

Journal of Inequalities in Pure and **Applied Mathematics**

http://jipam.vu.edu.au/

Volume 5, Issue 4, Article 109, 2004

MARKOFF-TYPE INEQUALITIES IN WEIGHTED L^2 -NORMS

IOAN POPA

STR. CIORTEA 9/43, 3400 CLUJ-NAPOCA, ROMANIA ioanpopa.cluj@personal.ro

Received 01 August, 2004; accepted 26 September, 2004 Communicated by A. Lupas

ABSTRACT. We give exact estimations of certain weighted L^2 -norms of the k-th derivative of polynomials which have a curved majorant. They are all obtained as applications of special quadrature formulae.

Key words and phrases: Bouzitat quadrature, Chebyshev polynomials, Inequalities.

2000 Mathematics Subject Classification. 41A17, 41A05, 41A55, 65D30.

1. Introduction

The following problem was raised by P.Turán:

Let $\varphi(x) \geq 0$ for $-1 \leq x \leq 1$ and consider the class $P_{n,\varphi}$ of all polynomials of degree nsuch that $|p_n(x)| \le \varphi(x)$ for $-1 \le x \le 1$. How large can $\max_{[-1,1]} |p_n^{(k)}(x)|$ be if p_n is an arbitrary polynomial in $P_{n,\varphi}$?

The aim of this paper is to consider the solution in the weighted L^2 -norm for the majorant $\varphi\left(x\right)=\frac{\alpha+\beta-2\alpha x^2}{\sqrt{1-x^2}},\,0\leq\alpha\leq\beta.$ Let us denote by

(1.1)
$$x_i = \cos\frac{(2i-1)\pi}{2n}, i = 1, 2, \dots, n, \text{ the zeros of } T_n(x) = \cos n\theta, x = \cos \theta,$$

the Chebyshev polynomial of the first kind,

(1.2)
$$y_i^{(k)}$$
 the zeros of $U_{n-1}^{(k)}(x)$, $U_{n-1}(x) = \frac{\sin n\theta}{\sin \theta}$, $x = \cos \theta$,

the Chebyshev polynomial of the second kind and

(1.3)
$$G_{n-1}(x) = \beta U_{n-1}(x) - \alpha U_{n-3}(x), \quad 0 \le \alpha \le \beta.$$

ISSN (electronic): 1443-5756

^{© 2004} Victoria University. All rights reserved.

The author would like to thank Professor A.Lupaş for his valuable hints.

2 IOAN POPA

Let $H_{\alpha,\beta}$ be the class of all real polynomials p_{n-1} , of degree $\leq n-1$ such that

(1.4)
$$|p_{n-1}(x_i)| \le \frac{\alpha + \beta - 2\alpha x_i^2}{\sqrt{1 - x_i^2}}, \quad i = 1, 2, \dots, n,$$

where the x_i 's are given by (1.1) and $0 \le \alpha \le \beta$.

2. RESULTS

Theorem 2.1. If $p_{n-1} \in H_{\alpha,\beta}$ then we have

(2.1)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[p'_{n-1}(x) \right]^2 dx$$

$$\leq \frac{2\pi (n-1)}{15} \left[(\alpha - \beta)^2 n (n+1) (n-2) (n-3) + 5 (n-1) (\beta^2 n (n+1) - \alpha^2 (n-2) (n-3)) \right]$$

with equality for $p_{n-1} = G_{n-1}$.

Two cases are of special interest:

I. Case $\alpha = \beta = \frac{1}{2}$, $\varphi(x) = \sqrt{1 - x^2}$ (circular majorant), $G_{n-1} = T_{n-1}$. Note that $P_{n-1,\varphi} \subset H_{\frac{1}{2},\frac{1}{2}}$, $T_{n-1} \notin P_{n-1,\varphi}$, $T_{n-1} \in H_{\frac{1}{2},\frac{1}{2}}$.

Corollary 2.2. If $p_{n-1} \in H_{\frac{1}{2},\frac{1}{2}}$ then we have

(2.2)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[p'_{n-1}(x) \right]^2 dx \le \pi (n-1)^3,$$
 with equality for $p_{n-1} = T_{n-1}$.

II. Case $\alpha=0$, $\beta=1$, $\varphi\left(x\right)=\frac{1}{\sqrt{1-x^2}}$, $G_{n-1}=U_{n-1}$. Note that $P_{n-1,\varphi}\subset H_{0,1}, U_{n-1}\in P_{n-1,\varphi}, U_{n-1}\in H_{0,1}$.

Corollary 2.3. If $p_{n-1} \in H_{0,1}$ then we have

(2.3)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[p'_{n-1}(x) \right]^2 dx \le \frac{2\pi n (n^4 - 1)}{15},$$

with equality for $p_{n-1} = U_{n-1}$.

In this second case we have a more general result:

Theorem 2.4. *If* $p_{n-1} \in H_{0,1}$ *and*

$$r(x) = b(b-2a)x^2 + 2c(b-a)x + a^2 + c^2$$

with $0 < a < b, |c| < b - a, b \neq 2a$ then we have

$$(2.4) \int_{-1}^{1} r(x) (1-x^{2})^{k-1/2} \left[p_{n-1}^{(k+1)}(x) \right]^{2} dx$$

$$\leq \frac{\pi (n+k+1)!}{(n-k-2)!} \left[\frac{\left[2(n^{2}-k^{2})-3(2k+1)\right] \left[(a-b)^{2}+c^{2} \right]}{(2k+1)(2k+3)(2k+5)} + \frac{a^{2}+c^{2}}{2k+3} \right],$$

where k = 0, ..., n-2, with equality for $p_{n-1} = U_{n-1}$.

Setting a = 1, b = c = 0 one obtains the following

Corollary 2.5. If $p_{n-1} \in H_{0,1}$ then we have

(2.5)
$$\int_{-1}^{1} \left(1 - x^2\right)^{k-1/2} \left[p_{n-1}^{(k+1)}(x)\right]^2 dx \le \frac{2\pi \left(n+k+1\right)!}{(n-k-2)!} \frac{n^2 + k^2 + 3k + 1}{(2k+1)(2k+3)(2k+5)},$$
 $k = 0, \ldots, n-2$, with equality for $p_{n-1} = U_{n-1}$.

3. LEMMAS

Here we state and prove some lemmas which help us in proving the above theorems.

Lemma 3.1. Let p_{n-1} be such that $|p_{n-1}(x_i)| \leq \frac{\alpha+\beta-2\alpha x_i^2}{\sqrt{1-x_i^2}}$, $i=1,2,\ldots,n$, where the x_i 's are given by (1.1). Then we have

(3.1)
$$|p'_{n-1}(y_j)| \le |G'_{n-1}(y_j)|, \quad k = 0, 1, \dots, n-1,$$

and

$$(3.2) |p'_{n-1}(1)| \le |G'_{n-1}(1)|, |p'_{n-1}(-1)| \le |G'_{n-1}(-1)|.$$

Proof. By the Lagrange interpolation formula based on the zeros of T_n and using $T'_n(x_i) = \frac{(-1)^{i+1}n}{(1-x_i^2)^{1/2}}$, we can represent any algebraic polynomial p_{n-1} by

$$p_{n-1}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{T_n(x)}{x - x_i} (-1)^{i+1} (1 - x_i^2)^{1/2} p_{n-1}(x_i).$$

From

$$G_{n-1}(x_i) = (-1)^{i+1} \frac{\alpha + \beta - 2\alpha x_i^2}{\sqrt{1 - x_i^2}}$$

we have

$$G_{n-1}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{T_n(x)}{x - x_i} (\alpha + \beta - 2\alpha x_i^2).$$

Differentiating with respect to x we obtain

$$p'_{n-1}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{T'_n(x)(x-x_i) - T_n(x)}{(x-x_i)^2} (-1)^{i+1} (1-x_i^2)^{1/2} p_{n-1}(x_i).$$

On the roots of $T_{n}'(x) = nU_{n-1}(x)$ and using (1.4) we find

$$|p'_{n-1}(y_j)| \le \frac{1}{n} \sum_{i=1}^n \frac{|T_n(y_j)|}{(y_j - x_i)^2} \left(\alpha + \beta - 2\alpha x_i^2\right)$$

$$= \frac{|T_n(y_j)|}{n} \sum_{i=1}^n \frac{\alpha + \beta - 2\alpha x_i^2}{(y_j - x_i)^2} = |G'_{n-1}(y_j)|.$$

For $l_i\left(x\right)=\frac{T_n\left(x\right)}{x-x_i}$ taking into account that $l_i'\left(1\right)>0$ (see [6]) it follows that

$$|p'_{n-1}(1)| \le \frac{1}{n} \sum_{i=1}^{n} l'_{i}(1) \left(\alpha + \beta - 2\alpha x_{i}^{2}\right) = |G'_{n-1}(1)|.$$

Similarly
$$\left|p_{n-1}'\left(-1\right)\right| \leq \left|G_{n-1}'\left(-1\right)\right|$$
.

We shall need the result of Duffin and Schaeffer [2]:

4 IOAN POPA

Lemma 3.2 (Duffin – Schaeffer). If $q(x) = c \prod_{i=1}^{n} (x - x_i)$ is a polynomial of degree n with n distinct real zeros and if $p \in P_n$ is such that

$$|p'(x_i)| \le |q'(x_i)| \quad (i = 1, 2, \dots, n),$$

then for k = 1, 2, ..., n - 1,

$$|p^{(k+1)}(x)| \le |q^{(k+1)}(x)|$$

whenever $q^{(k)}(x) = 0$.

Lemma 3.3. Let p_{n-1} be such that $|p_{n-1}(x_i)| \leq \frac{1}{\sqrt{1-x_i^2}}$, $i=1,2,\ldots,n$, where the x_i 's are given by (1.1). Then we have

$$\left| p_{n-1}^{(k+1)}(y_j^{(k)}) \right| \le \left| U_{n-1}^{(k+1)}(y_j^{(k)}) \right|, \quad \text{whenever } U_{n-1}^{(k)}(y_j^{(k)}) = 0,$$

for k = 0, 1, ..., n - 1, and

$$\left| p_{n-1}^{(k+1)}(1) \right| \le \left| U_{n-1}^{(k+1)}(1) \right|, \left| p_{n-1}^{(k+1)}(-1) \right| \le \left| U_{n-1}^{(k+1)}(-1) \right|.$$

Proof. For $\alpha = 0$, $\beta = 1$, $G_{n-1} = U_{n-1}$ and (3.1) give $|p'_{n-1}(y_j)| \le |U'_{n-1}(y_j)|$ and (3.2)

$$\left|p_{n-1}'(1)\right| \leq \left|U_{n-1}'(1)\right|, \quad \left|p_{n-1}'(-1)\right| \leq \left|U_{n-1}'(-1)\right|.$$

Now the proof is concluded by applying the Duffin-Schaeffer lemma.

The following proposition was proved in [3].

Lemma 3.4. A real polynomial r of exact degree 2 satisfies r(x) > 0 for $-1 \le x \le 1$ if and only if

$$r(x) = b(b - 2a)x^{2} + 2c(b - a)x + a^{2} + c^{2}$$

with $0 < a < b, \ |c| < b - a, \ b \neq 2a$.

We need the following quadrature formulae:

Lemma 3.5. For any given n and k, $0 \le k \le n-1$, let $y_i^{(k)}$, i = 1, ..., n-k-1, be the zeros of $U_{n-1}^{(k)}$. Then the quadrature formulae

(3.5)
$$\int_{-1}^{1} (1 - x^2)^{k-1/2} f(x) dx = A_0 [f(-1) + f(1)] + \sum_{i=1}^{n-k-1} s_i f(y_i^{(k)}),$$

where

$$A_0 = \frac{2^{2k-1} (2k+1) \Gamma(k+1/2)^2 (n-k-1)!}{(n+k)!}, \quad s_i > 0$$

and

(3.6)
$$\int_{-1}^{1} (1 - x^{2})^{k-1/2} f(x) dx$$

$$= B_{0} [f(-1) + f(1)] + C_{0} [f'(-1) - f'(1)] + \sum_{i=1}^{n-k-2} v_{i} f(y_{i}^{(k+1)}),$$

where

$$C_0 = \frac{2^{2k} (2k+3) \Gamma(k+3/2)^2 (n-k-2)!}{(n+k+1)!},$$

$$B_0 = C_0 \frac{2 (n^2 - (k+2)^2) (2k+3) + 4 (k+1) (2k+5)}{(2k+1) (2k+5)}$$

have algebraic degree of precision 2n - 2k - 1.

The quadrature formulae

(3.7)
$$\int_{-1}^{1} r(x) (1-x^{2})^{k-1/2} f(x) dx = A_{1} f(-1) + B_{1} f(1) + \sum_{i=1}^{n-k-1} s_{i} r(y_{i}^{(k)}) f(y_{i}^{(k)}),$$

where

$$A_{1} = \frac{2^{2k-1} (2k+1) \Gamma(k+1/2)^{2} (n-k-1)! (a-b+c)^{2}}{(n+k)!},$$

$$B_{1} = \frac{2^{2k-1} (2k+1) \Gamma(k+1/2)^{2} (n-k-1)! (a-b-c)^{2}}{(n+k)!}$$

and

(3.8)
$$\int_{-1}^{1} r(x) (1-x^{2})^{k-1/2} f(x) dx = C_{1} f(-1) + D_{1} f(1) + C_{2} f'(-1) - D_{2} f'(1) + \sum_{i=1}^{n-k-2} v_{i} r\left(y_{i}^{(k+1)}\right) f\left(y_{i}^{(k+1)}\right),$$

$$C_{1} = B_{0} (a - b + c)^{2} + 2C_{0} d, D_{1} = B_{0} (a - b - c)^{2} - 2C_{0} e,$$

$$C_{2} = C_{0} (a - b + c)^{2}, D_{2} = C_{0} (a - b - c)^{2},$$

$$d = 2ab + bc - ac - b^{2}, e = b^{2} - 2ab + bc - ac.$$

have algebraic degree of precision 2n-2k-3.

Proof. In order to compute the coefficients we need the following formulae

(3.9)
$$\int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\lambda} P_{m}^{(\alpha,\beta)}(x) dx$$

$$= \frac{(-1)^{m} 2^{\alpha+\lambda+1} \Gamma(\lambda+1) \Gamma(m+\alpha+1) \Gamma(\beta-\lambda+m)}{\Gamma(m+1) \Gamma(\beta-\lambda) \Gamma(m+\alpha+\lambda+2)}, \quad \lambda < \beta.$$

$$\int_{-1}^{1} (1-x)^{\lambda} (1+x)^{\beta} P_{m}^{(\alpha,\beta)}(x) dx$$

$$= \frac{2^{\beta+\lambda+1} \Gamma(\lambda+1) \Gamma(m+\beta+1) \Gamma(\alpha-\lambda+m)}{\Gamma(m+1) \Gamma(\alpha-\lambda) \Gamma(m+\beta+\lambda+2)}, \quad \lambda < \alpha$$

The first quadrature formula (3.5) is the Bouzitat formula of the second kind [4, formula (4.8.1)], for the zeros of $U_{n-1}^{(k)}=cP_{n-k-1}^{\left(k+\frac{1}{2},k+\frac{1}{2}\right)}$. Setting $\alpha=\beta=\frac{1}{2}, m=n-k-1$ in [4, formula (4.8.5)] we find A_0 and $s_i>0$ (cf. [4, formula (4.8.4)]).

If in the above quadrature formula (3.6), taking into account (3.9), we put

$$f(x) = (1-x)(1+x)^{2} P_{n-k-2}^{\left(k+\frac{3}{2},k+\frac{3}{2}\right)}(x),$$

$$U_{n-1}^{(k+1)}(x) = c P_{n-k-2}^{\left(k+\frac{3}{2},k+\frac{3}{2}\right)}(x),$$

6 IOAN POPA

we obtain C_0 , and for

$$f(x) = (1+x)^2 P_{n-k-2}^{(k+\frac{3}{2},k+\frac{3}{2})}(x)$$

we find B_0 .

If in formula (3.5) we replace f(x) with r(x) f(x) we get (3.7) and if in formula (3.6) we replace f(x) with r(x) f(x) we get (3.8).

4. PROOF OF THE THEOREMS

Proof of Theorem 2.1. Setting k = 0 in (3.5) we find the formula

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = \frac{\pi}{2n} \left[f(-1) + f(1) \right] + \frac{\pi}{n} \sum_{i=1}^{n-1} f(y_i).$$

According to this quadrature formula and using (3.1) and (3.2) we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[p'_{n-1}(x) \right]^2 dx = \frac{\pi}{2n} \left(p'_{n-1}(-1) \right)^2 + \frac{\pi}{2n} \left(p'_{n-1}(1) \right)^2 + \frac{\pi}{n} \sum_{i=1}^{n-1} \left(p'_{n-1}(y_i) \right)^2$$

$$\leq \frac{\pi}{2n} \left(G'_{n-1}(-1) \right)^2 + \frac{\pi}{2n} \left(G'_{n-1}(1) \right)^2 + \frac{\pi}{n} \sum_{i=1}^{n-1} \left(G'_{n-1}(y_i) \right)^2$$

$$= \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[G'_{n-1}(x) \right]^2 dx.$$

Now

$$\int_{-1}^{1} \frac{\left[G'_{n-1}(x)\right]^{2}}{\sqrt{1-x^{2}}} dx = \beta^{2} \int_{-1}^{1} \frac{\left[U'_{n-1}(x)\right]^{2}}{\sqrt{1-x^{2}}} dx$$
$$-2\alpha\beta \int_{-1}^{1} \frac{U'_{n-1}(x)U'_{n-3}(x)}{\sqrt{1-x^{2}}} dx + \alpha^{2} \int_{-1}^{1} \frac{\left[U'_{n-3}(x)\right]^{2}}{\sqrt{1-x^{2}}} dx.$$

Using the following formula (k = 0 in (3.6))

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = \frac{3\pi (3n^2 - 2)}{10n(n^2 - 1)} [f(-1) + f(1)] + \frac{3\pi}{4n(n^2 - 1)} [f'(-1) - f'(1)] + \sum_{i=1}^{n-2} c_i f(y_i')$$

we find

$$\int_{-1}^{1} \frac{\left[U'_{n-1}(x)\right]^{2}}{\sqrt{1-x^{2}}} = \frac{2\pi n \left(n^{4}-1\right)}{15},$$

$$\int_{-1}^{1} \frac{U'_{n-1}(x) U'_{n-3}(x)}{\sqrt{1-x^{2}}} = \frac{2\pi n \left(n^{2}-1\right) \left(n-2\right) \left(n-3\right)}{15},$$

$$\int_{-1}^{1} \frac{\left[U'_{n-3}(x)\right]^{2}}{\sqrt{1-x^{2}}} = \frac{2\pi \left(n-1\right) \left(n^{2}-4n+5\right) \left(n-2\right) \left(n-3\right)}{15}$$

and

$$\int_{-1}^{1} \frac{\left[G'_{n-1}(x)\right]^{2}}{\sqrt{1-x^{2}}} dx = \frac{2\pi (n-1)}{15} \left[(\alpha - \beta)^{2} n (n+1) (n-2) (n-3) + 5 (n-1) (\beta^{2} n (n+1) - \alpha^{2} (n-2) (n-3)) \right].$$

Proof of Theorem 2.4. According to the quadrature formula (3.7), positivity of s_i 's, and using (3.3) and (3.4) we have

$$\int_{-1}^{1} r(x) (1 - x^{2})^{k-1/2} \left[p_{n-1}^{(k+1)}(x) \right]^{2} dx$$

$$= A_{1} \left[p_{n-1}^{(k+1)}(-1) \right]^{2} + B_{1} \left[p_{n-1}^{(k+1)}(1) \right]^{2} + \sum_{i=1}^{n-k-1} s_{i} r\left(y_{i}^{(k)} \right) \left[p_{n-1}^{(k+1)}\left(y_{i}^{(k)} \right) \right]^{2}$$

$$\leq A_{1} \left[U_{n-1}^{(k+1)}(-1) \right]^{2} + B_{1} \left[U_{n-1}^{(k+1)}(1) \right]^{2} + \sum_{i=1}^{n-k-1} s_{i} r\left(y_{i}^{(k)} \right) \left[U_{n-1}^{(k+1)}\left(y_{i}^{(k)} \right) \right]^{2}$$

$$= \int_{-1}^{1} r(x) (1 - x^{2})^{k-1/2} \left[U_{n-1}^{(k+1)}(x) \right]^{2} dx.$$

In order to complete the proof we apply formula (3.8) to $f = \left[U_{n-1}^{(k+1)}(x) \right]^2$.

Having in mind $U_{n-1}^{(k+1)}\left(y_i^{(k+1)}\right)=0$ and the following relations deduced from [1]

$$U_{n-1}^{(k+1)}(1) = \frac{n(n^2 - 1^2) \cdots (n^2 - (k+1)^2)}{1 \cdot 3 \cdots (2k+3)},$$

$$U_{n-1}^{(k+2)}(1) = \frac{n^2 - (k+2)^2}{2k+5} U_{n-1}^{(k+1)}(1),$$

$$U_{n-1}^{(k+1)}(-1) U_{n-1}^{(k+2)}(-1) = -U_{n-1}^{(k+1)}(1) U_{n-1}^{(k+2)}(1),$$

we find

$$\begin{split} \int_{-1}^{1} r\left(x\right) \left(1-x^{2}\right)^{k-1/2} \left[p_{n-1}^{(k+1)}\left(x\right)\right]^{2} dx \\ &= C_{1} \left[U_{n-1}^{(k+1)}\left(-1\right)\right]^{2} + D_{1} \left[U_{n-1}^{(k+1)}\left(1\right)\right]^{2} \\ &\quad + 2C_{2} U_{n-1}^{(k+1)}\left(-1\right) U_{n-1}^{(k+2)}\left(-1\right) - 2D_{2} U_{n-1}^{(k+1)}\left(1\right) U_{n-1}^{(k+2)}\left(1\right) \\ &= \frac{\pi\left(n+k+1\right)!}{\left(n-k-2\right)!} \left[\frac{\left[2\left(n^{2}-k^{2}\right)-3\left(2k+1\right)\right]\left[\left(a-b\right)^{2}+c^{2}\right]}{\left(2k+1\right)\left(2k+3\right)\left(2k+5\right)} + \frac{a^{2}+c^{2}}{2k+3}\right]. \end{split}$$

REFERENCES

- [1] D.K. DIMITROV, Markov inequalities for weight functions of Chebyshev type, *J. Approx. Theory*, **83** (1995), 175–181.
- [2] R.J. DUFFIN AND A.C. SCHAEFFER, A refinement of an inequality of the brothers Markoff, *Trans. Amer. Math. Soc.*, **50** (1941), 517–528.

8 Ioan Popa

- [3] W. GAUTSCHI AND S.E. NOTARIS, Gauss-Kronrod quadrature formulae for weight function of Bernstein-Szegő type, *J. Comput. Appl. Math.*, **25**(2) (1989), 199–224.
- [4] A. GHIZZETTI AND A. OSSICINI, Quadrature formulae, Akademie-Verlag, Berlin, 1970.
- [5] A. LUPAŞ, Numerical Methods, Constant Verlag, Sibiu, 2001.
- [6] R. PIERRE AND Q.I. RAHMAN, On polynomials with curved majorants, in *Studies in Pure Mathematics*, Budapest, (1983), 543–549.