## ON CHAOTIC ORDER OF INDEFINITE TYPE

## TAKASHI SANO

Department of Mathematical Sciences Faculty of Science, Yamagata University

Yamagata 990-8560, Japan

EMail: sano@sci.kj.yamagata-u.ac.jp

Received: 02 June, 2006

Accepted: 27 April, 2007

Communicated by: F. Hansen

2000 AMS Sub. Class.: 47B50, 47A63.

Key words: Inner product space; Furuta inequality of indefinite type.

Abstract: Let A, B be J-selfadjoint matrices with positive eigenvalues and  $I \ge J$  A,  $I \ge J$ 

B. Then it is proved as an application of Furuta inequality of indefinite type that

 $\log A \ge^J \log B$ 

if and only if

 $A^r \geqq^J (A^{\frac{r}{2}}B^p A^{\frac{r}{2}})^{\frac{r}{p+r}}$ 

for all p > 0 and r > 0.



Chaotic Order of Indefinite Type

Takashi Sano

vol. 8, iss. 3, art. 62, 2007

Title Page

Contents







Page 1 of 7

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

In [2], T. Ando gave inequalities for matrices on an (indefinite) inner product space; for instance,

**Proposition 1 ([2, Theorem 4]).** Let A, B be J-selfadjoint matrices with  $\sigma(A), \sigma(B) \subseteq (\alpha, \beta)$ . Then

$$A \geqq^J B \Rightarrow f(A) \geqq^J f(B)$$

for any operator monotone function f(t) on  $(\alpha, \beta)$ .

Since the principal branch Log x of the logarithm is operator monotone, as a corollary, we have

**Corollary 2.** For J-selfadjoint matrices A, B with positive eigenvalues and  $A \ge^J B$ , we have

$$\text{Log } A \geqq^J \text{Log } B.$$

In this note, we give a characterization of this inequality relation, called a chaotic order, for J-selfadjoint matrices A, B with positive eigenvalues and  $I \ge^J A, I \ge^J B$ .

Before giving our theorem, we recall basic facts about matrices on an (indefinite) inner product space. We refer the reader to [3].

Let  $M_n(\mathbb{C})$  be the set of all complex n-square matrices acting on  $\mathbb{C}^n$  and let  $\langle \cdot, \cdot \rangle$  be the standard inner product on  $\mathbb{C}^n$ ;  $\langle x, y \rangle := \sum_{i=1}^n x_i \overline{y_i}$  for  $x = (x_i), y = (y_i) \in \mathbb{C}^n$ . For a selfadjoint involution  $J \in M_n(\mathbb{C})$ ;  $J = J^*$  and  $J^2 = I$ , we consider the (indefinite) inner product  $[\cdot, \cdot]$  on  $\mathbb{C}^n$  given by

$$[x,y] := \langle Jx,y \rangle \quad (x,y \in \mathbb{C}^n).$$



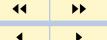
Chaotic Order of Indefinite Type

Takashi Sano

vol. 8, iss. 3, art. 62, 2007

Title Page

Contents



Page 2 of 7

Go Back

Full Screen

Close

## journal of inequalities in pure and applied mathematics

issn: 1443-5756

The *J*-adjoint matrix  $A^{\sharp}$  of  $A \in M_n(\mathbb{C})$  is defined as

$$[Ax, y] = [x, A^{\sharp}y] \quad (x, y \in \mathbb{C}^n).$$

In other words,  $A^{\sharp} = JA^*J$ . A matrix  $A \in M_n(\mathbb{C})$  is said to be J-selfadjoint if  $A^{\sharp} = A$  or  $JA^*J = A$ . And for J-selfadjoint matrices A and B, the J-order, denoted as  $A \geq^J B$ , is defined by

$$[Ax, x] \ge [Bx, x] \quad (x \in \mathbb{C}^n).$$

A matrix  $A \in M_n(\mathbb{C})$  is called *J*-positive if  $A \geq^J O$ , or

$$[Ax, x] \geqq 0 \quad (x \in \mathbb{C}^n).$$

A matrix  $A \in M_n(\mathbb{C})$  is said to be a J-contraction if  $I \geq^J A^{\sharp}A$  or  $[x,x] \geq [Ax,Ax]$   $(x \in \mathbb{C}^n)$ . We remark that  $I \geq^J A$  implies that all eigenvalues of A are real. Hence, for a J-contraction A all eigenvalues of  $A^{\sharp}A$  are real. In fact, by a result of Potapov-Ginzburg (see [3, Chapter 2, Section 4]), all eigenvalues of  $A^{\sharp}A$  are non-negative.

We also recall facts in [6]:

**Proposition 3 ([6, Theorem 2.6]).** Let A, B be J-selfadjoint matrices with nonnegative eigenvalues and  $0 < \alpha < 1$ . If

$$I \ge^J A \ge^J B$$
,

then J-selfadjoint powers  $A^{\alpha}$ ,  $B^{\alpha}$  are well defined and

$$I \geqq^J A^{\alpha} \geqq^J B^{\alpha}.$$

**Proposition 4 ([6, Lemma 3.1]).** Let A, B be J-selfadjoint matrices with nonnegative eigenvalues and  $I \ge^J A$ ,  $I \ge^J B$ . Then the eigenvalues of ABA are non-negative and

$$I \geqq^J A^{\lambda}$$

for all  $\lambda > 0$ .



Chaotic Order of Indefinite Type

Takashi Sano

vol. 8, iss. 3, art. 62, 2007

Title Page

Contents



Page 3 of 7

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

We also have a generalization; Furuta inequality of indefinite type:

**Proposition 5 ([6, Theorem 3.4]).** Let A, B be J-selfadjoint matrices with nonnegative eigenvalues and  $I \ge^J A \ge^J B$ . For each  $r \ge 0$ ,

$$(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}})^{\frac{1}{q}} \ge^{J} (A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}}$$

holds for all  $p \ge 0, q \ge 1$  with  $(1+r)q \ge p+r$ .

Remark 1. Let  $0 < \alpha < 1$ . For J-selfadjoint matrices A, B with positive eigenvalues and  $A \ge^J B$ , we have

$$A^{\alpha} \geqq^{J} B^{\alpha},$$

by applying Proposition 1 to the operator monotone function  $x^{\alpha}$  whose principal branch is considered. Hence,

$$\frac{A^{\alpha}-I}{\alpha} \geq^{J} \frac{B^{\alpha}-I}{\alpha}$$
.

We remark that  $A^{\alpha}$  is given by the Dunford integral and that

$$\frac{A^{\alpha} - I}{\alpha} = \frac{1}{2\pi i} \int_{C} \frac{\zeta^{\alpha} - 1}{\alpha} (\zeta I - A)^{-1} d\zeta,$$

where C is a closed rectifiable contour in the domain of  $\zeta^{\alpha}$  with positive direction surrounding all eigenvalues of A in its interior. Since

$$\frac{\zeta^{\alpha} - 1}{\alpha} \to Log \ \zeta \quad (\alpha \to 0)$$

uniformly for  $\zeta$ , we also have Corollary 2.

Our theorem is as follows:



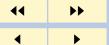
Chaotic Order of Indefinite Type

Takashi Sano

vol. 8, iss. 3, art. 62, 2007

Title Page

Contents



Page 4 of 7

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

**Theorem 6.** Let A, B be J-selfadjoint matrices with positive eigenvalues and  $I \ge^J A$ ,  $I \ge^J B$ . Then the following statements are equivalent:

(i) Log 
$$A \ge^J \text{Log } B$$
.

(ii) 
$$A^r \ge^J (A^{\frac{r}{2}} B^p A^{\frac{r}{2}})^{\frac{r}{p+r}}$$
 for all  $p > 0$  and  $r > 0$ .

Here, principal branches of the functions are considered.

This theorem, as well as the corresponding result on a Hilbert space ([1, 4, 5, 7]), can be obtained and the similar approach in [7] also works. But careful arguments are necessary, and this is the reason for the present note.

*Proof.* (ii)  $\Longrightarrow$  (i): Assume that

$$A^r \geqq^J \left( A^{\frac{r}{2}} B^p A^{\frac{r}{2}} \right)^{\frac{r}{p+r}}$$

for all p > 0 and r > 0. Then by Corollary 2, we have

$$r(p+r)\operatorname{Log} A \geqq^{J} r\operatorname{Log} \left(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}}\right).$$

Dividing this inequality by r > 0 and taking p, r as  $p = 1, r \rightarrow 0$ , we have (i).

 $(i) \Longrightarrow (ii)$ : Since

$$I \geqq^J A, B,$$

by assumption, it follows from Corollary 2 that

$$O = \operatorname{Log} I \geqq^{J} \operatorname{Log} A, \operatorname{Log} B.$$

Hence, for  $n \in \mathbb{N}$ 

$$I \ge^J I + \frac{1}{n} \log A =: A_1, \quad I + \frac{1}{n} \log B =: B_1.$$



Chaotic Order of Indefinite Type

Takashi Sano

vol. 8, iss. 3, art. 62, 2007

Title Page

Contents





Page 5 of 7

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

For a sufficiently large n, all eigenvalues of  $A_1$ ,  $B_1$  are positive. Applying Proposition 5 to  $A_1$ ,  $B_1$  and np, nr,  $\frac{nr+np}{nr}$  (resp.) as p, r, q(resp.), we get

(#) 
$$A_1^{nr} \ge J \left( A_1^{\frac{nr}{2}} B_1^{np} A_1^{\frac{nr}{2}} \right)^{\frac{nr}{np+nr}}$$

for all p > 0, q > 0. Recall that

$$\lim_{n \to \infty} \left( I + \frac{A}{n} \right)^n = e^A$$

for any matrix A and that  $e^{\text{Log }X} = X$  for any matrix X with all eigenvalues positive. Therefore, taking n as  $n \to \infty$  in the inequality ( $\sharp$ ), we obtain the conclusion.  $\square$ 



Chaotic Order of Indefinite Type

Takashi Sano

vol. 8, iss. 3, art. 62, 2007

Title Page

Contents

Page 6 of 7

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

## References

- [1] T. ANDO, On some operator inequalities, *Math. Ann.*, **279** (1987), 157–159.
- [2] T. ANDO, Löwner inequality of indefinite type, *Linear Algebra Appl.*, **385** (2004), 73–80.
- [3] T. Ya. AZIZOV AND I.S. IOKHVIDOV, *Linear Operators in Spaces with an Indefinite Metric*, Nauka, Moscow, 1986, English translation: Wiley, New York, 1989.
- [4] M. FUJII, T. FURUTA AND E. KAMEI, Furuta's inequality and its application to Ando's theorem, *Linear Algebra Appl.*, **179** (1993), 161–169.
- [5] T. FURUTA, Applications of order preserving operator inequalities, *Op. Theory Adv. Appl.*, **59** (1992), 180-190.
- [6] T. SANO, Furuta inequality of indefinite type, *Math. Inequal. Appl.*, **10** (2007), 381–387.
- [7] M. UCHIYAMA, Some exponential operator inequalities, *Math. Inequal. Appl.*, **2** (1999), 469–471.



Chaotic Order of Indefinite Type

Takashi Sano

vol. 8, iss. 3, art. 62, 2007

journal of inequalities in pure and applied mathematics

Full Screen

Close

issn: 1443-5756