ON CHAOTIC ORDER OF INDEFINITE TYPE

TAKASHI SANO
Department of Mathematical Sciences
Faculty of Science, Yamagata University
Yamagata 990-8560, Japan
sano@sci.kj.yamagata-u.ac.jp

Received 02 June, 2006; accepted 27 April, 2007
Communicated by F. Hansen

Abstract

Let A, B be J-selfadjoint matrices with positive eigenvalues and $I \geqq^{J} A, I \not \geqq^{J} B$. Then it is proved as an application of Furuta inequality of indefinite type that

$$
\log A \geqq \geqq^{J} \log B
$$

if and only if

$$
A^{r} \geqq \geqq^{J}\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{r}{p+r}}
$$

for all $p>0$ and $r>0$.

Key words and phrases: Chaotic order; (Indefinite) Inner product space; Furuta inequality of indefinite type.
2000 Mathematics Subject Classification 47B50, 47A63.

In [2], T. Ando gave inequalities for matrices on an (indefinite) inner product space; for instance,

Proposition 1 ([2, Theorem 4]). Let A, B be J-selfadjoint matrices with $\sigma(A), \sigma(B) \subseteq(\alpha, \beta)$. Then

$$
A \geqq \geqq^{J} B \Rightarrow f(A) \geqq^{J} f(B)
$$

for any operator monotone function $f(t)$ on (α, β).
Since the principal branch Log x of the logarithm is operator monotone, as a corollary, we have

Corollary 2. For J-selfadjoint matrices A, B with positive eigenvalues and $A \geqq^{J} B$, we have

$$
\log A \geqq \geqq^{J} \log B
$$

In this note, we give a characterization of this inequality relation, called a chaotic order, for J-selfadjoint matrices A, B with positive eigenvalues and $I \geqq^{J} A, I \geqq^{J} B$.

Before giving our theorem, we recall basic facts about matrices on an (indefinite) inner product space. We refer the reader to [3].

Let $M_{n}(\mathbb{C})$ be the set of all complex n-square matrices acting on \mathbb{C}^{n} and let $\langle\cdot, \cdot\rangle$ be the standard inner product on $\mathbb{C}^{n} ;\langle x, y\rangle:=\sum_{i=1}^{n} x_{i} \overline{y_{i}}$ for $x=\left(x_{i}\right), y=\left(y_{i}\right) \in \mathbb{C}^{n}$. For a selfadjoint involution $J \in M_{n}(\mathbb{C}) ; J=J^{*}$ and $J^{2}=I$, we consider the (indefinite) inner product $[\cdot, \cdot]$ on \mathbb{C}^{n} given by

$$
[x, y]:=\langle J x, y\rangle \quad\left(x, y \in \mathbb{C}^{n}\right)
$$

The J-adjoint matrix A^{\sharp} of $A \in M_{n}(\mathbb{C})$ is defined as

$$
[A x, y]=\left[x, A^{\sharp} y\right] \quad\left(x, y \in \mathbb{C}^{n}\right)
$$

In other words, $A^{\sharp}=J A^{*} J$. A matrix $A \in M_{n}(\mathbb{C})$ is said to be J-selfadjoint if $A^{\sharp}=A$ or $J A^{*} J=A$. And for J-selfadjoint matrices A and B, the J-order, denoted as $A \geqq \geqq^{J} B$, is defined by

$$
[A x, x] \geqq[B x, x] \quad\left(x \in \mathbb{C}^{n}\right)
$$

A matrix $A \in M_{n}(\mathbb{C})$ is called J-positive if $A \geqq \geqq^{J} O$, or

$$
[A x, x] \geqq 0 \quad\left(x \in \mathbb{C}^{n}\right)
$$

A matrix $A \in M_{n}(\mathbb{C})$ is said to be a J-contraction if $I \geqq \geqq^{J} A^{\sharp} A$ or $[x, x] \geqq[A x, A x]\left(x \in \mathbb{C}^{n}\right)$. We remark that $I \geqq{ }^{J} A$ implies that all eigenvalues of A are real. Hence, for a J-contraction A all eigenvalues of $A^{\sharp} A$ are real. In fact, by a result of Potapov-Ginzburg (see [3, Chapter 2, Section 4]), all eigenvalues of $A^{\sharp} A$ are non-negative.

We also recall facts in [6]:
Proposition 3 ([6, Theorem 2.6]). Let A, B be J-selfadjoint matrices with non-negative eigenvalues and $0<\alpha<1$. If

$$
I \geqq^{J} A \geqq \geqq^{J} B
$$

then J-selfadjoint powers A^{α}, B^{α} are well defined and

$$
I \geqq \geqq^{J} A^{\alpha} \geqq^{J} B^{\alpha} .
$$

Proposition 4 ([6, Lemma 3.1]). Let A, B be J-selfadjoint matrices with non-negative eigenvalues and $I \geqq^{J} A, I \geqq^{J} B$. Then the eigenvalues of $A B A$ are non-negative and

$$
I \geqq \geqq^{J} A^{\lambda}
$$

for all $\lambda>0$.
We also have a generalization; Furuta inequality of indefinite type:
Proposition 5 ([6, Theorem 3.4]). Let A, B be J-selfadjoint matrices with non-negative eigenvalues and $I \geqq^{J} A \geqq^{J} B$. For each $r \geqq 0$,

$$
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geqq^{J}\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

holds for all $p \geqq 0, q \geqq 1$ with $(1+r) q \geqq p+r$.
Remark 6. Let $0<\alpha<1$. For J-selfadjoint matrices A, B with positive eigenvalues and $A \geqq \geqq^{J} B$, we have

$$
A^{\alpha} \geqq^{J} B^{\alpha}
$$

by applying Proposition 1 to the operator monotone function x^{α} whose principal branch is considered. Hence,

$$
\frac{A^{\alpha}-I}{\alpha} \geqq \geqq^{J} \frac{B^{\alpha}-I}{\alpha}
$$

We remark that A^{α} is given by the Dunford integral and that

$$
\frac{A^{\alpha}-I}{\alpha}=\frac{1}{2 \pi i} \int_{C} \frac{\zeta^{\alpha}-1}{\alpha}(\zeta I-A)^{-1} d \zeta
$$

where C is a closed rectifiable contour in the domain of ζ^{α} with positive direction surrounding all eigenvalues of A in its interior. Since

$$
\frac{\zeta^{\alpha}-1}{\alpha} \rightarrow \log \zeta \quad(\alpha \rightarrow 0)
$$

uniformly for ζ, we also have Corollary 2 .
Our theorem is as follows:
Theorem 7. Let A, B be J-selfadjoint matrices with positive eigenvalues and $I \geqq^{J} A, I \geqq^{J} B$. Then the following statements are equivalent:
(i) $\log A \geqq^{J} \log B$.
(ii) $A^{r} \geqq \geqq^{J}\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{r}{p+r}}$ for all $p>0$ and $r>0$.

Here, principal branches of the functions are considered.
This theorem, as well as the corresponding result on a Hilbert space ([1, 4, 5, 7]), can be obtained and the similar approach in [7] also works. But careful arguments are necessary, and this is the reason for the present note.

Proof. (ii) \Longrightarrow (i): Assume that

$$
A^{r} \geqq{ }^{J}\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{r}{p+r}}
$$

for all $p>0$ and $r>0$. Then by Corollary 2, we have

$$
r(p+r) \log A \geqq \geqq^{J} r \log \left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right) .
$$

Dividing this inequality by $r>0$ and taking p, r as $p=1, r \rightarrow 0$, we have (i).
(i) \Longrightarrow (ii): Since

$$
I \geqq \geqq^{J} A, B,
$$

by assumption, it follows from Corollary 2 that

$$
O=\log I \geqq \geqq^{J} \log A, \log B
$$

Hence, for $n \in \mathbb{N}$

$$
I \geqq \geqq^{J} I+\frac{1}{n} \log A=: A_{1}, \quad I+\frac{1}{n} \log B=: B_{1} .
$$

For a sufficiently large n, all eigenvalues of A_{1}, B_{1} are positive. Applying Proposition 5 to A_{1}, B_{1} and $n p, n r, \frac{n r+n p}{n r}$ (resp.) as $p, r, q($ resp.), we get

$$
A_{1}^{n r} \geqq \geqq^{J}\left(A_{1}^{\frac{n r}{2}} B_{1}^{n p} A_{1}^{\frac{n r}{2}}\right)^{\frac{n r}{n_{p}+n r}}
$$

for all $p>0, q>0$. Recall that

$$
\lim _{n \rightarrow \infty}\left(I+\frac{A}{n}\right)^{n}=e^{A}
$$

for any matrix A and that $e^{\log X}=X$ for any matrix X with all eigenvalues positive. Therefore, taking n as $n \rightarrow \infty$ in the inequality $(\mathbb{\#})$, we obtain the conclusion.

References

[1] T. ANDO, On some operator inequalities, Math. Ann., 279 (1987), 157-159.
[2] T. ANDO, Löwner inequality of indefinite type, Linear Algebra Appl., 385 (2004), 73-80.
[3] T. Ya. AZIZOV And I.S. IOKHVIDOV, Linear Operators in Spaces with an Indefinite Metric, Nauka, Moscow, 1986, English translation: Wiley, New York, 1989.
[4] M. FUJII, T. FURUTA And E. KAMEI, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl., 179 (1993), 161-169.
[5] T. FURUTA, Applications of order preserving operator inequalities, Op. Theory Adv. Appl., 59 (1992), 180-190.
[6] T. SANO, Furuta inequality of indefinite type, Math. Inequal. Appl., 10 (2007), 381-387.
[7] M. UCHIYAMA, Some exponential operator inequalities, Math. Inequal. Appl., 2 (1999), 469-471.

