Journal of Inequalities in Pure and Applied Mathematics

ANOTHER REFINEMENT OF BERNSTEIN'S INEQUALITY

CLÉMENT FRAPPIER

Département de Mathématiques et de Génie Industriel École Polytechnique de Montréal
volume 6, issue 4, article 109, 2005.

Received 31 May, 2005;
accepted 18 August, 2005.
C.P. 6079, succ. Centre-ville

Montréal (Québec) H3C 3A7
Canada
EMail: clement.frappier@polymtl.ca

Communicated by: N.K. Govil

Abstract
Contents
Gome Page
Go Back
Close

Abstract

Given a polynomial $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$, we denote by $\|\|$ the maximum norm on the unit circle $\{z:|z|=1\}$. We obtain a characterization of the best possible constant $x_{n} \geq \frac{1}{2}$ such that the inequality $\left\|z p^{\prime}(z)-x a_{n} z^{n}\right\| \leq(n-x)\|p\|$ holds for $0 \leq x \leq x_{n}$.

2000 Mathematics Subject Classification: 26D05, 26D10, 33A10,
Key words: Bernstein's inequality, Unit circle, Convolution method.
The author was supported by the Natural Sciences and Engineering Research Council of Canada Grant OGP0009331. A part of the calculations presented in the proof of Theorem 1.1 was done by Dr. M. A. Qazi while he was a doctoral student of the author.

Contents

1 Introduction and Statements of the Results 3
2 Proofs of the Theorems 6
3 Concluding Remarks and Open Problems 17
References

1. Introduction and Statements of the Results

We denote by \mathcal{P}_{n} the class of all polynomials with complex coefficients, of degree $\leq n$:

$$
\begin{equation*}
p(z)=\sum_{j=0}^{n} a_{j} z^{j} \tag{1.1}
\end{equation*}
$$

Let $\|p\|:=\max _{|z|=1}|p(z)|$. The classical inequality
where

$$
\left\|p^{\prime}\right\| \leq n\|p\|
$$

is known as Bernstein's inequality. A great number of refinements and generalizations of (1.2) have been obtained. See [4, Part III] for an extensive study of that subject. An example of refinement is [2, p. 84]

$$
\left\|z p^{\prime}(z)-\frac{1}{2} a_{n} z^{n}+\frac{1}{4} a_{0}\right\|+\gamma_{n}\left|a_{0}\right| \leq\left(n-\frac{1}{2}\right)\|p\|,
$$

$$
\gamma_{n}= \begin{cases}\frac{1}{4}, & n \equiv 1(\bmod 2), n \geq 1 \\ \frac{5}{12}, & n=2 \\ \frac{11}{20}, & n=4 \\ \frac{(n+3)}{4(n-1)}, & n \equiv 0(\bmod 2), n \geq 6\end{cases}
$$

For each n, the constant γ_{n} is best possible in the following sense: given $\varepsilon>0$, there exists a polynomial $p_{\varepsilon} \in \mathcal{P}_{n}, p_{\varepsilon}(z)=\sum_{j=0}^{n} a_{j}(\varepsilon) z^{j}$, such that

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents

Go Back
Close
Quit
Page 3 of 19

$$
\left\|z p_{\varepsilon}^{\prime}(z)-\frac{1}{2} a_{n}(\varepsilon) z^{n}+\frac{1}{4} a_{0}(\varepsilon)\right\|+\left(\gamma_{n}+\varepsilon\right)\left|a_{0}(\varepsilon)\right|>\left(n-\frac{1}{2}\right)\left\|p_{\varepsilon}\right\| .
$$

J. Ineq. Pure and Appl. Math. 6(4) Art. 109, 2005 http://jipam.vu.edu.au

The inequality (1.3) implies that

$$
\begin{equation*}
\left\|z p^{\prime}(z)-\frac{1}{2} a_{n} z^{n}\right\| \leq\left(n-\frac{1}{2}\right)\|p\| . \tag{1.4}
\end{equation*}
$$

In view of the inequality [4, p. 637] $\left|a_{k}\right| \leq\|p\|, 0 \leq k \leq n$, and the triangle inequality, it follows from (1.4) that

$$
\begin{equation*}
\left\|z p^{\prime}(z)-x a_{n} z^{n}\right\| \leq(n-x)\|p\| \tag{1.5}
\end{equation*}
$$

for $0 \leq x \leq \frac{1}{2}$ (here x is a parameter independent of $\operatorname{Re}(z)$). If $x>\frac{1}{2}$ then the same reasoning gives $(n+x-1)$ in the right-hand side of (1.5). But $(n+x-1)>$ $(n-x)$ for $x>\frac{1}{2}$, so that the following natural question arises: what is the greatest constant $x_{n} \geq \frac{1}{2}$ such that the inequality (1.5) holds for $0 \leq x \leq x_{n}$?

The Chebyshev polynomials of the first and second kind are respectively

$$
T_{n}(x)=\cos (n \theta)
$$

and

$$
U_{n}(x)=\frac{\sin ((n+1) \theta)}{\sin (\theta)}
$$

where $x=\cos (\theta)$. We prove the following result.
Theorem 1.1. Let x_{n} be the smallest root of the equation

$$
\begin{equation*}
\sqrt{1-\frac{1}{2 x}}=\frac{n}{2 x} U_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right)-T_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right) \tag{1.6}
\end{equation*}
$$

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents

Go Back
Close
Quit
Page 4 of 19
in the interval $\left(\frac{1}{2}, \infty\right)$. The inequality (1.5) then holds for $0 \leq x \leq x_{n}$. The constant x_{n} is best possible.

It will be clear that all the roots of the equation (1.6) are $>\frac{1}{2}$. Consider the polynomial, of degree $(n+1)$, defined by
(1.7) $D(n, x):=\frac{(-1)^{n+1}}{2} x^{n+1}$

$$
+\frac{(-1)^{n}}{2} x^{n}\left(\frac{\frac{n}{2} U_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right)-x T_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right)}{\sqrt{1-\frac{1}{2 x}}}\right)
$$

The solutions of the equation (1.6) are the roots of the polynomial $D(n, x)$. We also have the following asymptotic result.

Theorem 1.2. For any complex number c, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{2^{n+1}}{n^{2}} D\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right)=\frac{\sin (c)}{c} \tag{1.8}
\end{equation*}
$$

where $D(n, x)$ is defined by (1.7). In particular, if x_{n} is the constant of Theorem 1.1 then

$$
\begin{equation*}
x_{n} \sim \frac{1}{2}+\frac{\pi^{2}}{8 n^{2}}, \quad n \rightarrow \infty \tag{1.9}
\end{equation*}
$$

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents
Go Back
Close
Quit
Page 5 of 19

2. Proofs of the Theorems

Given two analytic functions

$$
f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}, \quad g(z)=\sum_{j=0}^{\infty} b_{j} z^{j} \quad(|z| \leq K)
$$

the function

$$
(f \star g)(z):=\sum_{j=0}^{\infty} a_{j} b_{j} z^{j} \quad(|z| \leq K)
$$

is said to be their Hadamard product.
Let \mathcal{B}_{n} be the class of polynomials Q in \mathcal{P}_{n} such that

$$
\|Q \star p\| \leq\|p\| \quad \text { for every } \quad p \in \mathcal{P}_{n}
$$

To $p \in \mathcal{P}_{n}$ we associate the polynomial $\tilde{p}(z):=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$. Observe that

$$
Q \in \mathcal{B}_{n} \Longleftrightarrow \tilde{Q} \in \mathcal{B}_{n}
$$

Let us denote by \mathcal{B}_{n}^{0} the subclass of \mathcal{B}_{n} consisting of polynomials R in \mathcal{B}_{n} for which $R(0)=1$.

Lemma 2.1. [4, p. 414] The polynomial $R(z)=\sum_{j=0}^{n} b_{j} z^{j}$, where $b_{0}=1$, belongs to \mathcal{B}_{n}^{0} if and only if the matrix

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents
Go Back
Close
Quit
Page 6 of 19

$$
M\left(b_{0}, b_{1}, \ldots, b_{n}\right):=\left(\begin{array}{ccccc}
b_{0} & b_{1} & \cdots & b_{n-1} & b_{n} \\
\bar{b}_{1} & b_{0} & \cdots & b_{n-2} & b_{n-1} \\
\vdots & \vdots & & \vdots & \vdots \\
\bar{b}_{n-1} & \bar{b}_{n-2} & \cdots & b_{0} & b_{1} \\
\bar{b}_{n} & \bar{b}_{n-1} & \cdots & \bar{b}_{1} & b_{0}
\end{array}\right)
$$

is positive semi-definite.
The following well-known result enables us to study the definiteness of the matrix $M\left(1, b_{1}, \ldots, b_{n}\right)$ associated with the polynomial

$$
R(z)=\tilde{Q}(z)=1+\sum_{j=1}^{n} b_{j} z^{j}
$$

Lemma 2.2. [3, p. 274] The hermitian matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right), \quad a_{i j}=\bar{a}_{j i}
$$

is positive semi-definite if and only if all its eigenvalues are non-negative.
Proof of Theorem 1.1. The preceding lemmas are applied to a polynomial of the form

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents
Go Back
Close
Quit
Page 7 of 19

We study the definiteness of the matrix $M(n-x, n-1, \ldots 2,1,0)$. Let

$$
F(n, x):=\left|\begin{array}{ccccccc}
n-x & n-1 & n-2 & \cdots & 2 & 1 & 0 \tag{2.2}\\
n-1 & n-x & n-1 & \cdots & 3 & 2 & 1 \\
n-2 & n-1 & n-x & \cdots & 4 & 3 & 2 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
1 & 2 & 3 & \cdots & n-1 & n-x & n-1 \\
0 & 1 & 2 & \cdots & n-2 & n-1 & n-x
\end{array}\right| .
$$

We will prove that $F(n, x) \equiv D(n, x)$, where $D(n, x)$ is defined by (1.7). Let x_{n} be the smallest positive root of the equation $F(n, x)=0$. The smallest eigenvalue λ of $M(n-x, n-1, \ldots, 2,1,0)$ is the one for which $\lambda+x=x_{n}$; we thus have $\lambda \geq 0$ whenever $0 \leq x \leq x_{n}$. For $n>1$, it will be clear that $F\left(n, x^{*}\right)<0$ for some $x^{*}>x_{n}$; the constant x_{n} is thus the greatest one for which an inequality of the form (1.5) holds.

In order to evaluate explicitly the determinant (2.2) we perform on it a sequence of operations. We denote by L_{i} the i-th row of the determinant in consideration. After each operation we continue to denote by L_{i} the new i-th row.

1. $L_{i}-L_{i+1}, 1 \leq i \leq n$, i.e., we subtract its $(i+1)$-st row from its i-th row for $i=1,2, \ldots, n$.
2. $L_{i+1}-L_{i}, 1 \leq i<n$, i.e., we subtract the new i-th row from its new $(i+1)$-st row for $i=1,2, \ldots,(n-1)$.

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents
Go Back
Close
Quit 8 of 19

After these two steps, we obtain
(2.3) $\quad F(n, x)$

$$
=\left|\begin{array}{ccccccccc}
1-x & x-1 & -1 & -1 & \cdots & -1 & -1 & -1 & -1 \\
x & 2-2 x & x & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & x & 2-2 x & x & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & x & 2-2 x & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & x & 2-2 x & x & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & x & 2-2 x & x \\
0 & 1 & 2 & 3 & \cdots & n-3 & n-2 & n-1 & n-x
\end{array}\right|
$$

Consider now the recurrence relations

$$
\begin{equation*}
y_{k}=z_{k-1}-\frac{(2-2 x)}{x} y_{k-1} \tag{2.4}
\end{equation*}
$$

for $1 \leq k<n$, and

$$
\begin{equation*}
z_{k}=(k+1)-y_{k-1} \tag{2.5}
\end{equation*}
$$

for $1 \leq k<n-1$, with the initial values $y_{0}=0, z_{0}=1$. On the determinant (2.3), we perform the operations
(3) $L_{n+1}-\frac{y_{i-2}}{x} L_{i}, i=3,4, \ldots, n$.
(4) $L_{1}+L_{2}$.
(5) $L_{2}-x L_{1}$.

We obtain
(2.6) $F(n, x)$

$$
=\left|\begin{array}{ccccccccc}
1 & 1-x & x-1 & -1 & \cdots & -1 & -1 & -1 & -1 \\
0 & \alpha_{1} & \beta_{1} & x & \cdots & x & x & x & x \\
0 & x & 2-2 x & x & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & x & 2-2 x & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & x & 2-2 x & x \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & y_{n-1} & z_{n-1}^{*}
\end{array}\right|
$$

where $\alpha_{1}=(x-1)(x-2), \beta_{1}=x(2-x)$ and

$$
\begin{equation*}
z_{n-1}^{*}=(n-x)-y_{n-2} \tag{2.7}
\end{equation*}
$$

for $n=2,3, \ldots$.
We continue with the following operations on the determinant (2.6).
(6) $L_{i+2}-\frac{x}{\alpha_{i}} L_{i+1}, i=1,2, \ldots,(n-2)$, and $L_{n+1}-\frac{y_{n-1}}{\alpha_{n-1}} L_{n}$, where

$$
\begin{equation*}
\alpha_{k}=(2-2 x)-x \frac{\beta_{k-1}}{\alpha_{k-1}} \tag{2.8}
\end{equation*}
$$

for $1<k<n$,

$$
\begin{equation*}
\beta_{k}=x+A_{k-1} \tag{2.9}
\end{equation*}
$$

for $1<k<n$, and
Page 10 of 19

$$
\begin{equation*}
A_{k}:=\frac{(-1)^{k} x^{k+1}}{\alpha_{1} \cdots \alpha_{k}} \tag{2.10}
\end{equation*}
$$

We obtain
(2.11)

$$
F(n, x)=\left|\begin{array}{cccccccccc}
1 & 1-x & x-1 & -1 & -1 & \cdots & -1 & -1 & -1 & -1 \\
0 & \alpha_{1} & \beta_{1} & x & x & \cdots & x & x & x & x \\
0 & 0 & \alpha_{2} & \beta_{2} & A_{1} & \cdots & A_{1} & A_{1} & A_{1} & A_{1} \\
0 & 0 & 0 & \alpha_{3} & \beta_{3} & \cdots & A_{2} & A_{2} & A_{2} & A_{2} \\
0 & 0 & 0 & 0 & \alpha_{4} & \cdots & A_{3} & A_{3} & A_{3} & A_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & \alpha_{n-3} & \beta_{n-3} & A_{n-4} & A_{n-4} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & \alpha_{n-2} & \beta_{n-2} & A_{n-3} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \alpha_{n-1} & \beta_{n-1} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & z_{n-1}^{* *}
\end{array}\right|
$$

where

$$
\begin{equation*}
z_{n-1}^{* *}=z_{n-1}^{*}-\frac{\beta_{n-1}}{\alpha_{n-1}} y_{n-1} \tag{2.12}
\end{equation*}
$$

It follows from (2.11) that

$$
\begin{equation*}
F(n, x)=\alpha_{1} \alpha_{2} \cdots \alpha_{n-1} z_{n-1}^{* *} \tag{2.13}
\end{equation*}
$$

for $n=2,3, \ldots$ Let

$$
\begin{equation*}
\gamma_{k}:=\alpha_{1} \alpha_{2} \cdots \alpha_{k} \tag{2.14}
\end{equation*}
$$

It is readily seen that
(2.15) $\quad F(n, x)=\left(n-x-y_{n-2}\right) \gamma_{n-1}-x y_{n-1} \gamma_{n-2}+(-1)^{n-1} x^{n-1} y_{n-1}$.

The sequences y_{k} and γ_{k} satisfy the recurrence relations

$$
\begin{equation*}
x y_{k}+(2-2 x) y_{k-1}+x y_{k-2}=k x \tag{2.16}
\end{equation*}
$$

for $k \geq 2$, with $y_{0}=0, y_{1}=1$, and

$$
\begin{equation*}
\gamma_{k}-(2-2 x) \gamma_{k-1}+x^{2} \gamma_{k-2}=(-1)^{k+1} x^{k} \tag{2.17}
\end{equation*}
$$

for $k \geq 2$, with $\gamma_{0}:=1-x, \gamma_{1}=(x-1)(x-2)$. These recurrence relations can be solved by elementary means (a mathematical software may help). We find that

$$
\begin{align*}
y_{k} & =y_{k}(x) \tag{2.18}\\
& =\frac{((x-1)-\sqrt{1-2 x})^{k+1}-((x-1)+\sqrt{1-2 x})^{k+1}}{4 x^{k-1} \sqrt{1-2 x}} \\
& \quad+\frac{(k+1) x}{2}
\end{align*}
$$

and

$$
\begin{align*}
\gamma_{k}= & \gamma_{k}(x) \tag{2.19}\\
= & \frac{(-x)^{k+1}}{2} \\
& +\frac{((2-3 x)+(2-x) \sqrt{1-2 x})((1-x)+\sqrt{1-2 x})^{k}}{4 \sqrt{1-2 x}} \\
& +\frac{((3 x-2)+(2-x) \sqrt{1-2 x})((1-x)-\sqrt{1-2 x})^{k}}{4 \sqrt{1-2 x}}
\end{align*}
$$

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents

Go Back
Close
Quit
Page 12 of 19

Substituting in the right-hand member of (2.15), we finally obtain an explicit representation for $F(n, x)$:

$$
\begin{aligned}
& \text { (2.20) } \begin{aligned}
& F(n, x) \\
=\frac{1}{4 \sqrt{1-2 x}} & \left(((1-x)-\sqrt{1-2 x})^{n}((n-x) \sqrt{1-2 x}+(n+1) x-n)\right. \\
+ & ((1-x)+\sqrt{1-2 x})^{n}((n-x) \sqrt{1-2 x}-(n+1) x+n) \\
& \left.+2(-1)^{n+1} x^{n+1} \sqrt{1-2 x}\right)
\end{aligned}
\end{aligned}
$$

It follows from (2.20) that
(2.21) $F(n, x)=\frac{(n-x)}{2} \sum_{j=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 j}(1-2 x)^{j}(1-x)^{n-2 j}$

$$
\begin{aligned}
&-\frac{1}{2}((n+1) x-n) \sum_{j=0}^{\left[\frac{n-1}{2}\right]}\binom{n}{2 j+1}(1-2 x)^{j}(1-x)^{n-2 j-1} \\
&+\frac{(-1)^{n+1}}{2} x^{n+1}
\end{aligned}
$$

The identity

$$
\begin{equation*}
F(n, x)=D(n, x) \tag{2.22}
\end{equation*}
$$

where $D(n, x)$ is defined by (1.7), also follows from (2.20). It is a direct verification noticing that the well-known representation

$$
T_{m}(x)=\frac{\left(x+\sqrt{x^{2}-1}\right)^{m}+\left(x-\sqrt{x^{2}-1}\right)^{m}}{2}
$$

Another Refinement of Bernstein's Inequality

Clément Frappier

and

$$
U_{m}(x)=\frac{\left(x+\sqrt{x^{2}-1}\right)^{m+1}-\left(x-\sqrt{x^{2}-1}\right)^{m+1}}{2 \sqrt{x^{2}-1}}
$$

readily give

$$
\begin{aligned}
& T_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right) \\
& =\frac{i(-1)^{n}}{2 \sqrt{2 x} x^{n}}\left(((1-x)+\sqrt{1-2 x})^{n}(1+\sqrt{1-2 x})\right. \\
& \left.\quad-((1-x)-\sqrt{1-2 x})^{n}(1-\sqrt{1-2 x})\right)
\end{aligned}
$$

and

$$
\begin{aligned}
U_{2 n+1} & \left(\sqrt{1-\frac{1}{2 x}}\right) \\
& =\frac{i(-1)^{n}}{\sqrt{2 x} x^{n}}\left(((1-x)+\sqrt{1-2 x})^{n+1}-((1-x)-\sqrt{1-2 x})^{n+1}\right)
\end{aligned}
$$

Since $M(n-x, n-1, \ldots, 2,1,0)$ is a symmetric matrix we know from the general theory that all its eigenvalues are real. It is evident from (2.21) that $F(n, x)>0$ for $x \leq 0$. The proof of Theorem 1.1 will be complete if we can show that $F(n, x) \neq 0$ for $0 \leq x \leq \frac{1}{2}$. In fact, the polynomials $F(n, x)$ are decreasing in $\left[0, \frac{1}{2}\right]$, with

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents

Go Back
Close
Quit
Page 14 of 19

$$
F(n, 0)=n 2^{n-1} \quad \text { and } \quad F\left(n, \frac{1}{2}\right)=\frac{1}{2^{n+1}}\left(n^{2}+\frac{\left((-1)^{n}+1\right)}{2}\right)
$$

If n is even then the foregoing affirmation is evident since all the fundamental terms are decreasing in (2.21). If n is odd then all the fundamental terms are decreasing except $(-1)^{n+1} x^{n+1}=x^{n+1}$. In that case we note that $(n-x)(1-$ $x)^{n}=(n-1)(1-x)^{n}+(1-x)^{n+1}$; it is then sufficient to observe that the function $(1-x)^{n+1}+x^{n+1}=: \varphi(x)$ is decreasing (we have $\varphi^{\prime}(x)=(n+$ 1) $\left(x^{n}-(1-x)^{n}\right) \leq 0$ for $\left.0 \leq x \leq \frac{1}{2}\right)$.

Proof of Theorem 1.2. The representation (2.21) gives

$$
\begin{aligned}
& \text { (2.23) } \frac{2^{n+1}}{n^{2}} F\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right) \\
& =\left(1-\frac{1}{2 n}+\frac{c^{2}}{8 n^{3}}\right) \sum_{j=0}^{\left[\frac{n}{2}\right]} \frac{n!}{n^{2 j+1}(n-2 j)!}\left(1-\frac{c^{2}}{4 n^{2}}\right)^{n-2 j} \frac{\left(-c^{2}\right)^{j}}{(2 j)!} \\
& +\left(\frac{(n-1)}{n}-\frac{(n+1) c^{2}}{4 n^{3}}\right) \sum_{j=0}^{\left[\frac{n-1}{2}\right]} \frac{n!}{n^{2 j+1}(n-2 j-1)!}\left(1-\frac{c^{2}}{4 n^{2}}\right)^{n-2 j-1} \frac{\left(-c^{2}\right)^{j}}{(2 j+1)!} \\
& +\frac{(-1)^{n+1}}{2 n^{2}}\left(1+\frac{c^{2}}{4 n^{2}}\right)^{n+1}
\end{aligned}
$$

For any fixed integer m we have $\frac{n!}{(n-m)!} \sim n^{m}$, as $n \rightarrow \infty$. It follows from (2.23) and the dominated convergence theorem that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{2^{n+1}}{n^{2}} F\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right)=\sum_{j=0}^{\infty} \frac{(-1)^{j} c^{2 j}}{(2 j+1)!}=\frac{\sin (c)}{c} \tag{2.24}
\end{equation*}
$$

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page

Contents

Go Back

Close
Quit
Page 15 of 19

For large n, we deduce from (2.24) that $F\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right)>0$ if $0<c<\pi$ and that $F\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right)<0$ if $\pi<c<2 \pi$. We obtain (1.9) by continuity.

Clément Frappier

Title Page
Contents
Go Back
Close
Quit 16 of 19

3. Concluding Remarks and Open Problems

There exists inequalities similar to (1.4) that cannot be proved with the method of convolution. An example is

$$
\begin{equation*}
\left\|z p^{\prime}(z)-2 a_{n} z^{n}\right\| \leq(n-1)\|p\| \tag{3.1}
\end{equation*}
$$

for $n>1$. The inequality (3.1) is a consequence of the particular case $\gamma=\pi$, $m=1$ of [1, Lemma 2]. If we wish to apply the method described at the beginning of Section 2 then the relevant polynomial should be $R(z)=\frac{(n-2)}{(n-1)}+$ $\sum_{j=1}^{n} \frac{(n-j)}{(n-1)} z^{j}$. But $R(0)=\frac{(n-2)}{(n-1)} \neq 1$, so that Lemma 2.1 is not applicable.

The constant x_{n} of Theorem 1.1 can be computed explicitly for some values of n. We have $x_{1}=1, x_{2}=2-\sqrt{2}, x_{3}=2-\sqrt{2}, x_{5}=2(2-\sqrt{3})$, $x_{7}=4+2 \sqrt{2}-\sqrt{2(10+7 \sqrt{2})}, x_{9}=6+2 \sqrt{5}-\sqrt{2(25+11 \sqrt{5})}$ and $x_{11}=$ $8-3 \sqrt{6}-\sqrt{2(49-20 \sqrt{6})}$. The values x_{4} and x_{6} are more complicated. For other values of n, it seems difficult to express the roots of $D(n, x)$ by means of radicals. It is numerically evident that $x_{n+1}<x_{n}$.

The substitution $\sqrt{1-\frac{1}{2 x}} \mapsto x$ permits us to write the equation (1.6) as

$$
\begin{equation*}
n\left(1-x^{2}\right) U_{2 n+1}(x)-T_{2 n+1}(x)=x \tag{3.2}
\end{equation*}
$$

We thus have

$$
\begin{equation*}
x_{n}=\frac{1}{2\left(1-y_{n}^{2}\right)}, \tag{3.3}
\end{equation*}
$$

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 17 of 19
where y_{n} is the smallest positive root of the equation (3.2). The identities (1$\left.x^{2}\right) U_{m}(x)=x T_{m+1}(x)-T_{m+2}(x)$ and $T_{\ell+m}(x)+T_{\ell-m}(x)=2 T_{\ell}(x) T_{m}(x)$ lead us to the factorization

$$
\begin{equation*}
n\left(1-x^{2}\right) U_{2 n+1}(x)-T_{2 n+1}(x)-x=T_{n+1}(x)\left((n-2) T_{n}(x)-n T_{n+2}(x)\right) \tag{3.4}
\end{equation*}
$$

It follows that the value y_{n} defined by (3.3) is the least positive root of the polynomial $T_{n+1}(x)$ or the least positive root of the equation $(n-2) T_{n}(x)=$ $n T_{n+2}(x)$.
Conjecture 3.1. If n is odd then $y_{n}=\sin \left(\frac{\pi}{2(n+1)}\right)$ (so that $\left.x_{n}=\frac{1}{2 \cos ^{2}\left(\frac{\pi}{2(n+1)}\right)}\right)$. If n is even then y_{n} is the smallest positive root of the equation $(n-2) T_{n}(x)=$ $n T_{n+2}(x)$.

We finally mention the following (not proved) representation of $D(n, x)$:

$$
\begin{align*}
& D(n, x)=\sum_{k=0}^{n}(-1)^{k} \frac{(2 n-k+1)!\left(n^{2}-(k-1) n+k\right)}{(2 n-2 k+2)!k!} 2^{n-k} x^{k} \tag{3.5}\\
&+(-1)^{n+1} x^{n+1}
\end{align*}
$$

Another Refinement of Bernstein's Inequality

Clément Frappier

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 18 of 19	

References

[1] C. FRAPPIER, Representation formulas for integrable and entire functions of exponential type II, Canad. J. Math., 43(1) (1991), 34-47.
[2] C. FRAPPIER, Q.I. RAHMAN AND St. RUSCHEWEYH, New inequalities for polynomials, Trans. Amer. Math. Soc., 288(1) (1985), 69-99.
[3] F.R. GANTMACHER, The Theory of Matrices, Volume 1, AMS Chelsea Publishing, New York 1959.
[4] Q.I. RAHMAN AND G. SCHMEISSER, Analytic Theory of Polynomials, Oxford Science Publications, Clarendon Press, Oxford 2002.

Another Refinement of Bernstein's Inequality

Clément Frappier
Title Page
J. Ineq. Pure and Appl. Math. 6(4) Art. 109, 2005

