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Abstract

Given a polynomial p(z) =
∑n

j=0 ajz
j , we denote by ‖ ‖ the maximum norm on

the unit circle {z : |z| = 1}. We obtain a characterization of the best possible
constant xn ≥ 1

2 such that the inequality ‖zp′(z) − xanzn‖ ≤ (n − x)‖p‖ holds
for 0 ≤ x ≤ xn.
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1. Introduction and Statements of the Results
We denote byPn the class of all polynomials with complex coefficients, of
degree≤ n:

(1.1) p(z) =
n∑

j=0

ajz
j.

Let ‖p‖ := max|z|=1 |p(z)|. The classical inequality

(1.2) ‖p′‖ ≤ n‖p‖
is known as Bernstein’s inequality. A great number of refinements and general-
izations of (1.2) have been obtained. See [4, Part III] for an extensive study of
that subject. An example of refinement is [2, p. 84]

(1.3)

∥∥∥∥zp′(z)− 1

2
anz

n +
1

4
a0

∥∥∥∥+ γn|a0| ≤
(

n− 1

2

)
‖p‖,

where

γn =



1
4
, n ≡ 1(mod 2), n ≥ 1,

5
12

, n = 2,

11
20

, n = 4,
(n+3)
4(n−1)

, n ≡ 0(mod 2), n ≥ 6.

For eachn, the constantγn is best possible in the following sense: givenε > 0,
there exists a polynomialpε ∈ Pn, pε(z) =

∑n
j=0 aj(ε)z

j, such that∥∥∥∥zp′ε(z)− 1

2
an(ε)zn +

1

4
a0(ε)

∥∥∥∥+ (γn + ε)|a0(ε)| >
(

n− 1

2

)
‖pε‖.
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The inequality (1.3) implies that

(1.4)

∥∥∥∥zp′(z)− 1

2
anz

n

∥∥∥∥ ≤ (n− 1

2

)
‖p‖.

In view of the inequality [4, p. 637]|ak| ≤ ‖p‖, 0 ≤ k ≤ n, and the triangle
inequality, it follows from (1.4) that

(1.5) ‖zp′(z)− xanz
n‖ ≤ (n− x)‖p‖

for 0 ≤ x ≤ 1
2

(herex is a parameter independent of Re(z)). If x > 1
2

then the
same reasoning gives(n+x−1) in the right-hand side of (1.5). But(n+x−1) >
(n − x) for x > 1

2
, so that the following natural question arises: what is the

greatest constantxn ≥ 1
2

such that the inequality (1.5) holds for0 ≤ x ≤ xn?
The Chebyshev polynomials of the first and second kind are respectively

Tn(x) = cos(nθ)

and

Un(x) =
sin((n + 1)θ)

sin(θ)
,

wherex = cos(θ). We prove the following result.

Theorem 1.1.Letxn be the smallest root of the equation

(1.6)

√
1− 1

2x
=

n

2x
U2n+1

(√
1− 1

2x

)
− T2n+1

(√
1− 1

2x

)
in the interval(1

2
,∞). The inequality(1.5) then holds for0 ≤ x ≤ xn. The

constantxn is best possible.
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It will be clear that all the roots of the equation (1.6) are> 1
2
. Consider the

polynomial, of degree(n + 1), defined by

(1.7) D(n, x) :=
(−1)n+1

2
xn+1

+
(−1)n

2
xn

 n
2
U2n+1

(√
1− 1

2x

)
− xT2n+1

(√
1− 1

2x

)
√

1− 1
2x

 .

The solutions of the equation (1.6) are the roots of the polynomialD(n, x). We
also have the following asymptotic result.

Theorem 1.2.For any complex numberc, we have

(1.8) lim
n→∞

2n+1

n2
D

(
n,

1

2
+

c2

8n2

)
=

sin(c)

c
,

whereD(n, x) is defined by(1.7). In particular, if xn is the constant of Theo-
rem1.1 then

(1.9) xn ∼
1

2
+

π2

8n2
, n →∞.
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2. Proofs of the Theorems
Given two analytic functions

f(z) =
∞∑

j=0

ajz
j, g(z) =

∞∑
j=0

bjz
j (|z| ≤ K),

the function

(f ? g)(z) :=
∞∑

j=0

ajbjz
j (|z| ≤ K)

is said to be their Hadamard product.
LetBn be the class of polynomialsQ in Pn such that

‖Q ? p‖ ≤ ‖p‖ for every p ∈ Pn.

To p ∈ Pn we associate the polynomialp̃(z) := znp
(

1
z̄

)
. Observe that

Q ∈ Bn ⇐⇒ Q̃ ∈ Bn.

Let us denote byB0
n the subclass ofBn consisting of polynomialsR in Bn for

whichR(0) = 1.

Lemma 2.1. [4, p. 414] The polynomialR(z) =
∑n

j=0 bjz
j, whereb0 = 1,

belongs toB0
n if and only if the matrix
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M(b0, b1, . . . , bn) :=


b0 b1 · · · bn−1 bn

b̄1 b0 · · · bn−2 bn−1
...

...
...

...
b̄n−1 b̄n−2 · · · b0 b1

b̄n b̄n−1 · · · b̄1 b0


is positive semi-definite.

The following well-known result enables us to study the definiteness of the
matrixM(1, b1, . . . , bn) associated with the polynomial

R(z) = Q̃(z) = 1 +
n∑

j=1

bjz
j.

Lemma 2.2. [3, p. 274] The hermitian matrix
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 , aij = āji,

is positive semi-definite if and only if all its eigenvalues are non-negative.

Proof of Theorem1.1. The preceding lemmas are applied to a polynomial of the
form

(2.1) R(z) = Q̃(z) = 1 +
n∑

j=1

(
n− j

n− x

)
zj.
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We study the definiteness of the matrixM(n− x, n− 1, . . . 2, 1, 0). Let

(2.2) F (n, x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

n− x n− 1 n− 2 · · · 2 1 0
n− 1 n− x n− 1 · · · 3 2 1
n− 2 n− 1 n− x · · · 4 3 2

...
...

...
...

...
...

1 2 3 · · · n− 1 n− x n− 1
0 1 2 · · · n− 2 n− 1 n− x

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We will prove thatF (n, x) ≡ D(n, x), whereD(n, x) is defined by (1.7). Let
xn be the smallest positive root of the equationF (n, x) = 0. The smallest
eigenvalueλ of M(n − x, n − 1, . . . , 2, 1, 0) is the one for whichλ + x = xn;
we thus haveλ ≥ 0 whenever0 ≤ x ≤ xn. For n > 1, it will be clear that
F (n, x∗) < 0 for somex∗ > xn; the constantxn is thus the greatest one for
which an inequality of the form (1.5) holds.

In order to evaluate explicitly the determinant (2.2) we perform on it a se-
quence of operations. We denote byLi the i-th row of the determinant in con-
sideration. After each operation we continue to denote byLi the newi-th row.

1. Li − Li+1, 1 ≤ i ≤ n, i.e., we subtract its(i + 1)-st row from itsi-th row
for i = 1, 2, . . . , n.

2. Li+1 − Li, 1 ≤ i < n, i.e., we subtract the newi-th row from its new
(i + 1)-st row fori = 1, 2, . . . , (n− 1).
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After these two steps, we obtain

(2.3) F (n, x)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− x x− 1 −1 −1 · · · −1 −1 −1 −1
x 2− 2x x 0 · · · 0 0 0 0
0 x 2− 2x x · · · 0 0 0 0
0 0 x 2− 2x · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · x 2− 2x x 0
0 0 0 0 · · · 0 x 2− 2x x
0 1 2 3 · · · n− 3 n− 2 n− 1 n− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Consider now the recurrence relations

(2.4) yk = zk−1 −
(2− 2x)

x
yk−1

for 1 ≤ k < n, and

(2.5) zk = (k + 1)− yk−1

for 1 ≤ k < n − 1, with the initial valuesy0 = 0, z0 = 1. On the determinant
(2.3), we perform the operations

(3) Ln+1 − yi−2

x
Li, i = 3, 4, . . . , n.

(4) L1 + L2.

(5) L2 − xL1.
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We obtain

(2.6) F (n, x)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1− x x− 1 −1 · · · −1 −1 −1 −1
0 α1 β1 x · · · x x x x
0 x 2− 2x x · · · 0 0 0 0
0 0 x 2− 2x · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 x 2− 2x x
0 0 0 0 · · · 0 0 yn−1 z∗n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
whereα1 = (x− 1)(x− 2), β1 = x(2− x) and

(2.7) z∗n−1 = (n− x)− yn−2

for n = 2, 3, . . . .
We continue with the following operations on the determinant (2.6).

(6) Li+2 − x
αi

Li+1, i = 1, 2, . . . , (n− 2), andLn+1 − yn−1

αn−1
Ln, where

(2.8) αk = (2− 2x)− x
βk−1

αk−1

for 1 < k < n,

(2.9) βk = x + Ak−1

for 1 < k < n, and

(2.10) Ak :=
(−1)kxk+1

α1 · · ·αk

.
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mailto:clement.frappier@polymtl.ca
http://jipam.vu.edu.au/


Another Refinement of
Bernstein’s Inequality

Clément Frappier

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 19

J. Ineq. Pure and Appl. Math. 6(4) Art. 109, 2005

http://jipam.vu.edu.au

We obtain
(2.11)

F (n, x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1− x x− 1 −1 −1 · · · −1 −1 −1 −1
0 α1 β1 x x · · · x x x x
0 0 α2 β2 A1 · · · A1 A1 A1 A1

0 0 0 α3 β3 · · · A2 A2 A2 A2

0 0 0 0 α4 · · · A3 A3 A3 A3
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · αn−3 βn−3 An−4 An−4

0 0 0 0 0 · · · 0 αn−2 βn−2 An−3

0 0 0 0 0 · · · 0 0 αn−1 βn−1

0 0 0 0 0 · · · 0 0 0 z∗∗n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where

(2.12) z∗∗n−1 = z∗n−1 −
βn−1

αn−1

yn−1.

It follows from (2.11) that

(2.13) F (n, x) = α1α2 · · ·αn−1z
∗∗
n−1

for n = 2, 3, . . . . Let

(2.14) γk := α1α2 · · ·αk.

It is readily seen that

(2.15) F (n, x) = (n− x− yn−2)γn−1 − xyn−1γn−2 + (−1)n−1xn−1yn−1.
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The sequencesyk andγk satisfy the recurrence relations

(2.16) xyk + (2− 2x)yk−1 + xyk−2 = kx

for k ≥ 2, with y0 = 0, y1 = 1, and

(2.17) γk − (2− 2x)γk−1 + x2γk−2 = (−1)k+1xk

for k ≥ 2, with γ0 := 1 − x, γ1 = (x − 1)(x − 2). These recurrence relations
can be solved by elementary means (a mathematical software may help). We
find that

yk = yk(x)(2.18)

=
((x− 1)−

√
1− 2x)k+1 − ((x− 1) +

√
1− 2x)k+1

4xk−1
√

1− 2x

+
(k + 1)x

2

and

γk = γk(x)(2.19)

=
(−x)k+1

2

+
((2− 3x) + (2− x)

√
1− 2x)((1− x) +

√
1− 2x)k

4
√

1− 2x

+
((3x− 2) + (2− x)

√
1− 2x)((1− x)−

√
1− 2x)k

4
√

1− 2x
.
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Substituting in the right-hand member of (2.15), we finally obtain an explicit
representation forF (n, x):

(2.20) F (n, x)

=
1

4
√

1− 2x

((
(1− x)−

√
1− 2x

)n(
(n− x)

√
1− 2x + (n + 1)x− n

)
+
(
(1− x) +

√
1− 2x

)n(
(n− x)

√
1− 2x− (n + 1)x + n

)
+ 2(−1)n+1xn+1

√
1− 2x

)
.

It follows from (2.20) that

(2.21) F (n, x) =
(n− x)

2

[n
2
]∑

j=0

(
n

2j

)
(1− 2x)j(1− x)n−2j

− 1

2

(
(n + 1)x− n

) [n−1
2

]∑
j=0

(
n

2j + 1

)
(1− 2x)j(1− x)n−2j−1

+
(−1)n+1

2
xn+1.

The identity

(2.22) F (n, x) = D(n, x),

whereD(n, x) is defined by (1.7), also follows from (2.20). It is a direct verifi-
cation noticing that the well-known representation

Tm(x) =
(x +

√
x2 − 1)m + (x−

√
x2 − 1)m

2

http://jipam.vu.edu.au/
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and

Um(x) =
(x +

√
x2 − 1)m+1 − (x−

√
x2 − 1)m+1

2
√

x2 − 1

readily give

T2n+1

(√
1− 1

2x

)

=
i(−1)n

2
√

2x xn

((
(1− x) +

√
1− 2x

)n
(1 +

√
1− 2x)

−
(
(1− x)−

√
1− 2x

)n
(1−

√
1− 2x)

)
and

U2n+1

(√
1− 1

2x

)

=
i(−1)n

√
2x xn

((
(1− x) +

√
1− 2x

)n+1 −
(
(1− x)−

√
1− 2x

)n+1
)
.

SinceM(n− x, n− 1, . . . , 2, 1, 0) is a symmetric matrix we know from the
general theory that all its eigenvalues are real. It is evident from (2.21) that
F (n, x) > 0 for x ≤ 0. The proof of Theorem1.1 will be complete if we can
show thatF (n, x) 6= 0 for 0 ≤ x ≤ 1

2
. In fact, the polynomialsF (n, x) are

decreasing in
[
0, 1

2

]
, with

F (n, 0) = n2n−1 and F

(
n,

1

2

)
=

1

2n+1

(
n2 +

((−1)n + 1)

2

)
.
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If n is even then the foregoing affirmation is evident since all the fundamental
terms are decreasing in (2.21). If n is odd then all the fundamental terms are
decreasing except(−1)n+1xn+1 = xn+1. In that case we note that(n− x)(1−
x)n = (n − 1)(1 − x)n + (1 − x)n+1; it is then sufficient to observe that the
function (1 − x)n+1 + xn+1 =: ϕ(x) is decreasing (we haveϕ′(x) = (n +
1)
(
xn − (1− x)n

)
≤ 0 for 0 ≤ x ≤ 1

2
).

Proof of Theorem1.2. The representation (2.21) gives

(2.23)
2n+1

n2
F

(
n,

1

2
+

c2

8n2

)

=

(
1− 1

2n
+

c2

8n3

) [n
2
]∑

j=0

n!

n2j+1(n− 2j)!

(
1− c2

4n2

)n−2j
(−c2)j

(2j)!

+

(
(n− 1)

n
− (n + 1)c2

4n3

) [n−1
2

]∑
j=0

n!

n2j+1(n− 2j − 1)!

(
1− c2

4n2

)n−2j−1
(−c2)j

(2j + 1)!

+
(−1)n+1

2n2

(
1 +

c2

4n2

)n+1

.

For any fixed integerm we have n!
(n−m)!

∼ nm, asn → ∞. It follows from
(2.23) and the dominated convergence theorem that

(2.24) lim
n→∞

2n+1

n2
F

(
n,

1

2
+

c2

8n2

)
=

∞∑
j=0

(−1)jc2j

(2j + 1)!
=

sin(c)

c
,

which is the relation (1.8).
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For largen, we deduce from (2.24) thatF
(
n, 1

2
+ c2

8n2

)
> 0 if 0 < c < π and

thatF
(
n, 1

2
+ c2

8n2

)
< 0 if π < c < 2π. We obtain (1.9) by continuity.
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3. Concluding Remarks and Open Problems
There exists inequalities similar to (1.4) that cannot be proved with the method
of convolution. An example is

(3.1) ‖zp′(z)− 2anz
n‖ ≤ (n− 1)‖p‖

for n > 1. The inequality (3.1) is a consequence of the particular caseγ = π,
m = 1 of [1, Lemma 2]. If we wish to apply the method described at the
beginning of Section2 then the relevant polynomial should beR(z) = (n−2)

(n−1)
+∑n

j=1
(n−j)
(n−1)

zj. But R(0) = (n−2)
(n−1)

6= 1, so that Lemma2.1 is not applicable.
The constantxn of Theorem1.1can be computed explicitly for some values

of n. We havex1 = 1, x2 = 2 −
√

2, x3 = 2 −
√

2, x5 = 2(2 −
√

3),

x7 = 4 + 2
√

2−
√

2(10 + 7
√

2), x9 = 6 + 2
√

5−
√

2(25 + 11
√

5) andx11 =

8 − 3
√

6 −
√

2(49− 20
√

6). The valuesx4 andx6 are more complicated. For
other values ofn, it seems difficult to express the roots ofD(n, x) by means of
radicals. It is numerically evident thatxn+1 < xn.

The substitution
√

1− 1
2x
7→ x permits us to write the equation (1.6) as

(3.2) n(1− x2)U2n+1(x)− T2n+1(x) = x.

We thus have

(3.3) xn =
1

2(1− y2
n)

,
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whereyn is the smallest positive root of the equation (3.2). The identities(1 −
x2)Um(x) = xTm+1(x) − Tm+2(x) andT`+m(x) + T`−m(x) = 2T`(x)Tm(x)
lead us to the factorization

(3.4) n(1−x2)U2n+1(x)−T2n+1(x)−x = Tn+1(x)
(
(n−2)Tn(x)−nTn+2(x)

)
.

It follows that the valueyn defined by (3.3) is the least positive root of the
polynomialTn+1(x) or the least positive root of the equation(n − 2)Tn(x) =
nTn+2(x).

Conjecture 3.1. If n is odd thenyn = sin
(

π
2(n+1)

)
(so thatxn = 1

2 cos2( π
2(n+1)

)
).

If n is even thenyn is the smallest positive root of the equation(n− 2)Tn(x) =
nTn+2(x).

We finally mention the following (not proved) representation ofD(n, x):

(3.5) D(n, x) =
n∑

k=0

(−1)k (2n− k + 1)!(n2 − (k − 1)n + k)

(2n− 2k + 2)!k!
2n−kxk

+ (−1)n+1xn+1.

http://jipam.vu.edu.au/
mailto:clement.frappier@polymtl.ca
http://jipam.vu.edu.au/


Another Refinement of
Bernstein’s Inequality

Clément Frappier

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 19 of 19

J. Ineq. Pure and Appl. Math. 6(4) Art. 109, 2005

http://jipam.vu.edu.au

References
[1] C. FRAPPIER, Representation formulas for integrable and entire functions

of exponential type II,Canad. J. Math., 43(1) (1991), 34–47.

[2] C. FRAPPIER, Q.I. RAHMANAND St. RUSCHEWEYH, New inequalities
for polynomials,Trans. Amer. Math. Soc., 288(1) (1985), 69–99.

[3] F.R. GANTMACHER,The Theory of Matrices, Volume 1, AMS Chelsea
Publishing, New York 1959.

[4] Q.I. RAHMAN AND G. SCHMEISSER,Analytic Theory of Polynomials,
Oxford Science Publications, Clarendon Press, Oxford 2002.

http://jipam.vu.edu.au/
mailto:clement.frappier@polymtl.ca
http://jipam.vu.edu.au/

	Introduction and Statements of the Results
	Proofs of the Theorems
	Concluding Remarks and Open Problems

