Journal of Inequalities in Pure and Applied Mathematics

A NOTE ON SUMS OF POWERS WHICH HAVE A FIXED NUMBER OF PRIME FACTORS

RAFAEL JAKIMCZUK
Department of Mathematics
Universidad Nacional de Luján
Argentina
jakimczu@mail.unlu.edu.ar

Received 05 October, 2004; accepted 16 February, 2005
Communicated by L. Tóth

Abstract. Let us denote by $c_{n, k}$ the sequence of numbers which have in its factorization k prime factors $(k \geq 1)$, we obtain in short proofs asymptotic formulas for $c_{n, k}, \sum_{i=1}^{n} c_{i, k}^{\alpha}$ and $\sum_{c_{i, k} \leq x} c_{i, k}^{\alpha}$. We generalize the work by T. Sálat y S. Znam when $k=1$ (see reference [2]).

Key words and phrases: Sums of powers, Numbers with k prime factors.
2000 Mathematics Subject Classification. 11N25, 11N37.
Let $\pi_{k}(x)$ be the number of these numbers not exceeding x, it was proved by Landau [1] that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\pi_{k}(x)}{\frac{x\left(\log \log x x^{k-1}\right.}{(k-1)!\log x}}=1 \tag{1}
\end{equation*}
$$

Note that if $k=1$ then $\pi_{1}(x)=\pi(x), c_{n, 1}=p_{n}$, and equation (1) is the prime number theorem.
Theorem 1. The following asymptotic formula holds:

$$
\begin{equation*}
c_{n, k} \sim \frac{(k-1)!n \log n}{(\log \log n)^{k-1}} . \tag{2}
\end{equation*}
$$

Proof. If $k=1$ the formula is true, since in this case (2) is the prime number theorem $p_{n} \sim$ $n \log n$. Suppose $k \geq 2$. If we put $x=c_{n, k}$ and substitute into (1) we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{(k-1)!n \log c_{n, k}}{c_{n, k}\left(\log \log c_{n, k}\right)^{k-1}}=1 \tag{3}
\end{equation*}
$$

Writing
(4)

$$
c_{n, k}=\frac{(k-1)!n \log n}{(\log \log n)^{k-1}} f(n)
$$

[^0]and substituting (4) into (3) we obtain
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log c_{n, k}(\log \log n)^{k-1}}{\log n f(n)\left(\log \log c_{n, k}\right)^{k-1}}=1 \tag{5}
\end{equation*}
$$

\]

From equation (1) we find that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\pi_{k}(x)}{\pi(x)}=\infty \tag{6}
\end{equation*}
$$

Assume that the inequalities $c_{n, k} \geq p_{n}$ have infinitely many solutions, then we have $\pi\left(c_{n, k}\right) \geq$ $\pi\left(p_{n}\right)=n=\pi_{k}\left(c_{n, k}\right)$, which contradicts (6). Hence for all sufficiently large n we have $c_{n, k}<p_{n}$. On the other hand, clearly $n \leq c_{n, k}$. Therefore $n \leq c_{n, k} \leq p_{n}$, that is $\log n \leq$ $\log c_{n, k} \leq \log p_{n}$, and we find that

$$
\begin{equation*}
1 \leq \frac{\log c_{n, k}}{\log n} \leq \frac{\log p_{n}}{\log n} \tag{7}
\end{equation*}
$$

From (7) and the prime number theorem $p_{n} \sim n \log n$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log c_{n, k}}{\log n}=1 \tag{8}
\end{equation*}
$$

From (5) and (8) we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f(n)=1 \tag{9}
\end{equation*}
$$

To finish, (9) and (4) give (2). The theorem is thus proved.
The following proposition is well known, we use it as a lemma
Lemma 2. Let $\sum_{i=1}^{\infty} a_{i}$ and $\sum_{i=1}^{\infty} b_{i}$ be two series of positive terms such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$. Then if $\sum_{i=1}^{\infty} b_{i}$ is divergent, the following limit holds

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}=1
$$

Theorem 3. Let $k \geq 1$ and let α be a positive number. The following asymptotic formula holds

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i, k}^{\alpha} \sim \frac{((k-1)!)^{\alpha} n^{\alpha+1} \log ^{\alpha} n}{(\alpha+1)(\log \log n)^{\alpha(k-1)}} . \tag{10}
\end{equation*}
$$

Proof. Let us consider the following two series:

$$
\sum_{i=1}^{\infty} c_{i, k}^{\alpha} \quad \text { and } \quad 1+2+\sum_{i=3}^{\infty}\left(\frac{(k-1)!i \log i}{(\log \log i)^{k-1}}\right)^{\alpha}
$$

Since the function $\left(\frac{(k-1)!t \log t}{(\log \log t)^{k-1}}\right)^{\alpha}$ is increasing from a certain value of t, we find that

$$
\begin{align*}
& 1+2+\sum_{i=3}^{n}\left(\frac{(k-1)!i \log i}{(\log \log i)^{k-1}}\right)^{\alpha} \tag{11}\\
& =\int_{3}^{n}\left(\frac{(k-1)!t \log t}{(\log \log t)^{k-1}}\right)^{\alpha} d t+O\left(\left(\frac{n \log n}{(\log \log n)^{k-1}}\right)^{\alpha}\right)
\end{align*}
$$

On the other hand, from the L'Hospital rule

$$
\begin{equation*}
\int_{3}^{n}\left(\frac{(k-1)!t \log t}{(\log \log t)^{k-1}}\right)^{\alpha} d t \sim \frac{((k-1)!)^{\alpha} n^{\alpha+1} \log ^{\alpha} n}{(\alpha+1)(\log \log n)^{\alpha(k-1)}} \tag{12}
\end{equation*}
$$

Equation (10) is an immediate consequence of $(11),(12)$ and the lemma.
The theorem is thus proved.
Theorem 4. Let $k \geq 1$ and let α be a positive number. The following asymptotic formula holds

$$
\begin{equation*}
\sum_{c_{i, k} \leq x} c_{i, k}^{\alpha} \sim \frac{x^{\alpha+1}(\log \log x)^{k-1}}{(\alpha+1)(k-1)!\log x} \tag{13}
\end{equation*}
$$

Proof. Equation (3) can be written in the form

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n}{\frac{c_{n, k}\left(\log \log c_{n, k}\right)^{k-1}}{(k-1)!\log c_{n, k}}}=1 \tag{14}
\end{equation*}
$$

From (8) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \log c_{n, k}}{\log \log n}=1 \tag{15}
\end{equation*}
$$

Substituting (14), (8) and (15) into (10) we find that

$$
\begin{equation*}
\sum_{c_{i, k} \leq c_{n, k}} c_{i, k}^{\alpha} \sim \frac{c_{n, k}^{\alpha+1}\left(\log \log c_{n, k}\right)^{k-1}}{(\alpha+1)(k-1)!\log c_{n, k}} \tag{16}
\end{equation*}
$$

Equation (2) gives $c_{n, k} \sim c_{n+1, k}$, therefore

$$
\begin{align*}
\sum_{c_{i, k} \leq c_{n, k}} c_{i, k}^{\alpha} & \sim \frac{c_{n+1, k}^{\alpha+1}\left(\log \log c_{n+1, k}\right)^{k-1}}{(\alpha+1)(k-1)!\log c_{n+1, k}} \tag{17}\\
& \sim \frac{c_{n, k}^{\alpha+1}\left(\log \log c_{n, k}\right)^{k-1}}{(\alpha+1)(k-1)!\log c_{n, k}}
\end{align*}
$$

Since the function

$$
\frac{x^{\alpha+1}(\log \log x)^{k-1}}{(\alpha+1)(k-1)!\log x}
$$

is increasing from a certain value of x, we have for all n sufficiently large

$$
\begin{equation*}
\frac{\sum_{c_{i, k} \leq c_{n, k}} c_{i, k}^{\alpha}}{\frac{c_{n, k}^{\alpha+1}\left(\log \log c_{n, k}\right)^{k-1}}{(\alpha+1)(k-1)!\log c_{n, k}}} \leq \frac{\sum_{c_{i, k} \leq x} c_{i, k}^{\alpha}}{\frac{x^{\alpha+1}(\log \log x)^{k-1}}{(\alpha+1)(k-1)!\log x}} \leqslant \frac{\sum_{c_{i, k} \leq c_{n, k}} c_{i, k}^{\alpha}}{\frac{c_{n+1, k}^{\alpha+1}\left(\log \log c_{n+1, k}\right)^{k-1}}{(\alpha+1)(k-1)!\log c_{n+1, k}}} \tag{18}
\end{equation*}
$$

where $c_{n, k} \leq x<c_{n+1, k}$.
To finish, (17) and (18) give (13). The theorem is proved.
Note. The case $k=1$ was studied in the reference [2]. In this case (9) and (13) become

$$
\sum_{i=1}^{n} p_{i}^{\alpha} \sim \frac{n^{\alpha+1} \log ^{\alpha} n}{(\alpha+1)}, \quad \sum_{p_{i} \leq x} p_{i}^{\alpha} \sim \frac{x^{\alpha+1}}{(\alpha+1) \log x}
$$

Using equation (2) and the lemma, we can prove (as above) other theorems, for example the following:

Theorem 5. The following asymptotic formulas holds

$$
\sum_{n=1}^{\infty} \frac{1}{c_{n, k}} \sim \frac{(\log \log n)^{k}}{k!} \quad \text { and } \quad \sum_{c_{n, k} \leq x} \frac{1}{c_{n, k}} \sim \frac{(\log \log x)^{k}}{k!}
$$

When $k=1$, this theorem is well known.

References

[1] G.H. HARDY and E.M. WRIGHT, An Introduction to Number Theory, 4th Ed.1960. Chapter XXII.
[2] T. SÁLAT and S. ZNAM, On the sums of prime powers, Acta Fac. Rer. Nat. Univ. Com. Math., 21 (1968), 21-25.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 182-04

