Journal of Inequalities in Pure and Applied Mathematics

Volume 5, Issue 4, Article 109, 2004

MARKOFF-TYPE INEQUALITIES IN WEIGHTED L^{2}-NORMS

IOAN POPA

Str. Ciortea 9/43, 3400 CLUJ-NAPOCA, Romania
ioanpopa.cluj@personal.ro

Received 01 August, 2004; accepted 26 September, 2004
Communicated by A. Lupaş

Abstract

We give exact estimations of certain weighted L^{2}-norms of the k-th derivative of polynomials which have a curved majorant. They are all obtained as applications of special quadrature formulae.

Key words and phrases: Bouzitat quadrature, Chebyshev polynomials, Inequalities.

2000 Mathematics Subject Classification 41A17, 41A05, 41A55, 65D30.

1. Introduction

The following problem was raised by P.Turán:
Let $\varphi(x) \geq 0$ for $-1 \leq x \leq 1$ and consider the class $P_{n, \varphi}$ of all polynomials of degree n such that $\left|p_{n}(x)\right| \leq \varphi(x)$ for $-1 \leq x \leq 1$. How large can $\max _{[-1,1]}\left|p_{n}^{(k)}(x)\right|$ be if p_{n} is an arbitrary polynomial in $P_{n, \varphi}$?

The aim of this paper is to consider the solution in the weighted L^{2}-norm for the majorant $\varphi(x)=\frac{\alpha+\beta-2 \alpha x^{2}}{\sqrt{1-x^{2}}}, 0 \leq \alpha \leq \beta$.

Let us denote by
(1.1) $\quad x_{i}=\cos \frac{(2 i-1) \pi}{2 n}, i=1,2, \ldots, n$, the zeros of $T_{n}(x)=\cos n \theta, x=\cos \theta$,
the Chebyshev polynomial of the first kind,

$$
\begin{equation*}
y_{i}^{(k)} \text { the zeros of } U_{n-1}^{(k)}(x), \quad U_{n-1}(x)=\frac{\sin n \theta}{\sin \theta}, \quad x=\cos \theta \tag{1.2}
\end{equation*}
$$

the Chebyshev polynomial of the second kind and

$$
\begin{equation*}
G_{n-1}(x)=\beta U_{n-1}(x)-\alpha U_{n-3}(x), \quad 0 \leq \alpha \leq \beta . \tag{1.3}
\end{equation*}
$$

[^0]Let $H_{\alpha, \beta}$ be the class of all real polynomials p_{n-1}, of degree $\leq n-1$ such that

$$
\begin{equation*}
\left|p_{n-1}\left(x_{i}\right)\right| \leq \frac{\alpha+\beta-2 \alpha x_{i}^{2}}{\sqrt{1-x_{i}^{2}}}, \quad i=1,2, \ldots, n \tag{1.4}
\end{equation*}
$$

where the x_{i} 's are given by (1.1) and $0 \leq \alpha \leq \beta$.

2. Results

Theorem 2.1. If $p_{n-1} \in H_{\alpha, \beta}$ then we have

$$
\begin{align*}
& \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \tag{2.1}\\
& \leq \frac{2 \pi(n-1)}{15}\left[(\alpha-\beta)^{2} n(n+1)(n-2)(n-3)\right. \\
& \\
& \left.\quad+5(n-1)\left(\beta^{2} n(n+1)-\alpha^{2}(n-2)(n-3)\right)\right]
\end{align*}
$$

with equality for $p_{n-1}=G_{n-1}$.
Two cases are of special interest:
I. Case $\alpha=\beta=\frac{1}{2}, \varphi(x)=\sqrt{1-x^{2}}$ (circular majorant), $G_{n-1}=T_{n-1}$.

Note that $P_{n-1, \varphi} \subset H_{\frac{1}{2}, \frac{1}{2}}, T_{n-1} \notin P_{n-1, \varphi}, T_{n-1} \in H_{\frac{1}{2}, \frac{1}{2}}$.
Corollary 2.2. If $p_{n-1} \in H_{\frac{1}{2}, \frac{1}{2}}$ then we have

$$
\begin{equation*}
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \leq \pi(n-1)^{3} \tag{2.2}
\end{equation*}
$$

with equality for $p_{n-1}=T_{n-1}$.
II. Case $\alpha=0, \beta=1, \varphi(x)=\frac{1}{\sqrt{1-x^{2}}}, G_{n-1}=U_{n-1}$.

Note that $P_{n-1, \varphi} \subset H_{0,1}, U_{n-1} \in P_{n-1, \varphi}, U_{n-1} \in H_{0,1}$.
Corollary 2.3. If $p_{n-1} \in H_{0,1}$ then we have

$$
\begin{equation*}
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \leq \frac{2 \pi n\left(n^{4}-1\right)}{15} \tag{2.3}
\end{equation*}
$$

with equality for $p_{n-1}=U_{n-1}$.
In this second case we have a more general result:
Theorem 2.4. If $p_{n-1} \in H_{0,1}$ and

$$
r(x)=b(b-2 a) x^{2}+2 c(b-a) x+a^{2}+c^{2}
$$

with $0<a<b,|c|<b-a, b \neq 2 a$ then we have

$$
\begin{align*}
\int_{-1}^{1} r(x) & \left(1-x^{2}\right)^{k-1 / 2}\left[p_{n-1}^{(k+1)}(x)\right]^{2} d x \tag{2.4}\\
& \leq \frac{\pi(n+k+1)!}{(n-k-2)!}\left[\frac{\left[2\left(n^{2}-k^{2}\right)-3(2 k+1)\right]\left[(a-b)^{2}+c^{2}\right]}{(2 k+1)(2 k+3)(2 k+5)}+\frac{a^{2}+c^{2}}{2 k+3}\right]
\end{align*}
$$

where $k=0, \ldots, n-2$, with equality for $p_{n-1}=U_{n-1}$.
Setting $a=1, b=c=0$ one obtains the following

Corollary 2.5. If $p_{n-1} \in H_{0,1}$ then we have

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)^{k-1 / 2}\left[p_{n-1}^{(k+1)}(x)\right]^{2} d x \leq \frac{2 \pi(n+k+1)!}{(n-k-2)!} \frac{n^{2}+k^{2}+3 k+1}{(2 k+1)(2 k+3)(2 k+5)}, \tag{2.5}
\end{equation*}
$$

$k=0, \ldots, n-2$, with equality for $p_{n-1}=U_{n-1}$.

3. Lemmas

Here we state and prove some lemmas which help us in proving the above theorems.
Lemma 3.1. Let p_{n-1} be such that $\left|p_{n-1}\left(x_{i}\right)\right| \leq \frac{\alpha+\beta-2 \alpha x_{i}^{2}}{\sqrt{1-x_{i}^{2}}}, i=1,2, \ldots, n$, where the x_{i} 's are given by (1.1). Then we have

$$
\begin{equation*}
\left|p_{n-1}^{\prime}\left(y_{j}\right)\right| \leq\left|G_{n-1}^{\prime}\left(y_{j}\right)\right|, \quad k=0,1, \ldots, n-1, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{n-1}^{\prime}(1)\right| \leq\left|G_{n-1}^{\prime}(1)\right|, \quad\left|p_{n-1}^{\prime}(-1)\right| \leq\left|G_{n-1}^{\prime}(-1)\right| \tag{3.2}
\end{equation*}
$$

Proof. By the Lagrange interpolation formula based on the zeros of T_{n} and using $T_{n}^{\prime}\left(x_{i}\right)=$ $\frac{(-1)^{i+1} n}{\left(1-x_{i}^{2}\right)^{1 / 2}}$, we can represent any algebraic polynomial p_{n-1} by

$$
p_{n-1}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{T_{n}(x)}{x-x_{i}}(-1)^{i+1}\left(1-x_{i}^{2}\right)^{1 / 2} p_{n-1}\left(x_{i}\right) .
$$

From

$$
G_{n-1}\left(x_{i}\right)=(-1)^{i+1} \frac{\alpha+\beta-2 \alpha x_{i}^{2}}{\sqrt{1-x_{i}^{2}}}
$$

we have

$$
G_{n-1}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{T_{n}(x)}{x-x_{i}}\left(\alpha+\beta-2 \alpha x_{i}^{2}\right) .
$$

Differentiating with respect to x we obtain

$$
p_{n-1}^{\prime}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{T_{n}^{\prime}(x)\left(x-x_{i}\right)-T_{n}(x)}{\left(x-x_{i}\right)^{2}}(-1)^{i+1}\left(1-x_{i}^{2}\right)^{1 / 2} p_{n-1}\left(x_{i}\right) .
$$

On the roots of $T_{n}^{\prime}(x)=n U_{n-1}(x)$ and using (1.4) we find

$$
\begin{aligned}
\left|p_{n-1}^{\prime}\left(y_{j}\right)\right| & \leq \frac{1}{n} \sum_{i=1}^{n} \frac{\left|T_{n}\left(y_{j}\right)\right|}{\left(y_{j}-x_{i}\right)^{2}}\left(\alpha+\beta-2 \alpha x_{i}^{2}\right) \\
& =\frac{\left|T_{n}\left(y_{j}\right)\right|}{n} \sum_{i=1}^{n} \frac{\alpha+\beta-2 \alpha x_{i}^{2}}{\left(y_{j}-x_{i}\right)^{2}}=\left|G_{n-1}^{\prime}\left(y_{j}\right)\right| .
\end{aligned}
$$

For $l_{i}(x)=\frac{T_{n}(x)}{x-x_{i}}$ taking into account that $l_{i}^{\prime}(1)>0$ (see [6]) it follows that

$$
\left|p_{n-1}^{\prime}(1)\right| \leq \frac{1}{n} \sum_{i=1}^{n} l_{i}^{\prime}(1)\left(\alpha+\beta-2 \alpha x_{i}^{2}\right)=\left|G_{n-1}^{\prime}(1)\right|
$$

Similarly $\left|p_{n-1}^{\prime}(-1)\right| \leq\left|G_{n-1}^{\prime}(-1)\right|$.
We shall need the result of Duffin and Schaeffer [2]:

Lemma 3.2 (Duffin - Schaeffer). If $q(x)=c \prod_{i=1}^{n}\left(x-x_{i}\right)$ is a polynomial of degree n with n distinct real zeros and if $p \in P_{n}$ is such that

$$
\left|p^{\prime}\left(x_{i}\right)\right| \leq\left|q^{\prime}\left(x_{i}\right)\right| \quad(i=1,2, \ldots, n)
$$

then for $k=1,2, \ldots, n-1$,

$$
\left|p^{(k+1)}(x)\right| \leq\left|q^{(k+1)}(x)\right|
$$

whenever $q^{(k)}(x)=0$.
Lemma 3.3. Let p_{n-1} be such that $\left|p_{n-1}\left(x_{i}\right)\right| \leq \frac{1}{\sqrt{1-x_{i}^{2}}}, i=1,2, \ldots, n$, where the x_{i} 's are given by (1.1). Then we have

$$
\begin{equation*}
\left|p_{n-1}^{(k+1)}\left(y_{j}^{(k)}\right)\right| \leq\left|U_{n-1}^{(k+1)}\left(y_{j}^{(k)}\right)\right|, \quad \text { whenever } U_{n-1}^{(k)}\left(y_{j}^{(k)}\right)=0 \tag{3.3}
\end{equation*}
$$

for $k=0,1, \ldots, n-1$, and

$$
\begin{equation*}
\left|p_{n-1}^{(k+1)}(1)\right| \leq\left|U_{n-1}^{(k+1)}(1)\right|,\left|p_{n-1}^{(k+1)}(-1)\right| \leq\left|U_{n-1}^{(k+1)}(-1)\right| . \tag{3.4}
\end{equation*}
$$

Proof. For $\alpha=0, \beta=1, G_{n-1}=U_{n-1}$ and 3.1 give $\left|p_{n-1}^{\prime}\left(y_{j}\right)\right| \leq\left|U_{n-1}^{\prime}\left(y_{j}\right)\right|$ and (3.2)

$$
\left|p_{n-1}^{\prime}(1)\right| \leq\left|U_{n-1}^{\prime}(1)\right|, \quad\left|p_{n-1}^{\prime}(-1)\right| \leq\left|U_{n-1}^{\prime}(-1)\right|
$$

Now the proof is concluded by applying the Duffin-Schaeffer lemma.
The following proposition was proved in [3].
Lemma 3.4. A real polynomial r of exact degree 2 satisfies $r(x)>0$ for $-1 \leq x \leq 1$ if and only if

$$
r(x)=b(b-2 a) x^{2}+2 c(b-a) x+a^{2}+c^{2}
$$

with $0<a<b,|c|<b-a, b \neq 2 a$.
We need the following quadrature formulae:
Lemma 3.5. For any given n and $k, 0 \leq k \leq n-1$, let $y_{i}^{(k)}, i=1, \ldots, n-k-1$, be the zeros of $U_{n-1}^{(k)}$. Then the quadrature formulae

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)^{k-1 / 2} f(x) d x=A_{0}[f(-1)+f(1)]+\sum_{i=1}^{n-k-1} s_{i} f\left(y_{i}^{(k)}\right) \tag{3.5}
\end{equation*}
$$

where

$$
A_{0}=\frac{2^{2 k-1}(2 k+1) \Gamma(k+1 / 2)^{2}(n-k-1)!}{(n+k)!}, \quad s_{i}>0
$$

and

$$
\begin{align*}
\int_{-1}^{1}(1 & \left.-x^{2}\right)^{k-1 / 2} f(x) d x \tag{3.6}\\
& =B_{0}[f(-1)+f(1)]+C_{0}\left[f^{\prime}(-1)-f^{\prime}(1)\right]+\sum_{i=1}^{n-k-2} v_{i} f\left(y_{i}^{(k+1)}\right),
\end{align*}
$$

where

$$
\begin{aligned}
& C_{0}=\frac{2^{2 k}(2 k+3) \Gamma(k+3 / 2)^{2}(n-k-2)!}{(n+k+1)!} \\
& B_{0}=C_{0} \frac{2\left(n^{2}-(k+2)^{2}\right)(2 k+3)+4(k+1)(2 k+5)}{(2 k+1)(2 k+5)}
\end{aligned}
$$

have algebraic degree of precision $2 n-2 k-1$.
The quadrature formulae

$$
\begin{equation*}
\int_{-1}^{1} r(x)\left(1-x^{2}\right)^{k-1 / 2} f(x) d x=A_{1} f(-1)+B_{1} f(1)+\sum_{i=1}^{n-k-1} s_{i} r\left(y_{i}^{(k)}\right) f\left(y_{i}^{(k)}\right) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}=\frac{2^{2 k-1}(2 k+1) \Gamma(k+1 / 2)^{2}(n-k-1)!(a-b+c)^{2}}{(n+k)!}, \\
& B_{1}=\frac{2^{2 k-1}(2 k+1) \Gamma(k+1 / 2)^{2}(n-k-1)!(a-b-c)^{2}}{(n+k)!}
\end{aligned}
$$

and

$$
\begin{gather*}
\int_{-1}^{1} r(x)\left(1-x^{2}\right)^{k-1 / 2} f(x) d x=C_{1} f(-1)+D_{1} f(1) \tag{3.8}\\
+C_{2} f^{\prime}(-1)-D_{2} f^{\prime}(1)+\sum_{i=1}^{n-k-2} v_{i} r\left(y_{i}^{(k+1)}\right) f\left(y_{i}^{(k+1)}\right), \\
C_{1}=B_{0}(a-b+c)^{2}+2 C_{0} d, D_{1}=B_{0}(a-b-c)^{2}-2 C_{0} e \\
C_{2}=C_{0}(a-b+c)^{2}, D_{2}=C_{0}(a-b-c)^{2} \\
d=2 a b+b c-a c-b^{2}, e=b^{2}-2 a b+b c-a c
\end{gather*}
$$

have algebraic degree of precision $2 n-2 k-3$.
Proof. In order to compute the coefficients we need the following formulae

$$
\begin{align*}
& \int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\lambda} P_{m}^{(\alpha, \beta)}(x) d x \\
& \quad=\frac{(-1)^{m} 2^{\alpha+\lambda+1} \Gamma(\lambda+1) \Gamma(m+\alpha+1) \Gamma(\beta-\lambda+m)}{\Gamma(m+1) \Gamma(\beta-\lambda) \Gamma(m+\alpha+\lambda+2)}, \quad \lambda<\beta . \tag{3.9}\\
& \int_{-1}^{1}(1-x)^{\lambda}(1+x)^{\beta} P_{m}^{(\alpha, \beta)}(x) d x \\
& \quad=\frac{2^{\beta+\lambda+1} \Gamma(\lambda+1) \Gamma(m+\beta+1) \Gamma(\alpha-\lambda+m)}{\Gamma(m+1) \Gamma(\alpha-\lambda) \Gamma(m+\beta+\lambda+2)}, \quad \lambda<\alpha
\end{align*}
$$

The first quadrature formula (3.5) is the Bouzitat formula of the second kind [4] formula (4.8.1)], for the zeros of $U_{n-1}^{(k)}=c P_{n-k-1}^{\left(k+\frac{1}{2}, k+\frac{1}{2}\right)}$. Setting $\alpha=\beta=\frac{1}{2}, m=n-k-1$ in [4, formula (4.8.5)] we find A_{0} and $s_{i}>0$ (cf. [4, formula (4.8.4)]).

If in the above quadrature formula (3.6), taking into account (3.9), we put

$$
\begin{aligned}
& f(x)=(1-x)(1+x)^{2} P_{n-k-2}^{\left(k+\frac{3}{2}, k+\frac{3}{2}\right)}(x) \\
& U_{n-1}^{(k+1)}(x)=c P_{n-k-2}^{\left(k+\frac{3}{2}, k+\frac{3}{2}\right)}(x)
\end{aligned}
$$

we obtain C_{0}, and for

$$
f(x)=(1+x)^{2} P_{n-k-2}^{\left(k+\frac{3}{2}, k+\frac{3}{2}\right)}(x)
$$

we find B_{0}.
If in formula (3.5) we replace $f(x)$ with $r(x) f(x)$ we get 3.7) and if in formula 3.6 we replace $f(x)$ with $r(x) f(x)$ we get 3.8).

4. Proof of the Theorems

Proof of Theorem 2.1. Setting $k=0$ in (3.5) we find the formula

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x=\frac{\pi}{2 n}[f(-1)+f(1)]+\frac{\pi}{n} \sum_{i=1}^{n-1} f\left(y_{i}\right)
$$

According to this quadrature formula and using (3.1) and (3.2) we have

$$
\begin{aligned}
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x & =\frac{\pi}{2 n}\left(p_{n-1}^{\prime}(-1)\right)^{2}+\frac{\pi}{2 n}\left(p_{n-1}^{\prime}(1)\right)^{2}+\frac{\pi}{n} \sum_{i=1}^{n-1}\left(p_{n-1}^{\prime}\left(y_{i}\right)\right)^{2} \\
& \leq \frac{\pi}{2 n}\left(G_{n-1}^{\prime}(-1)\right)^{2}+\frac{\pi}{2 n}\left(G_{n-1}^{\prime}(1)\right)^{2}+\frac{\pi}{n} \sum_{i=1}^{n-1}\left(G_{n-1}^{\prime}\left(y_{i}\right)\right)^{2} \\
& =\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}}\left[G_{n-1}^{\prime}(x)\right]^{2} d x .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \int_{-1}^{1} \frac{\left[G_{n-1}^{\prime}(x)\right]^{2}}{\sqrt{1-x^{2}}} d x=\beta^{2} \int_{-1}^{1} \frac{\left[U_{n-1}^{\prime}(x)\right]^{2}}{\sqrt{1-x^{2}}} d x \\
&-2 \alpha \beta \int_{-1}^{1} \frac{U_{n-1}^{\prime}(x) U_{n-3}^{\prime}(x)}{\sqrt{1-x^{2}}} d x+\alpha^{2} \int_{-1}^{1} \frac{\left[U_{n-3}^{\prime}(x)\right]^{2}}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

Using the following formula ($k=0$ in (3.6)

$$
\begin{aligned}
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x=\frac{3 \pi\left(3 n^{2}-2\right)}{10 n\left(n^{2}-1\right)}[f(-1) & +f(1)] \\
& +\frac{3 \pi}{4 n\left(n^{2}-1\right)}\left[f^{\prime}(-1)-f^{\prime}(1)\right]+\sum_{i=1}^{n-2} c_{i} f\left(y_{i}^{\prime}\right)
\end{aligned}
$$

we find

$$
\begin{gathered}
\int_{-1}^{1} \frac{\left[U_{n-1}^{\prime}(x)\right]^{2}}{\sqrt{1-x^{2}}}=\frac{2 \pi n\left(n^{4}-1\right)}{15} \\
\int_{-1}^{1} \frac{U_{n-1}^{\prime}(x) U_{n-3}^{\prime}(x)}{\sqrt{1-x^{2}}}=\frac{2 \pi n\left(n^{2}-1\right)(n-2)(n-3)}{15}, \\
\int_{-1}^{1} \frac{\left[U_{n-3}^{\prime}(x)\right]^{2}}{\sqrt{1-x^{2}}}=\frac{2 \pi(n-1)\left(n^{2}-4 n+5\right)(n-2)(n-3)}{15}
\end{gathered}
$$

and

$$
\begin{aligned}
& \int_{-1}^{1} \frac{\left[G_{n-1}^{\prime}(x)\right]^{2}}{\sqrt{1-x^{2}}} d x=\frac{2 \pi(n-1)}{15}\left[(\alpha-\beta)^{2} n(n+1)(n-2)(n-3)\right. \\
&\left.+5(n-1)\left(\beta^{2} n(n+1)-\alpha^{2}(n-2)(n-3)\right)\right]
\end{aligned}
$$

Proof of Theorem 2.4. According to the quadrature formula 3.7), positivity of s_{i} 's, and using (3.3) and (3.4) we have

$$
\begin{aligned}
\int_{-1}^{1} r(x) & \left(1-x^{2}\right)^{k-1 / 2}\left[p_{n-1}^{(k+1)}(x)\right]^{2} d x \\
& =A_{1}\left[p_{n-1}^{(k+1)}(-1)\right]^{2}+B_{1}\left[p_{n-1}^{(k+1)}(1)\right]^{2}+\sum_{i=1}^{n-k-1} s_{i} r\left(y_{i}^{(k)}\right)\left[p_{n-1}^{(k+1)}\left(y_{i}^{(k)}\right)\right]^{2} \\
& \leq A_{1}\left[U_{n-1}^{(k+1)}(-1)\right]^{2}+B_{1}\left[U_{n-1}^{(k+1)}(1)\right]^{2}+\sum_{i=1}^{n-k-1} s_{i} r\left(y_{i}^{(k)}\right)\left[U_{n-1}^{(k+1)}\left(y_{i}^{(k)}\right)\right]^{2} \\
& =\int_{-1}^{1} r(x)\left(1-x^{2}\right)^{k-1 / 2}\left[U_{n-1}^{(k+1)}(x)\right]^{2} d x
\end{aligned}
$$

In order to complete the proof we apply formula 3.8 to $f=\left[U_{n-1}^{(k+1)}(x)\right]^{2}$.
Having in mind $U_{n-1}^{(k+1)}\left(y_{i}^{(k+1)}\right)=0$ and the following relations deduced from [1]

$$
\begin{gathered}
U_{n-1}^{(k+1)}(1)=\frac{n\left(n^{2}-1^{2}\right) \cdots\left(n^{2}-(k+1)^{2}\right)}{1 \cdot 3 \cdots(2 k+3)}, \\
U_{n-1}^{(k+2)}(1)=\frac{n^{2}-(k+2)^{2}}{2 k+5} U_{n-1}^{(k+1)}(1), \\
U_{n-1}^{(k+1)}(-1) U_{n-1}^{(k+2)}(-1)=-U_{n-1}^{(k+1)}(1) U_{n-1}^{(k+2)}(1),
\end{gathered}
$$

we find

$$
\begin{aligned}
\int_{-1}^{1} r(x) & \left(1-x^{2}\right)^{k-1 / 2}\left[p_{n-1}^{(k+1)}(x)\right]^{2} d x \\
= & C_{1}\left[U_{n-1}^{(k+1)}(-1)\right]^{2}+D_{1}\left[U_{n-1}^{(k+1)}(1)\right]^{2} \\
& \quad+2 C_{2} U_{n-1}^{(k+1)}(-1) U_{n-1}^{(k+2)}(-1)-2 D_{2} U_{n-1}^{(k+1)}(1) U_{n-1}^{(k+2)}(1) \\
& =\frac{\pi(n+k+1)!}{(n-k-2)!}\left[\frac{\left[2\left(n^{2}-k^{2}\right)-3(2 k+1)\right]\left[(a-b)^{2}+c^{2}\right]}{(2 k+1)(2 k+3)(2 k+5)}+\frac{a^{2}+c^{2}}{2 k+3}\right]
\end{aligned}
$$

References

[1] D.K. DIMITROV, Markov inequalities for weight functions of Chebyshev type, J. Approx. Theory, 83 (1995), 175-181.
[2] R.J. DUFFIN AND A.C. SCHAEFFER, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc., 50 (1941), 517-528.
[3] W. GAUTSCHI AND S.E. NOTARIS, Gauss-Kronrod quadrature formulae for weight function of Bernstein-Szegö type, J. Comput. Appl. Math., 25(2) (1989), 199-224.
[4] A. GHIZZETTI AND A. OSSICINI, Quadrature formulae, Akademie-Verlag, Berlin, 1970.
[5] A. LUPAŞ, Numerical Methods, Constant Verlag, Sibiu, 2001.
[6] R. PIERRE AND Q.I. RAHMAN, On polynomials with curved majorants, in Studies in Pure Mathematics, Budapest, (1983), 543-549.

[^0]: ISSN (electronic): 1443-5756
 (C) 2004 Victoria University. All rights reserved.

 The author would like to thank Professor A.Lupaş for his valuable hints.
 175-04

