity of a quadratic form. As a consequence of (3.2) and the property of M-matrices that $E_{i}\left(\mathcal{Z}_{\alpha}\right)>0, i=1, \ldots, n$, the eigenvalues of A satisfy the AM-GM inequality, a fact which can be directly seen from

$$
\operatorname{det} A \leq \prod_{i=1}^{n} a_{i i} \leq\left(\frac{1}{n} \sum_{i=1}^{n} a_{i i}\right)^{n}
$$

where $a_{i i}>0, i=1, \ldots, n$ are the diagonal entries of A, the first inequality is the Hadamard inequality for M -matrices and the second inequality is the usual AM-GM inequality.

In view of Theorem 2.2 above, it is easily seen that one can find other matrix classes described in the form (3.1) and satisfying Newton's inequalities. In particular, if \mathcal{Z} denotes the n-tuple of the eigenvalues of a real matrix $B=\left[b_{i j}\right], i, j=1, \ldots, n$ then the left hand side of 2.8 can be written as

$$
\begin{equation*}
E_{1}^{2}(\mathcal{Z})-E_{2}(\mathcal{Z})=\frac{1}{n^{2}}\left(\sum_{i=1}^{n} b_{i i}\right)^{2}-\frac{2}{n(n-1)} \sum_{i<j}\left(b_{i i} b_{j j}-b_{i j} b_{j i}\right) \tag{3.3}
\end{equation*}
$$

By the first inequality of Newton applied to $b_{11}, \ldots, b_{n n}$, it follows from (3.3) that condition (2.8) is satisfied if

$$
\begin{equation*}
b_{i j} b_{j i} \geq 0, \quad 1 \leq i<j \leq n \tag{3.4}
\end{equation*}
$$

with at least one strict inequality. According to Theorem 2.2, in this case there is $r \geq 0$ such that the eigenvalues of $A=\alpha I-B$ satisfy (2.10) for $|\alpha| \geq r$. It should be noted that matrices satisfying (3.4) include the class of weakly sign symmetric matrices.

Next, we consider the inequalities of Loewy, London and Johnson [1] (LLJ inequalities) on the eigenvalues of nonnegative matrices and point out a close relation with Newton's inequalities.

Let $A \geq 0$ denote an entry-wise nonnegative matrix $A=\left[a_{i j}\right], i, j=1, \ldots, n, \operatorname{tr} A$ be the trace of A, i.e. $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}$ and let S_{k} denote the k-th power sum of the eigenvalues z_{1}, \ldots, z_{n} of A :

$$
S_{k}=\sum_{i=1}^{n} z_{i}^{k}, k=1,2, \ldots
$$

Due to the nonnegativity of A, we have

$$
\begin{equation*}
\operatorname{tr}\left(A^{k}\right) \geq \sum_{i=1}^{n} a_{i i}^{k} \tag{3.5}
\end{equation*}
$$

and since $S_{k}=\operatorname{tr}\left(A^{k}\right)$, it follows that $S_{k} \geq 0$ for each $k=1,2, \ldots$ The LLJ inequalities actually show something more, i.e.

$$
\begin{equation*}
n^{m-1} S_{k m} \geq\left(S_{k}\right)^{m}, \quad k, m=1,2, \ldots \tag{3.6}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
n^{m-1} \operatorname{tr}\left(\left(A^{k}\right)^{m}\right) \geq\left(\operatorname{tr}\left(A^{k}\right)\right)^{m}, \quad k, m=1,2, \ldots \tag{3.7}
\end{equation*}
$$

Equalities hold in (3.6) and (3.7) if A is a scalar matrix $A=\alpha I$. Obviously, in order to prove (3.7) it suffices to show that

$$
\begin{equation*}
n^{m-1} \operatorname{tr}\left(A^{m}\right) \geq(\operatorname{tr} A)^{m}, \quad m=1,2, \ldots \tag{3.8}
\end{equation*}
$$

for every $A \geq 0$. The key to the proof of (3.8) are inequalities

$$
\begin{equation*}
n^{m-1} \sum_{i=1}^{n} x_{i}^{m}-\left(\sum_{i=1}^{n} x_{i}\right)^{m} \geq 0, \quad m=1,2, \ldots \tag{3.9}
\end{equation*}
$$

which hold for nonnegative x_{1}, \ldots, x_{n} and can be deduced from Hölder's inequalities, e.g. see [1], [4]. Since $A \geq 0$, (3.9) together with (3.5) imply (3.8).

From the point of view of Newton's inequalities, it can be easily seen that the case $m=2$ in (3.9) follows from

$$
\begin{aligned}
E_{1}^{2}(\mathcal{X})-E_{2}(\mathcal{X}) & =\frac{1}{n^{2}(n-1)}\left((n-1) e_{1}^{2}(\mathcal{X})-2 n e_{2}(\mathcal{X})\right) \\
& =\frac{1}{n^{2}(n-1)}\left(n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right) \\
& =\frac{1}{n^{2}(n-1)} \sum_{i<j}\left(x_{i}-x_{j}\right)^{2} \geq 0
\end{aligned}
$$

Thus, (3.9) holds for $m=1$ (trivially), $m=2$ and the rest of the inequalities can be obtained by induction on m. Also, following this approach, the inequalities in (3.6) for $m=2$ and $k=1,2, \ldots$ can be obtained directly from

$$
\begin{aligned}
n \sum_{i=1}^{n} z_{i}^{2 k}-\left(\sum_{i=1}^{n} z_{i}^{k}\right)^{2} & =(n-1) e_{1}^{2}\left(\mathcal{Z}^{k}\right)-2 n e_{2}\left(\mathcal{Z}^{k}\right) \\
& =(n-1)\left(\sum_{i=1}^{n} a_{i i}^{[k]}\right)^{2}-2 n \sum_{i<j}\left(a_{i i}^{[k]} a_{j j}^{[k]}-a_{i j}^{[k]} a_{j i}^{[k]}\right) \\
& \geq(n-1)\left(\sum_{i=1}^{n} a_{i i}^{[k]}\right)^{2}-2 n \sum_{i<j} a_{i i}^{[k]} a_{j j}^{[k]} \\
& =\sum_{i<j}\left(a_{i i}^{[k]}-a_{j j}^{[k]}\right)^{2} \geq 0
\end{aligned}
$$

where \mathcal{Z}^{k} is the n-tuple $z_{1}^{k}, \ldots, z_{n}^{k}$ of the eigenvalues of A^{k} and $a_{i j}^{[k]}$ denotes the (i, j)-th element of $A^{k}, i, j=1, \ldots, n, k=1,2, \ldots$. Clearly, equalities hold if and only if A^{k} is a scalar matrix.

References

[1] A. BERMAN AND R.J. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, SIAM edition, Philadelphia 1994.
[2] G. HARDY, J.I. LITTLEWOOD and G. POLYA, Inequalities, Cambridge University Press, New York, 1934.
[3] O. HOLTZ, M-matrices satisfy Newton's inequalities, Proc. Amer. Math. Soc., 133(3) (2005), 711716.
[4] H. MINC, Nonnegative Matrices, Wiley Interscience, New York 1988.
[5] C.P. NICULESCU, A new look at Newton's inequalities, J. Inequal. in Pure \& Appl. Math., 1(2) (2000), Article 17. [ONLINE: http://jipam.vu.edu.au/article.php?sid=11]

