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ABSTRACT. When we solve an ordinary nonlinear programming problem by the most and pop-
ular sequential quadratic programming (SQP) method, one of the difficulties that we must over-
come is to ensure the consistence of its QP subproblems. In this paper, we develop a new SQP
method which can assure that the QP subproblem at every iteration is consistent. One of the main
techniques used in our method involves solving a least square problem in addition to solving a
modified QP subproblem at each iteration, and we need not add bound constraints to the search
direction. we also establish the global convergence of the proposed algorithm.
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1. I NTRODUCTION

We consider the following smooth nonlinear programs:

(1.1)
min f(x)

s.t. g(x) ≥ 0, h(x) = 0.

wheref : Rn → R, g : Rn → Rl, h : Rn → Rm are continuously differentiable. Among
all robust methods for (1.1), the sequential quadratic programming method (SQP) is one of the
most important and the most popular. The basic idea of the classical SQP is as follows: at the
present iterative pointx, approximate (1.1) by quadratic programs (QP) of the form:

(1.2)

min Of(x)T d + 1
2
dT Bd

s.t. g
′
(x)d + g(x) ≥ 0,

h
′
(x)d + h(x) = 0,
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2 ZHONG WAN

whereB ∈ Rn×n is symmetric positive definite, andg
′
(x) ∈ Rl×n, h

′
(x) ∈ Rm×n are defined

as follows:

g
′
(x) ≡

(
∂gi

∂xj

)
, h

′
(x) ≡

(
∂hi

∂xj

)
.

The iteration then has the form
x̄ = x + td,

whered solves (1.2) andt is a step length chosen to reduce the value of some merit function for
(1.1). In this paper, the merit function is taken as

θρg ,ρh(x) = f(x) + ρg

l∑
i=1

max{−gi(x), 0}+ ρh‖h(x)‖2
2.

On one hand, one of the major priorities of SQP lies in that it does not require that the ap-
proximate solution obtained at each iteration is feasible for (1.1). On the other hand, this makes
it possible that the subproblem (1.2) is not consistent. In [1], J.V. Burke and S.-P. Han describe
a robust SQP wherein the QP (1.2) is altered in a way which guarantees that the associated
region is nonempty for eachx ∈ Rn and for which a global convergence theory is established.
Recently, H. Jiang and D. Ralph developed a new modified SQP method in [3] wherein a similar
global convergence result is obtained under the condition that the following modified QP

(1.3)

min Of(x)T d + 1
2
dT Bd + ρ

∑l
i=1 si

s.t. g
′
(x)d + g(x) ≥ −s,

h
′
(x)d + h(x) = 0,

s ≥ 0

is feasible, whereρ is a penalty parameter, ands is an artificial variable. The proposed SQP
method in this paper is close to [3], but removes the above condition. Our approach to guarantee
the non-emptiness of constraints region of the QP subproblem comes from the ideas in [1].

2. ALGORITHM AND ITS VALIDITY

In this section, we first describe the algorithm, then we verify the validity of the proposed
algorithm.
Step 0. (Initialization) Let ρ−1 > 0, δ1 > 0, δ2 > 0, δ3 > 0, σ ∈ (0, 1), τ ∈ (0, 1). Choose
x0 ∈ Rn and a symmetric positive definite matrixB0. Setk := 0.
Step 1. (Search direction)With x = xk, solve the following linear least square problem:

(2.1) min
d∈Rn

1

2
‖h′

(x)d + h(x)‖2
2.

Let d̃ be a solution of (2.1), computer(x) = h
′
(x)d̃ + h(x), and solve the following modified

QP problem withx = xk, B = Bk, ρ = ρk−1:

(2.2)

min Of(x)T d + 1
2
dT Bd + ρ

∑l
i=1 si

s.t. g
′
(x)d + g(x) ≥ −s,

h
′
(x)d + h(x) = r(x),

s ≥ 0.

Let (dk, sk) ∈ Rn+l be a solution of this QP andλk ≡ (λk
g , λ

k
h, λ

k
s) ∈ R2l+m be its corresponding

KKT multipliers vector.
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GLOBAL CONVERGENCE OF AMODIFIED SQP METHOD 3

Step 2. (Termination check)If some stopping rule is satisfied, terminate. Otherwise, go to
Step 3.
Step 3. (Penalty update)Let

(2.3) ρ̃k =


ρk−1, if ρk−1 > max

1≤i≤2l+m
|λk

i |;

δ1 + max
1≤i≤2l+m

|λk
i |, otherwise,

(2.4) ρk =

ρ̃k, if
l∑

i=1

si = 0;

δ2 + ρ̃k, otherwise,

(2.5) ρg
k =

ρ̃k, if
l∑

i=1

si = 0;

ρk−1, otherwise,

and

(2.6) ρh
k =


ρ̃k, if r(x) = h(x);

min{(λk
h))

T (r(x)− h(x)), 0}
−2‖(r(x)− h(x))‖2

2

+ δ3, otherwise.

Step 4. (Line search)Let tk = τ ik , whereik is the smallest nonnegative integeri which satisfies
the following inequality:

(2.7) θρg
k,ρh

k
(xk + τ idk) ≤ θρg

k,ρh
k
(xk)− στ i(dk)T Bkd

k.

Step 5. (Update)Let xk+1 = xk + tkd
k. Choose a symmetric positive definite matrixBk+1 ∈

Rn×n. Setk := k + 1. Go to Step 1.
It is well-known that the direction search and the step length determination are two critical

steps amongst all SQP methods or its variants. In the direction search step of our algorithm,
we further improve the prospect of feasibility of the QP subproblem by solving a linear least
square problem (2.1), compared with the modified SQP method in [3]. This idea directly comes
from [1]. However, our algorithm, including penalty parameter update and step length determi-
nation, is very different from [1].

SinceBk for eachk is a symmetric positive definite, and QP (2.2) is always feasible with
some vectors ∈ Rl sufficiently large, the search direction and the corresponding multipliers
vector are also well-defined. The following lemma is useful in proving thatdk is a descent
direction of the merit function.

Lemma 2.1. If dk 6= 0 for eachk, wheredk is a solution QP (2.2) withx = xk, then we have

(2.8) (‖h(x)‖2
2)

′
(xk; dk) = −2‖h′

(xk)dk‖2
2 ≤ 0.

Proof. Sincedk satisfiesh
′
(xk)dk +h(xk) = r(xk), it must solve the least square problem (2.1).

Therefore, it is a solution of the following linear equation:

(2.9) h
′
(x)T h

′
(x)dk = −h

′
(x)T h(x).
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4 ZHONG WAN

From (2.9), we have

(‖h(x)‖2
2)

′
(xk; dk) = 2(dk)T h

′
(xk)T h(xk)

= −2(dk)T h
′
(x)T h

′
(x)dk

= −2‖h′
(xk)dk‖2

2

≤ 0.

�

It is easy to see thatr(xk) = h(xk) if and only if the equality holds in (2.8).
The next lemma states that fordk = 0, xk turns out to be the critical point of the merit

function under some condition.

Lemma 2.2. Let dk = 0 be a solution QP (2.2) withx = xk. If h
′
(xk)T λk

h = 0, thenxk is a
critical point of θρg

k,ρh
k

with ρg
k, ρ

h
k being defined as (2.5) and (2.6), respectively.

Proof. Sincedk = 0 is a solution QP (2.2) withx = xk, there must exist a multiplier vector
λk = (λk

g , λ
k
h, λ

k
s) ∈ R2l+m such that the following KKT conditions hold:

(2.10)

Of(xk)− g
′
(xk)λk

g + h
′
(xk)λk

h = 0,

ρk−1e− λk
g − λk

s = 0,

g(xk) ≥ −sk, λk
g ≥ 0, (λk

g)
T (g(xk) + sk) = 0,

sk ≥ 0, λk
s ≥ 0, (λk

s)
T s = 0,

h(xk) = r(xk).

Recall thatxk is a critical point ofθρg
k,ρh

k
and is equivalent to

θ
′

ρg
k,ρh

k
(xk; d) ≥ 0, ∀d ∈ Rn.

To prove the required results, we need the following two inequalities:

(2.11) ρg
k

 ∑
gi(xk)<0

−g
′

i(x
k)d +

∑
gi(xk)=0

max(−g
′

i(x
k)d, 0) +

∑
gi(xk)>0

0

 ≥ −(λk
g)

T g
′
(xk)d;

(2.12) 2ρh
kh(xk)T h

′
(xk)d ≥ (λk

h)
T h

′
(xk)d.

First, we prove the inequality (2.11). In the case thatgi(x
k) < 0, we havesk

i > 0 and(λk
s)i = 0,

henceρk−1 = (λk
g)i from KKT conditions (2.10). Since for this case,

∑
sk

i 6= 0, we have
ρg

k = ρk−1 = (λk
g)i from (2.5). Therefore,

ρg
k

∑
gi(xk)>0

−g
′

i(x
k)d = −

∑
gi(xk)<0

(λk
g)ig

′

i(x
k)d.

In the case thatgi = 0, if g
′
(xk)d < 0, hencemax(−g

′
i(x

k)d, 0) = −g
′
i(x

k)d, then we have

ρg
k

∑
gi(xk)=0

max(−g
′

i(x
k)d, 0) ≥ −

∑
gi(xk)=0

(λk
g)ig

′

i(x
k)d.

Otherwise,max(−g
′
i(x

k)d, 0) = 0 ≥ (λk
g)ig

′
i(x

k)d.
In the case thatgi(x

k) > 0, sincesk
i ≥ 0, hencegi(x

k) + sk
i > 0 and we have(λk

g)i = 0.
From the above argument, we can deduce that inequality (2.11) holds.
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The second inequality (2.12) can be proved by using conditionh
′
(xk)T λk

h = 0 and

h
′
(xk)T h(xk) = h

′
(xk)T h

′
(xk)dk = 0.

Moreover, from it we have that the equality holds in (2.12).
By the inequalities (2.11) and (2.12), it follows from the first equality in the KKT conditions

(2.10) that for alld ∈ Rn,

θ
′

ρg
k,ρh

k
(xk; d) ≥ (Of(xk)− g

′
(xk)λk

g + h
′
(xk)λk

h)
T d = 0.

�

Remark 2.3. The conditionh
′
(xk)T λk

h = 0 actually requires that the vectorλk
h belongs to the

null space of the matrixOh(xk).

The last lemma in this section states that for everydk 6= 0, it must be the descent direction
of the merit function, which is important in making sure that the proposed algorithm is valid, in
particular, the line search step can be finished in a finite number of times.

Lemma 2.4. Let (dk, sk) be a solution of QP (2.2), andρg
k, ρ

h
k be defined as in (2.5) and (2.6),

respectively. Suppose thatdk 6= 0, then

θ
′

ρg
k,ρh

k
(xk; dk) ≤ (Of(xk)T dk − (λk

g)
T g

′
(xk)dk + (λk

h)
T h

′
(xk)dk(2.13)

≤ −(dk)T Bkd
k < 0.

Proof. Since(dk, sk) is a solution of QP (2.2) withx = xk, there must exist a multiplier vector
λk = (λk

g , λ
k
h, λ

k
s) ∈ R2l+m such that the following KKT conditions hold:

(2.14) Of(xk) + Bkd
k − g

′
(xk)λk

g + h
′
(xk)λk

h = 0,

(2.15) ρk−1e− λk
g − λk

s = 0,

(2.16) g
′
(xk)dk + g(xk) ≥ −sk, λk

g ≥ 0, λk
g)

T (g
′
(xk)dk + g(xk) + sk) = 0,

(2.17) sk ≥ 0, λk
s ≥ 0, (λk

s)
T s = 0,

(2.18) h
′
(xk)dk + h(xk) = r(xk).

Recall that

(2.19) θ
′

ρg
k,ρh

k
(xk; dk) = Of(xk)T dk + ρg

k

 ∑
gi(xk)<0

−g
′

i(x
k)dk

+
∑

gi(xk)=0

max(−g
′

i(x
k)dk, 0) +

∑
gi(xk)>0

0

− 2ρh
k‖h

′
(xk)dk‖2

2.

We first prove that the following inequalities hold:

(2.20) ρg
k

 ∑
gi(xk)<0

−g
′

i(x
k)dk +

∑
gi(xk)=0

max(−g
′

i(x
k)dk, 0) +

∑
gi(xk)>0

0

 ≤ −(λk
g)

T g
′
(xk)dk;
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6 ZHONG WAN

(2.21) −2ρh
k‖h

′
(xk)dk‖2

2 ≤ (λk
h)

T h
′
(xk)dk.

It is easy to prove inequality (2.20) by using Lemma 2.1 and the penalty update rule (2.6).
Here, we only prove (2.20).

In the case that
∑l

i=1 sk
i = 0, we havesk

i = 0 for eachi ∈ {1, 2, . . . , l}. If gi < 0, then
−Ogi(x

k)T dk ≤ gi(x
k) + sk

i = gi < 0, it follows from ρg
k = ρ̃k ≥ (λk

g)i that

−ρg
kOgi(x

k)T dk ≤ −(λk
g)iOgi(x

k)T dk.

If gi = 0, then−Ogi(x
k)T dk ≤ gi(x

k) + sk
i = 0, hencemax(−Ogi(x

k)T dk, 0) = 0, and

−(λk
g)iOgi(x

k)T dk = −(λk
g)i(gi(x

k) + sk
i ) = 0.

If gi > 0, then−(λk
g)iOgi(x

k)T dk = −(λk
g)i(gi(x

k) + sk
i ) > 0.

In the case that
∑l

i=1 sk
i 6= 0, we haveρg

k = ρk−1. If sk
i > 0, then from (2.17) we have

(λk
s)i = 0, hence from (2.15) we haveρk−1 = (λk

g)i. It directly follows that

−
∑

gi(xk)<0

(λk
g)iOgi(x

k)T dk = −
∑

gi(xk)<0

ρk−1Ogi(x
k)T dk = −

∑
gi(xk)<0

ρg
kOgi(x

k)T dk,

∑
gi(xk)=0

ρg
k max(−Ogi(x

k)T dk, 0) =
∑

gi(xk)=0

max(−(λk
g)iOgi(x

k)T dk, 0)

=
∑

gi(xk)=0

max((λk
g)is

k
i , 0)

= −
∑

gi(xk)=0

(λk
g)iOgi(x

k)T dk.

Forgi > 0, we also have

−(λk
g)iOgi(x

k)T dk = (λk
g)i(gi(x

k) + sk
i ) > 0.

If sk
i = 0, thenOgi(x

k)T dk + gi(x
k) ≥ 0, (λk

g)i ≥ 0 and (λk
g)i(Ogi(x

k)dk + gi(x
k)) = 0.

Therefore,

−Ogi(x
k)T dk < 0, for gi(x

k) < 0;

Ogi(x
k)T dk ≥ 0, for gi(x

k) = 0;

−(λk
g)iOgi(x

k)T dk = (λk
g)igi(x

k) ≥ 0, for gi(x
k) > 0.

Since from (2.15),we haveρk−1 = (λk
g)i + (λk

s)i ≥ (λk
g)i, and combined with above argument,

we can obtain the inequality (2.20).
Multiply (2.14) bydk, and from (2.20) and (2.21), we obtain that

θ
′

ρg
k,ρh

k
(xk; dk) ≤ (Of(xk)T dk − (λk

g)
T g

′
(xk)dk + (λk

h)
T h

′
(xk)dk

≤ −(dk)T Bkd
k < 0.

�

From the above argument, we know that our modified SQP method is well-defined.
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3. GLOBAL CONVERGENCE

In this section, we study the global convergence of the algorithm. For this, we assume that
dk 6= 0 for eachk, and let{xk} be a infinite iterate sequence generated by the algorithm.
Moreover, we make the following blanket assumptions:

(A1). For allk, there exist two positive constantsα < β satisfying

α‖d‖2 ≤ dT Bkd ≤ β‖d‖2, ∀d ∈ Rn.

(A2). After finitely many iterations,ρk ≡ ρ∗1, ρh
k ≡ ρ∗2.

Lemma 3.1. Under (A1) and (A2), suppose thatx∗ is a cluster point of{xk}, i.e., for some
subsetκ, limk(∈κ)→∞ xk = x∗, then the following conclusions hold.

(1)
∑l

i=1 sk
i = 0, for k ∈ κ large enough;

(2) The multiplier sequences{λk
g}k∈κ,{λk

h}k∈κ, {λk
s}k∈κ and the penalty parameter se-

quence{ρg
k}k∈κ are bounded;

(3) The direction sequence{dk}k∈κ is bounded;
(4) If limk(∈κ)→∞ dk = d∗, limk(∈κ)→∞Bk = B∗, limk(∈κ)→∞ ρg

k = ρg
∗, limk(∈κ)→∞ ρk = ρ∗,

limk(∈κ)→∞ ρh
k = ρh

∗ , then(d∗, 0) is the solution of the (2.2) withx = x∗, r(x) = 0.
Moreover, the following inequality holds:

(3.1) θ
′

ρg
∗,ρh

∗
(x∗; d∗) ≤ −(d∗)T B∗d

∗.

(5) If d∗ = 0 andr(x∗) = 0, thenx∗ is feasible for the primary problem, and is a feasible
stationary point.

Proof. Since for allk large enough,ρk ≡ ρ∗1, we can deduce that
∑l

i=1 sk
i = 0 after finite steps

by the penalty update rule (2.4), hence from the boundedness of{ρk} we know that{ρ̃k} is also
bounded. By the penalty update rule (2.3), it follows that after finite steps, we have

ρk−1 ≥ max
1≤i≤2l+m

|λk
i |.

By assumption(A2), we obtain that fork ∈ κ, {λk
g}, {λk

h} and{λk
s} are bounded.

Since
∑l

i=1 sk
i = 0 after finite steps, so fork(∈ κ) large enough we have that

ρg
k ≡ ρ̃k,

hence that{ρg
k} is bounded. The first and second conclusions above have been proved.

Next, we prove that the third conclusion holds.
From the boundedness of{λk

g} and{λk
h}, without loss of generality, we assume that

lim
k(∈κ)→∞

λk
g ≡ λ∗g, lim

k(∈κ)→∞
λk

h ≡ λ∗h.

Using the KKT conditions (2.14), we obtain that

lim
k(∈κ)→∞

Bkd
k = −Of(x∗) + g

′
(x∗)λ∗g − h

′
(x∗)λ∗h.

Thus, we can deduce that{Bkd
k : k ∈ κ} is bounded. By assumption(A1), we have

(3.2) ‖dk‖2 ≤ 1

α
‖dk‖‖Bkd

k‖ ≤ 1

α
‖dk‖M, ∀k ∈ κ,

whereM is a constant scalar large enough.
If we assume that‖dk‖ 6= 0, then from (3.2) we know that‖dk‖ ≤ 1

2
M . i.e. the direction

sequence{dk : k ∈ κ} is bounded.
Then, we prove the forth conclusion.
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By the second and the third conclusions, we can assume that

lim
k(∈κ)→∞

dk = d∗, lim
k(∈κ)→∞

Bk = B∗,

lim
k(∈κ)→∞

ρg
k = ρg

∗, lim
k(∈κ)→∞

ρh
k = ρ∗2,

lim
k(∈κ)→∞

ρs
k = ρs

∗, lim
k(∈κ)→∞

ρk = ρ∗1,

then from the KKT conditions (2.14) – (2.18) we have

(3.3)

Of(x∗) + B∗d
∗ − g

′
(x∗)λ∗g + h

′
(x∗)λ∗h = 0,

ρ∗1e− λ∗g − λ∗s = 0,

g
′
(x∗)d∗ + g(x∗) ≥ −s∗, λ∗g ≥ 0,

(λ∗g)
T (g

′
(x∗)d∗ + g(x∗) + s∗) = 0,

s∗ ≥ 0, λ∗s ≥ 0, (λ∗s)
T s = 0,

h
′
(x∗)d∗ + h(x∗) = r(x∗).

It shows that(d∗, 0) is a solution of the following problem:

(3.4)

min Of(x∗)T d + 1
2
dT B∗d + ρ∗1

∑l
i=1 si

s.t. g
′
(x∗)d + g(x∗) ≥ −s,

h
′
(x∗)d + h(x∗) = r(x∗),

s ≥ 0.

Therefore,d∗ is a solution of the following problem:

(3.5)

min Of(x∗)T d + 1
2
dT B∗d

s.t. g
′
(x∗)d + g(x∗) ≥ 0,

h
′
(x∗)d + h(x∗) = r(x∗).

Also sincelimk(∈κ)→∞ ρh
k = ρh

∗ , so from the penalty update rule (2.6), we obtain thatr(xk) =
h(xk) after finite steps. Hence we haver(x∗) = h(x∗) in the problem (3.5). The inequality
(3.1) can be easily proved under assumption(A2).

In what follows, we prove the last conclusion.
If d∗ = 0 andr(x∗) = 0, then fromr(x∗) = h(x∗) proved above we can obtain thatg(x∗) ≥ 0,

h(x∗) = 0. i.e. x∗ is feasible for the primary problem. Also sinced∗ = 0 is a solution of
the QP subproblem (1.2), we can deduce thatx∗ is a feasible stationary point of the original
problem. �

The following lemma can be proved similar to the corresponding result in [3].

Lemma 3.2. Supposing that

lim
k(∈κ)→∞

xk = x∗, lim
k(∈κ)→∞

tk = 0, lim
k(∈κ)→∞

ρg
k = ρg

∗,

lim
k(∈κ)→∞

ρh
k = ρ∗2, lim

k(∈κ)→∞
dk = d∗,

then we have

lim sup
k(∈κ)→∞

θρg
∗,ρ∗2

(xk + tkd
k)− θρg

∗,ρ∗2
(xk)

tk
≤ θ

′

ρg
∗,ρ∗2

(x∗; d∗).
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Theorem 3.3. Suppose thatlimk(∈κ)→∞ xk = x∗. Under assumptions(A1) and(A2), we have
limk(∈κ)→∞ dk = d∗ = 0. Therefore,x∗ is a generalized stationary point of the primary problem
(1.1). If r(x∗) = 0, thenx∗ is a feasible stationary point.

Proof. From assumption(A2) and Lemma 3.1, we know that fork large enough, the following
equality holds:

θρg
k,ρh

k
(xk) ≡ θρg

∗,ρ∗2
(xk).

By Lemma 2.4, we know that{θρg
∗,ρ∗2

(xk) : k ∈ κ} is a monotonically decreasing sequence
and lower bounded, hence from Lemma 3.1, we have the following limits (if necessary, we can
choose some subsequence):

lim
k(∈κ)→∞

dk = d∗, lim
k(∈κ)→∞

Bk = B∗.

Next, we prove thatd∗ = 0.
If the cluster pointt∗ of step length sequence{tk : k ∈ κ} is nonzero, then from the line

search step of the proposed algorithm, we have

lim
k(∈κ)→∞

tk(d
k)T Bkd

k = 0,

or
t∗(d∗)T B∗d

∗ = 0,

hence by the positive definiteness ofB∗, we can deduce thatd∗ = 0.
If t∗ = 0, then

θρg
∗,ρ∗2

(
xk +

tk
τ

dk

)
− θρg

∗,ρ∗2
(xk) > −σ

tk
τ

(dk)T Bkd
k,

or

−σ
tk
τ

(dk)T Bkd
k <

θρg
∗,ρ∗2

(xk + tk
τ
dk)− θρg

∗,ρ∗2
(xk)

tk
τ

≤ lim
k(∈κ)→∞

sup
θρg

∗,ρ∗2
(xk + tk

τ
dk)− θρg

∗,ρ∗2
(xk)

tk
τ

≤ θ
′

ρg
∗,ρ∗2

(x∗; d∗)

≤ −(d∗)T B∗d
∗,

i.e. (1 − σ)(d∗)T B∗d
∗ ≤ 0. So for σ ∈ (0, 1), we have(d∗)T B∗d

∗ ≤ 0. By the positive
definiteness ofB∗, we also obtain thatd∗ = 0.

At last, from the forth and fifth conclusion in Lemma 3.1, we can prove the desired results.
(see [3, Proposition A.4]). �
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