APPROXIMATION OF B-CONTINUOUS AND B-DIFFERENTIABLE FUNCTIONS BY GBS OPERATORS DEFINED BY INFINITE SUM

OVIDIU T. POP
National College "Mihai Eminescu"
5 Mihai Eminescu Street
Satu Mare 440014, Romania
ovidiutiberiu@yahoo.com

Received 27 June, 2008; accepted 18 March, 2009
Communicated by S.S Dragomir

Abstract

In this paper we start from a class of linear and positive operators defined by infinite sum. We consider the associated GBS operators and we give an approximation of B-continuous and B-differentiable functions with these operators. Through particular cases, we obtain statements verified by the GBS operators of Mirakjan-Favard-Szász, Baskakov and Meyer-König and Zeller.

Key words and phrases: Linear positive operators, GBS operators, B-continuous and B-differentiable functions, approximation of B-continuous and B-differentiable functions by GBS operators.
2000 Mathematics Subject Classification. 41A10, 41A25, 41A35, 41A36, 41A63.

1. Introduction

In this section, we recall some notions and results which we will use in this article. Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

In the following, let X and Y be real intervals.
A function $f: X \times Y \rightarrow \mathbb{R}$ is called a B-continuous function in $\left(x_{0}, y_{0}\right) \in X \times Y$ if and only if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]=0
$$

where

$$
\Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]=f(x, y)-f\left(x_{0}, y\right)-f\left(x, y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

denotes a so-called mixed difference of f.
A function $f: X \times Y \rightarrow \mathbb{R}$ is called a B-continuous function on $X \times Y$ if and only if it is B-continuous in any point of $X \times Y$.

A function $f: X \times Y \rightarrow \mathbb{R}$ is called a B-differentiable function in $\left(x_{0}, y_{0}\right) \in X \times Y$ if and only if it exists and if the limit is finite

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\Delta f\left[(x, y),\left(x, y_{0}\right)\right]}{\left(x-x_{0}\right)\left(y-y_{0}\right)} .
$$

This limit is called the B-differential of f in the point $\left(x_{0}, y_{0}\right)$ and is noted by $D_{B} f\left(x_{0}, y_{0}\right)$.
A function $f: X \times Y \rightarrow \mathbb{R}$ is called a B-differentiable function on $X \times Y$ if and only if it is B-differentiable in any point of $X \times Y$.

The definition of B-continuity and B-differentiability was introduced by K. Bögel in the papers [8] and [9].

The function $f: X \times Y \rightarrow \mathbb{R}$ is B-bounded on $X \times Y$ if and only if there exists $k>0$ so that $|\Delta f[(x, y),(s, t)]| \leq k$ for any $(x, y),(s, t) \in X \times Y$.

We shall use the function sets $B(X \times Y)=\{f \mid f: X \times Y \rightarrow \mathbb{R}, f$ bounded on $X \times Y\}$ with the usual sup-norm $\|\cdot\|_{\infty}, B_{b}(X \times Y)=\{f \mid f: X \times Y \rightarrow \mathbb{R}, f$ is B-bounded on $X \times Y\}$, $C_{b}(X \times Y)=\{f \mid f: X \times Y \rightarrow \mathbb{R}, f$ is B-continuous on $X \times Y\}$ and $D_{b}(X \times Y)=\{f \mid f:$ $X \times Y \rightarrow \mathbb{R}, f$ is B-differentiable on $X \times Y\}$.
Let $f \in B_{b}(X \times Y)$. The function $\omega_{\text {mixed }}(f ; \cdot, \cdot):[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right)=\sup \left\{\Delta f[(x, y),(s, t)]\left|:|x-s| \leq \delta_{1},|y-t| \leq \delta_{2}\right\}\right.
$$

for any $\left(\delta_{1}, \delta_{2}\right) \in[0, \infty) \times[0, \infty)$ is called the mixed modulus of smoothness.
Theorem 1.1. Let X and Y be compact real intervals and $f \in B_{b}(X \times Y)$.
Then $\lim _{\delta_{1}, \delta_{2} \rightarrow 0} \omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right)=0$ if and only if $f \in C_{b}(X \times Y)$.
For any $x \in X$ consider the function $\varphi_{x}: X \rightarrow \mathbb{R}$, defined by $\varphi_{x}(t)=|t-x|$, for any $t \in X$. For additional information, see the following papers: [1], [3], [15] and [19].
Let $m \in \mathbb{N}$ and the operator $S_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ defined for any function $f \in$ $C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(S_{m} f\right)(x)=e^{-m x} \sum_{k=0}^{\infty} \frac{(m x)^{k}}{k!} f\left(\frac{k}{m}\right), \tag{1.1}
\end{equation*}
$$

for any $x \in[0, \infty)$, where $C_{2}([0, \infty))=\left\{f \in C([0, \infty)): \lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}}\right.$ exists and is finite $\}$. The operators $\left(S_{m}\right)_{m \geq 1}$ are called the Mirakjan-Favard-Szász operators, introduced in 1941 by G . M. Mirakjan in the paper [13].

These operators were intensively studied by J. Favard in 1944 in the paper [11] and O. Szász in the paper [20].

From [18], the following three lemmas result.
Lemma 1.2. For any $m \in \mathbb{N}$, we have that

$$
\begin{gather*}
\left(S_{m} \varphi_{x}^{2}\right)(x)=\frac{x}{m}, \tag{1.2}\\
\left(S_{m} \varphi_{x}^{4}\right)(x)=\frac{3 m x^{2}+x}{m^{3}} \tag{1.3}
\end{gather*}
$$

for any $x \in[0, \infty)$ and

$$
\begin{equation*}
\left(S_{m} \varphi_{x}^{2}\right)(x) \leq \frac{a}{m}, \tag{1.4}
\end{equation*}
$$

for any $x \in[0, a]$, where $a>0$.

Let $m \in \mathbb{N}$ and the operator $V_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$, defined for any function $f \in$ $C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(V_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{\infty}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k} f\left(\frac{k}{m}\right) \tag{1.6}
\end{equation*}
$$

for any $x \in[0, \infty)$.
The operators $\left(V_{m}\right)_{m \geq 1}$ are called Baskakov operators, introduced in 1957 by V. A. Baskakov in the paper [5].
Lemma 1.3. For any $m \in \mathbb{N}$, we have that

$$
\begin{gather*}
\left(V_{m} \varphi_{x}^{2}\right)(x)=\frac{x(1+x)}{m} \tag{1.7}\\
\left(V_{m} \varphi_{x}^{4}\right)(x)=\frac{3(m+2) x^{4}+6(m+2) x^{3}+(3 m+7) x^{2}+x}{m^{3}} \tag{1.8}
\end{gather*}
$$

for any $x \in[0, \infty)$ and

$$
\begin{gather*}
\left(V_{m} \varphi_{x}^{2}\right)(x) \leq \frac{a(1+a)}{m} \tag{1.9}\\
\left(V_{m} \varphi_{x}^{4}\right)(x) \leq \frac{a\left(9 a^{3}+18 a^{2}+10 a+1\right)}{m^{2}} \tag{1.10}
\end{gather*}
$$

for any $x \in[0, a]$, where $a>0$.
W. Meyer-König and K. Zeller have introduced a sequence of linear positive operators in paper [12]. After a slight adjustment, given by E. W. Cheney and A. Sharma in [10], these operators take the form $Z_{m}: B([0,1)) \rightarrow C([0,1))$, defined for any function $f \in B([0,1))$ by

$$
\begin{equation*}
\left(Z_{m} f\right)(x)=\sum_{k=0}^{\infty}\binom{m+k}{k}(1-x)^{m+1} x^{k} f\left(\frac{k}{m+k}\right) \tag{1.11}
\end{equation*}
$$

for any $m \in \mathbb{N}$ and for any $x \in[0,1)$.
These operators are called the Meyer-König and Zeller operators.
In the following we consider $Z_{m}: C([0,1]) \rightarrow C([0,1])$, for any $m \in \mathbb{N}$.
Lemma 1.4. For any $m \in \mathbb{N}$ and any $x \in[0,1]$, we have that

$$
\begin{equation*}
\left(Z_{m} \varphi_{x}^{2}\right)(x) \leq \frac{x(1-x)^{2}}{m+1}\left(1+\frac{2 x}{m+1}\right) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(Z_{m} \varphi_{x}^{2}\right)(x) \leq \frac{2}{m} \tag{1.13}
\end{equation*}
$$

The inequality of Corollary 5 from [4], in the condition (1.14) becomes inequality (1.15). Inequality (1.16) is demonstrated in [16].

Theorem 1.5. Let $L: C_{b}(X \times Y) \rightarrow B(X \times Y)$ be a linear positive operator and $U L$: $C_{b}(X \times Y) \rightarrow B(X \times Y)$ the associated GBS operator. Supposing that the operator L has the property

$$
\begin{equation*}
\left(L(\cdot-x)^{2 i}(*-y)^{2 j}\right)(x, y)=\left(L(\cdot-x)^{2 i}\right)(x, y)\left(L(*-y)^{2 j}\right)(x, y) \tag{1.14}
\end{equation*}
$$

for any $(x, y) \in X \times Y$ and any $i, j \in\{1,2\}$, where "." and " $*$ " stand for the first and second variable. Then:
(i) For any function $f \in C_{b}(X \times Y)$, any $(x, y) \in X \times Y$ and any $\delta_{1}, \delta_{2}>0$, we have that

$$
\begin{align*}
& |f(x, y)-(U L f)(x, y)| \leq|f(x, y)|\left|1-\left(L e_{00}\right)(x, y)\right| \tag{1.15}\\
& +\left[\left(L e_{00}\right)(x, y)+\delta_{1}^{-1} \sqrt{\left(L(\cdot-x)^{2}\right)(x, y)}+\delta_{2}^{-1} \sqrt{\left(L(*-y)^{2}\right)(x, y)}\right. \\
& \left.+\quad \delta_{1}^{-1} \delta_{2}^{-1} \sqrt{\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)}\right] \omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right)
\end{align*}
$$

(ii) For any $f \in D_{b}(X \times Y)$ with $D_{B} f \in B(X \times Y)$, any $(x, y) \in X \times Y$ and any $\delta_{1}, \delta_{2}>0$, we have that

$$
\begin{align*}
& \mid f(x, y)-(U L f)(x, y) \mid \tag{1.16}\\
& \leq|f(x, y)|\left|1-\left(L e_{00}\right)(x, y)\right|+3\left\|D_{B} f\right\|_{\infty} \sqrt{\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)} \\
&+\left[\sqrt{\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)}\right. \\
&+\delta_{1}^{-1} \sqrt{\left(L(\cdot-x)^{4}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)} \\
&+\delta_{2}^{-1} \sqrt{\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{4}\right)(x, y)} \\
&\left.+\delta_{1}^{-1} \delta_{2}^{-1}\left(L(\cdot-x)^{2}\right)(x, y)\left(L(*-y)^{2}\right)(x, y)\right] \omega_{\text {mixed }}\left(D_{B} f ; \delta_{1}, \delta_{2}\right) .
\end{align*}
$$

2. Preliminaries

Let $I, J, K \subset \mathbb{R}$ be intervals, $J \subset K$ and $I \cap J \neq \emptyset$. We consider the sequence of nodes $\left(\left(x_{m, k}\right)_{k \in \mathbb{N}_{0}}\right)_{m \geq 1}$ so that $x_{m, k} \in I \cap J, k \in \mathbb{N}_{0}, m \in \mathbb{N}$ and the functions $\varphi_{m, k}: K \rightarrow \mathbb{R}$ with the property that $\varphi_{m, k}(x) \geq 0$, for any $k \in \mathbb{N}_{0}, m \in \mathbb{N}$ and $x \in J$.
Definition 2.1. If $m \in \mathbb{N}$, we define the operator $L_{m}^{*}: E(I) \rightarrow F(K)$ by

$$
\begin{equation*}
\left(L_{m}^{*} f\right)(x)=\sum_{k=0}^{\infty} \varphi_{m, k}(x) f\left(x_{m, k}\right) \tag{2.1}
\end{equation*}
$$

for any function $f \in E(I)$ and any $x \in K$, where $E(I)$ and $F(K)$ are subsets of the set of real functions defined on I, respectively on K.
Proposition 2.1. The operators $\left(L_{m}^{*}\right)_{m \geq 1}$ are linear and positive on $E(I \cap J)$.
Proof. The proof follows immediately.
Definition 2.2. If $m, n \in \mathbb{N}$, the operator $L_{m, n}^{*}: E(I \times I) \rightarrow F(K \times K)$ defined for any function $f \in E(I \times I)$ and any $(x, y) \in K \times K$ by

$$
\begin{equation*}
\left(L_{m, n}^{*} f\right)(x, y)=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \varphi_{m, k}(x) \varphi_{n, j}(y) f\left(x_{m, k}, x_{n, j}\right) \tag{2.2}
\end{equation*}
$$

is called the bivariate operator of L^{*} - type.
Proposition 2.2. The operators $\left(L_{m, n}^{*}\right)_{m, n \geq 1}$ are linear and positive on $E[(I \times I) \cap(J \times J)]$.
Proof. The proof follows immediately.
Definition 2.3. If $m, n \in \mathbb{N}$, the operator $U L_{m, n}^{*}: E(I \times I) \rightarrow F(K \times K)$ defined for any function $f \in E(I \times I)$ and any $(x, y) \in K \times K$ by

$$
\begin{equation*}
\left(U L_{m, n}^{*} f\right)(x, y)=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \varphi_{m, k}(x) \varphi_{n, j}(y)\left[f\left(x_{m, k}, y\right)+f\left(x, x_{n, j}\right)-f\left(x_{m, k}, x_{n, j}\right)\right] \tag{2.3}
\end{equation*}
$$ is called a GBS operator of L^{*} - type.

3. Main Results

Lemma 3.1. For any $m, n \in \mathbb{N}, i, j \in \mathbb{N}_{0}$ and $(x, y) \in K \times K$, the identity

$$
\begin{equation*}
\left(L_{m, n}^{*}(\cdot-x)^{2 i}(*-y)^{2 j}\right)(x, y)=\left(L_{m}^{*}(\cdot-x)^{2 i}\right)(x)\left(L_{n}^{*}(*-y)^{2 j}\right)(y) \tag{3.1}
\end{equation*}
$$

holds.
Proof. We have that

$$
\begin{aligned}
\left(L_{m, n}^{*}(\cdot-x)^{2 i}(*-y)^{2 j}\right)(x, y) & =\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \varphi_{m, k}(x) \varphi_{n, j}(y)\left(x_{m, k}-x\right)^{2 i}\left(x_{n, j}-y\right)^{2 j} \\
& =\sum_{k=0}^{\infty} \varphi_{m, k}(x)\left(x_{m, k}-x\right)^{2 i} \sum_{j=0}^{\infty} \varphi_{n, j}(y)\left(x_{n, j}-y\right)^{2 j} \\
& =\left(L_{m}^{*}(\cdot-x)^{2 i}\right)(x)\left(L_{n}^{*}(*-y)^{2 j}\right)(y)
\end{aligned}
$$

so (3.1) holds.
For the operators constructed in this section, we note that $\delta_{m}(x)=\sqrt{\left(L_{m}^{*} \varphi_{x}^{2}\right)(x)}, \delta_{m, x}=$ $\sqrt{\left(L_{m}^{*} \varphi_{x}^{4}\right)(x)}$, where $x \in I \cap J, m \in \mathbb{N}, m \neq 0$.
Then, by taking Lemma 3.1 into account, Theorem 1.5 becomes:

Theorem 3.2.

(i) For any function $f \in C_{b}(I \times I)$, any $(x, y) \in(I \times I) \cap(J \times J)$, any $m, n \in \mathbb{N}$, any $\delta_{1}, \delta_{2}>0$, we have that

$$
\begin{align*}
& \left|f(x, y)-\left(U L_{m, n}^{*} f\right)(x, y)\right| \tag{3.2}\\
& \qquad \begin{array}{l}
\leq|f(x, y)|\left|1-\left(L e_{00}\right)(x, y)\right|+\left(\left(L e_{00}\right)(x, y)+\delta_{1}^{-1} \delta_{m}(x)+\delta_{2}^{-1} \delta_{n}(y)\right. \\
\\
\left.+\delta_{1}^{-1} \delta_{2}^{-1} \delta_{m}(x) \delta_{n}(y)\right) \omega_{\text {mixed }}\left(f ; \delta_{1}, \delta_{2}\right)
\end{array}
\end{align*}
$$

(ii) For any function $f \in D_{b}(I \times I)$ with $D_{B} f \in B(I \times I)$, any $(x, y) \in(I \times I) \cap(J \times J)$, any $m, n \in \mathbb{N}$, any $\delta_{1}, \delta_{2}>0$, we have that

$$
\begin{align*}
& \left|f(x, y)-\left(U L^{*} f\right)(x, y)\right| \leq|f(x, y)|\left|1-\left(L e_{00}\right)(x, y)\right| \tag{3.3}\\
& +3\left\|D_{B} f\right\|_{\infty} \delta_{m}(x) \delta_{n}(y)+\left[\delta_{m}(x) \delta_{n}(y)+\delta_{1}^{-1} \delta_{m, x} \delta_{n}(y)\right. \\
& \left.\quad+\delta_{2}^{-1} \delta_{m}(x) \delta_{n, y}+\delta_{1}^{-1} \delta_{2}^{-1} \delta_{m}^{2}(x) \delta_{n}^{2}(y)\right] \omega_{\text {mixed }}\left(D_{B} f ; \delta_{1}, \delta_{2}\right) .
\end{align*}
$$

In the following, we give examples of operators and of the associated GBS operators.
Application 1. If $I=J=K=[0, \infty), E(I)=C_{2}([0, \infty)), F(K)=C([0, \infty)), \varphi_{m, k}(x)=$ $e^{-m x} \frac{(m x)^{k}}{k!}, x_{m, k}=\frac{k}{m}, x \in[0, \infty), m, k \in \mathbb{N}_{0}, m \neq 0$, then we obtain the Mirakjan-FavardSzász operators.

Theorem 3.3. Let $a, b \in \mathbb{R}, a>0$ and $b>0$. Then:
(i) For any function $f \in C([0, \infty) \times[0, \infty))$, any $(x, y) \in[0, a] \times[0, b]$ and $m, n \in \mathbb{N}$, we have that

$$
\begin{equation*}
\left|f(x, y)-\left(U S_{m, n} f\right)(x, y)\right| \leq(1+\sqrt{a})(1+\sqrt{b}) \omega_{\text {mixed }}\left(f ; \frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}}\right) . \tag{3.4}
\end{equation*}
$$

(ii) For any function $f \in D_{b}([0, \infty) \times[0, \infty)) \cap C([0, \infty) \times[0, \infty))$ with $D_{B} f \in B([0, a] \times$ $[0, b])$, any $(x, y) \in[0, a] \times[0, b]$, any $m, n \in \mathbb{N}$, we have that

$$
\begin{align*}
\left|f(x, y)-\left(U S_{m, n} f\right)(x, y)\right| \leq & \sqrt{a b}\left[3\left\|D_{B} f\right\|_{\infty}+(1+\sqrt{3 a+1}\right. \tag{3.5}\\
& \left.+\sqrt{3 b+1}+\sqrt{a b}) \omega_{\text {mixed }}\left(D_{B} f ; \frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}}\right)\right] \frac{1}{\sqrt{m n}} .
\end{align*}
$$

Proof. It results from Theorem 3.2, by choosing $\delta_{1}=\frac{1}{\sqrt{m}}, \delta_{2}=\frac{1}{\sqrt{n}}$ and Lemma 1.2 ,
Theorem 3.4. If $f \in C([0, \infty) \times[0, \infty))$, then the convergence

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty}\left(U S_{m, n} f\right)(x, y)=f(x, y) \tag{3.6}
\end{equation*}
$$

is uniform on any compact $[0, a] \times[0, b]$, where $a, b>0$.
Proof. It results from Theorem 1.1 and Theorem 3.3.
Application 2. If $I=J=K=[0, \infty), E(I)=C_{2}([0, \infty)), F(K)=C([0, \infty)), \varphi_{m, k}(x)=$ $(1+x)^{-m}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k}, x_{m, k}=\frac{k}{m}, x \in[0, \infty), m, k \in \mathbb{N}_{0}, m \neq 0$, then we obtain the Baskakov operators.

Theorem 3.5. Let $a, b \in \mathbb{R}, a>0$ and $b>0$. Then:
(i) For any function $f \in C([0, \infty) \times[0, \infty))$, any $(x, y) \in[0, a] \times[0, b]$ and any $m, n \in \mathbb{N}$, we have that

$$
\begin{align*}
\mid f(x, y)- & \left(U V_{m, n} f\right)(x, y) \mid \tag{3.7}\\
& \leq(1+\sqrt{a(1+a)})(1+\sqrt{b(1+b)}) \omega_{\text {mixed }}\left(f ; \frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}}\right) .
\end{align*}
$$

(ii) For any function $f \in D_{b}([0, \infty) \times[0, \infty)) \cap C([0, \infty) \times[0, \infty))$ with $D_{B} f \in B([0, a] \times$ $[0, b])$, any $(x, y) \in[0, a] \times[0, b]$, any $m, n \in \mathbb{N}$, we have that

$$
\begin{align*}
&\left|f(x, y)-\left(U V_{m, n} f\right)(x, y)\right| \leq \sqrt{a b(1+a)(1+b)}\left\{3\left\|D_{B}\right\|_{\infty}\right. \tag{3.8}\\
&+\left[1+\sqrt{9 a^{3}+}\right. 18 a^{2}+10 a+1 \\
&+\sqrt{9 b^{3}+18 b^{2}+10 b+1} \\
&\left.+\sqrt{a b(1+a)(1+b)}] \omega_{\text {mixed }}\left(D_{B} f ; \frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}}\right)\right\} \frac{1}{\sqrt{m n}} .
\end{align*}
$$

Proof. It results from Theorem 3.2, by choosing $\delta_{1}=\frac{1}{\sqrt{m}}, \delta_{2}=\frac{1}{\sqrt{n}}$ and Lemma 1.3 .
Theorem 3.6. If $f \in C([0, \infty) \times[0, \infty))$, then the convergence

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty}\left(U V_{m, n} f\right)(x, y)=f(x, y) \tag{3.9}
\end{equation*}
$$

is uniform on any compact $[0, a] \times[0, b]$, where $a, b>0$.
Proof. It results from Theorem 1.1 and Theorem 3.5 .
Application 3. If $I=J=K=[0,1], E(I)=F(K)=C([0,1]), \varphi_{m, k}(x)=\binom{m+k}{k}(1-$ $x)^{m+1} x^{k}, x_{m, k}=\frac{k}{m}, x \in[0,1], m, k \in \mathbb{N}_{0}, m \neq 0$, then we obtain the Meyer-König and Zeller operators.

Theorem 3.7. For any function $f \in C([0,1] \times[0,1])$, any $(x, y) \in[0,1] \times[0,1]$ and any $m, n \in \mathbb{N}$, we have that

$$
\begin{equation*}
\left|f(x, y)-\left(U Z_{m, n} f\right)(x, y)\right| \leq(3+2 \sqrt{2}) \omega_{\text {mixed }}\left(f ; \frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}}\right) \tag{3.10}
\end{equation*}
$$

Proof. It results from Theorem 3.2, by choosing $\delta_{1}=\frac{1}{\sqrt{m}}, \delta_{2}=\frac{1}{\sqrt{n}}$ and Lemma 1.4 ,
Theorem 3.8. If $f \in C([0,1] \times[0,1])$, then the convergence

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty}\left(U Z_{m, n} f\right)(x, y)=f(x, y) \tag{3.11}
\end{equation*}
$$

is uniform on $[0,1] \times[0,1]$.
Proof. It results from Theorem 1.1 and Theorem 3.7.

References

[1] I. BADEA, Modulul de continuitate în sens Bögel şi unele aplicaţii în aproximarea printr-un operator Bernstein, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech., 4(2) (1973), 69-78 (Romanian).
[2] C. BADEA, I. BADEA AND H.H. GONSKA, A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math. Soc., 34 (1986), 53-64.
[3] C. BADEA, I. BADEA, C. COTTIN AND H.H. GONSKA, Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl., 4 (1988), 95-108.
[4] C. BADEA AND C. COTTIN, Korovkin-type theorems for generalized boolean sum operators, Colloquia Mathematica Societatis János Bolyai, 58 (1990), Approximation Theory, Kecskemét (Hungary), 51-67.
[5] V.A. BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251.
[6] D. BĂRBOSU, On the approximation by GBS operators of Mirakjan type, BAM-1794/2000, XCIV, 169-176.
[7] M. BECHER and R.J. NESSEL, A global approximation theorem for Meyer-König and Zeller operators, Math. Zeitschr., 160 (1978), 195-206.
[8] K. BÖGEL, Mehrdimensionale Differentiation von Funktionen mehrer Veränderlicher, J. Reine Angew. Math., 170 (1934), 197-217.
[9] K. BÖGEL, Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew. Math., 173 (1935), 5-29.
[10] E.W. CHENEY and A. SHARMA, Bernstein power series, Canadian J. Math., 16 (1964), 241252.
[11] J. FAVARD, Sur les multiplicateur d'interpolation, J. Math. Pures Appl., 23(9) (1944), 219-247.
[12] W. MEYER-KÖNIG and K. ZELLER, Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 8994.
[13] G.M. MIRAKJAN, Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31 (1941), 201-205.
[14] M.W. MÜLLER, Die Folge der Gammaoperatoren, Dissertation Stuttgart, 1967.
[15] M. NICOLESCU, Analiză matematică, II, Editura Didactică şi Pedagogică, Bucureşti, 1980 (Romanian).
[16] O.T. POP, Approximation of B-differentiable functions by GBS operators, Anal. Univ. Oradea, Fasc. Matematica, Tom XIV (2007), 15-31.
[17] O.T. POP, Approximation of B-continuous and B-differentiable functions by GBS operators defined by finite sum, Facta Universitatis (Niš), Ser. Math. Inform., 22(1) (2007), 33-41.
[18] O.T. POP, About some linear and positive operators defined by infinite sum, Dem. Math., 39 (2006).
[19] D.D. STANCU, GH. COMAN, O. AGRATINI AND R. TRÎMBIŢAŞ, Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian).
[20] O. SZÁSZ, Generalization of S. Bernstein's polynomials to the infinite interval, J. Research National Bureau of Standards, 45 (1950), 239-245.

