Journal of Inequalities in Pure and Applied Mathematics

Volume 6, Issue 4, Article 109, 2005

ANOTHER REFINEMENT OF BERNSTEIN'S INEQUALITY

CLÉMENT FRAPPIER

Département de Mathématiques et de Génie Industriel
École Polytechnique de Montréal
C.P. 6079 , SUCC. CENTRE-VILLE Montréal (Québec) H3C 3A7

CANADA
clement.frappier@polymtl.ca
Received 31 May, 2005; accepted 18 August, 2005
Communicated by N.K. Govil

AbSTRACT. Given a polynomial $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$, we denote by $\|\|$ the maximum norm on the unit circle $\{z:|z|=1\}$. We obtain a characterization of the best possible constant $x_{n} \geq \frac{1}{2}$ such that the inequality $\left\|z p^{\prime}(z)-x a_{n} z^{n}\right\| \leq(n-x)\|p\|$ holds for $0 \leq x \leq x_{n}$.

Key words and phrases: Bernstein's inequality, Unit circle, Convolution method.
2000 Mathematics Subject Classification. 26D05, 26D10, 33A10.

1. Introduction and Statements of the Results

We denote by \mathcal{P}_{n} the class of all polynomials with complex coefficients, of degree $\leq n$:

$$
\begin{equation*}
p(z)=\sum_{j=0}^{n} a_{j} z^{j} . \tag{1.1}
\end{equation*}
$$

Let $\|p\|:=\max _{|z|=1}|p(z)|$. The classical inequality

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq n\|p\| \tag{1.2}
\end{equation*}
$$

is known as Bernstein's inequality. A great number of refinements and generalizations of (1.2) have been obtained. See [4, Part III] for an extensive study of that subject. An example of refinement is [2, p. 84]

$$
\begin{equation*}
\left\|z p^{\prime}(z)-\frac{1}{2} a_{n} z^{n}+\frac{1}{4} a_{0}\right\|+\gamma_{n}\left|a_{0}\right| \leq\left(n-\frac{1}{2}\right)\|p\|, \tag{1.3}
\end{equation*}
$$

[^0]where
\[

\gamma_{n}= $$
\begin{cases}\frac{1}{4}, & n \equiv 1(\bmod 2), n \geq 1 \\ \frac{5}{12}, & n=2 \\ \frac{11}{20}, & n=4 \\ \frac{(n+3)}{4(n-1)}, & n \equiv 0(\bmod 2), n \geq 6\end{cases}
$$
\]

For each n, the constant γ_{n} is best possible in the following sense: given $\varepsilon>0$, there exists a polynomial $p_{\varepsilon} \in \mathcal{P}_{n}, p_{\varepsilon}(z)=\sum_{j=0}^{n} a_{j}(\varepsilon) z^{j}$, such that

$$
\left\|z p_{\varepsilon}^{\prime}(z)-\frac{1}{2} a_{n}(\varepsilon) z^{n}+\frac{1}{4} a_{0}(\varepsilon)\right\|+\left(\gamma_{n}+\varepsilon\right)\left|a_{0}(\varepsilon)\right|>\left(n-\frac{1}{2}\right)\left\|p_{\varepsilon}\right\| .
$$

The inequality (1.3) implies that

$$
\begin{equation*}
\left\|z p^{\prime}(z)-\frac{1}{2} a_{n} z^{n}\right\| \leq\left(n-\frac{1}{2}\right)\|p\| . \tag{1.4}
\end{equation*}
$$

In view of the inequality [4] p. 637] $\left|a_{k}\right| \leq\|p\|, 0 \leq k \leq n$, and the triangle inequality, it follows from (1.4) that

$$
\begin{equation*}
\left\|z p^{\prime}(z)-x a_{n} z^{n}\right\| \leq(n-x)\|p\| \tag{1.5}
\end{equation*}
$$

for $0 \leq x \leq \frac{1}{2}$ (here x is a parameter independent of $\operatorname{Re}(z)$). If $x>\frac{1}{2}$ then the same reasoning gives $(n+x-1)$ in the right-hand side of (1.5). But $(n+x-1)>(n-x)$ for $x>\frac{1}{2}$, so that the following natural question arises: what is the greatest constant $x_{n} \geq \frac{1}{2}$ such that the inequality (1.5) holds for $0 \leq x \leq x_{n}$?

The Chebyshev polynomials of the first and second kind are respectively

$$
T_{n}(x)=\cos (n \theta)
$$

and

$$
U_{n}(x)=\frac{\sin ((n+1) \theta)}{\sin (\theta)}
$$

where $x=\cos (\theta)$. We prove the following result.
Theorem 1.1. Let x_{n} be the smallest root of the equation

$$
\begin{equation*}
\sqrt{1-\frac{1}{2 x}}=\frac{n}{2 x} U_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right)-T_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right) \tag{1.6}
\end{equation*}
$$

in the interval $\left(\frac{1}{2}, \infty\right)$. The inequality (1.5) then holds for $0 \leq x \leq x_{n}$. The constant x_{n} is best possible.

It will be clear that all the roots of the equation (1.6) are $>\frac{1}{2}$. Consider the polynomial, of degree $(n+1)$, defined by

$$
\begin{equation*}
D(n, x):=\frac{(-1)^{n+1}}{2} x^{n+1}+\frac{(-1)^{n}}{2} x^{n}\left(\frac{\frac{n}{2} U_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right)-x T_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right)}{\sqrt{1-\frac{1}{2 x}}}\right) \tag{1.7}
\end{equation*}
$$

The solutions of the equation (1.6) are the roots of the polynomial $D(n, x)$. We also have the following asymptotic result.

Theorem 1.2. For any complex number c, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{2^{n+1}}{n^{2}} D\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right)=\frac{\sin (c)}{c} \tag{1.8}
\end{equation*}
$$

where $D(n, x)$ is defined by (1.7). In particular, if x_{n} is the constant of Theorem 1.1 then

$$
\begin{equation*}
x_{n} \sim \frac{1}{2}+\frac{\pi^{2}}{8 n^{2}}, \quad n \rightarrow \infty \tag{1.9}
\end{equation*}
$$

2. Proofs of the Theorems

Given two analytic functions

$$
f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}, \quad g(z)=\sum_{j=0}^{\infty} b_{j} z^{j} \quad(|z| \leq K),
$$

the function

$$
(f \star g)(z):=\sum_{j=0}^{\infty} a_{j} b_{j} z^{j} \quad(|z| \leq K)
$$

is said to be their Hadamard product.
Let \mathcal{B}_{n} be the class of polynomials Q in \mathcal{P}_{n} such that

$$
\|Q \star p\| \leq\|p\| \quad \text { for every } \quad p \in \mathcal{P}_{n} .
$$

To $p \in \mathcal{P}_{n}$ we associate the polynomial $\tilde{p}(z):=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$. Observe that

$$
Q \in \mathcal{B}_{n} \Longleftrightarrow \tilde{Q} \in \mathcal{B}_{n}
$$

Let us denote by \mathcal{B}_{n}^{0} the subclass of \mathcal{B}_{n} consisting of polynomials R in \mathcal{B}_{n} for which $R(0)=1$.
Lemma 2.1. [4], p. 414] The polynomial $R(z)=\sum_{j=0}^{n} b_{j} z^{j}$, where $b_{0}=1$, belongs to \mathcal{B}_{n}^{0} if and only if the matrix

$$
M\left(b_{0}, b_{1}, \ldots, b_{n}\right):=\left(\begin{array}{ccccc}
b_{0} & b_{1} & \cdots & b_{n-1} & b_{n} \\
\bar{b}_{1} & b_{0} & \cdots & b_{n-2} & b_{n-1} \\
\vdots & \vdots & & \vdots & \vdots \\
\bar{b}_{n-1} & \bar{b}_{n-2} & \cdots & b_{0} & b_{1} \\
\bar{b}_{n} & \bar{b}_{n-1} & \cdots & \bar{b}_{1} & b_{0}
\end{array}\right)
$$

is positive semi-definite.
The following well-known result enables us to study the definiteness of the matrix $M\left(1, b_{1}, \ldots, b_{n}\right)$ associated with the polynomial

$$
R(z)=\tilde{Q}(z)=1+\sum_{j=1}^{n} b_{j} z^{j} .
$$

Lemma 2.2. [3, p. 274] The hermitian matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right), \quad a_{i j}=\bar{a}_{j i},
$$

is positive semi-definite if and only if all its eigenvalues are non-negative.

Proof of Theorem 1.1. The preceding lemmas are applied to a polynomial of the form

$$
\begin{equation*}
R(z)=\tilde{Q}(z)=1+\sum_{j=1}^{n}\left(\frac{n-j}{n-x}\right) z^{j} \tag{2.1}
\end{equation*}
$$

We study the definiteness of the matrix $M(n-x, n-1, \ldots 2,1,0)$. Let

$$
F(n, x):=\left|\begin{array}{ccccccc}
n-x & n-1 & n-2 & \cdots & 2 & 1 & 0 \tag{2.2}\\
n-1 & n-x & n-1 & \cdots & 3 & 2 & 1 \\
n-2 & n-1 & n-x & \cdots & 4 & 3 & 2 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
1 & 2 & 3 & \cdots & n-1 & n-x & n-1 \\
0 & 1 & 2 & \cdots & n-2 & n-1 & n-x
\end{array}\right| .
$$

We will prove that $F(n, x) \equiv D(n, x)$, where $D(n, x)$ is defined by (1.7). Let x_{n} be the smallest positive root of the equation $F(n, x)=0$. The smallest eigenvalue λ of $M(n-x, n-$ $1, \ldots, 2,1,0)$ is the one for which $\lambda+x=x_{n}$; we thus have $\lambda \geq 0$ whenever $0 \leq x \leq x_{n}$. For $n>1$, it will be clear that $F\left(n, x^{*}\right)<0$ for some $x^{*}>x_{n}$; the constant x_{n} is thus the greatest one for which an inequality of the form (1.5) holds.

In order to evaluate explicitly the determinant (2.2) we perform on it a sequence of operations. We denote by L_{i} the i-th row of the determinant in consideration. After each operation we continue to denote by L_{i} the new i-th row.
(1) $L_{i}-L_{i+1}, 1 \leq i \leq n$, i.e., we subtract its $(i+1)$-st row from its i-th row for $i=$ $1,2, \ldots, n$.
(2) $L_{i+1}-L_{i}, 1 \leq i<n$, i.e., we subtract the new i-th row from its new $(i+1)$-st row for $i=1,2, \ldots,(n-1)$.
After these two steps, we obtain

$$
\begin{align*}
& F(n, x) \tag{2.3}\\
&=\left|\begin{array}{ccccccccc}
1-x & x-1 & -1 & -1 & \cdots & -1 & -1 & -1 & -1 \\
x & 2-2 x & x & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & x & 2-2 x & x & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & x & 2-2 x & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & x & 2-2 x & x & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & x & 2-2 x & x \\
0 & 1 & 2 & 3 & \cdots & n-3 & n-2 & n-1 & n-x
\end{array}\right| .
\end{align*}
$$

Consider now the recurrence relations

$$
\begin{equation*}
y_{k}=z_{k-1}-\frac{(2-2 x)}{x} y_{k-1} \tag{2.4}
\end{equation*}
$$

for $1 \leq k<n$, and

$$
\begin{equation*}
z_{k}=(k+1)-y_{k-1} \tag{2.5}
\end{equation*}
$$

for $1 \leq k<n-1$, with the initial values $y_{0}=0, z_{0}=1$. On the determinant (2.3), we perform the operations
(3) $L_{n+1}-\frac{y_{i-2}}{x} L_{i}, i=3,4, \ldots, n$.
(4) $L_{1}+L_{2}$.
(5) $L_{2}-x L_{1}$.

We obtain

$$
F(n, x)=\left|\begin{array}{ccccccccc}
1 & 1-x & x-1 & -1 & \cdots & -1 & -1 & -1 & -1 \tag{2.6}\\
0 & \alpha_{1} & \beta_{1} & x & \cdots & x & x & x & x \\
0 & x & 2-2 x & x & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & x & 2-2 x & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & x & 2-2 x & x \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & y_{n-1} & z_{n-1}^{*}
\end{array}\right|
$$

where $\alpha_{1}=(x-1)(x-2), \beta_{1}=x(2-x)$ and

$$
\begin{equation*}
z_{n-1}^{*}=(n-x)-y_{n-2} \tag{2.7}
\end{equation*}
$$

for $n=2,3, \ldots$.
We continue with the following operations on the determinant (2.6).
(6) $L_{i+2}-\frac{x}{\alpha_{i}} L_{i+1}, i=1,2, \ldots,(n-2)$, and $L_{n+1}-\frac{y_{n-1}}{\alpha_{n-1}} L_{n}$, where

$$
\begin{equation*}
\alpha_{k}=(2-2 x)-x \frac{\beta_{k-1}}{\alpha_{k-1}} \tag{2.8}
\end{equation*}
$$

for $1<k<n$,

$$
\begin{equation*}
\beta_{k}=x+A_{k-1} \tag{2.9}
\end{equation*}
$$

for $1<k<n$, and

$$
\begin{equation*}
A_{k}:=\frac{(-1)^{k} x^{k+1}}{\alpha_{1} \cdots \alpha_{k}} \tag{2.10}
\end{equation*}
$$

We obtain

$$
F(n, x)=\left|\begin{array}{cccccccccc}
1 & 1-x & x-1 & -1 & -1 & \cdots & -1 & -1 & -1 & -1 \tag{2.11}\\
0 & \alpha_{1} & \beta_{1} & x & x & \cdots & x & x & x & x \\
0 & 0 & \alpha_{2} & \beta_{2} & A_{1} & \cdots & A_{1} & A_{1} & A_{1} & A_{1} \\
0 & 0 & 0 & \alpha_{3} & \beta_{3} & \cdots & A_{2} & A_{2} & A_{2} & A_{2} \\
0 & 0 & 0 & 0 & \alpha_{4} & \cdots & A_{3} & A_{3} & A_{3} & A_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & \alpha_{n-3} & \beta_{n-3} & A_{n-4} & A_{n-4} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & \alpha_{n-2} & \beta_{n-2} & A_{n-3} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \alpha_{n-1} & \beta_{n-1} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & z_{n-1}^{* *}
\end{array}\right|
$$

where

$$
\begin{equation*}
z_{n-1}^{* *}=z_{n-1}^{*}-\frac{\beta_{n-1}}{\alpha_{n-1}} y_{n-1} . \tag{2.12}
\end{equation*}
$$

It follows from (2.11) that

$$
\begin{equation*}
F(n, x)=\alpha_{1} \alpha_{2} \cdots \alpha_{n-1} z_{n-1}^{* *} \tag{2.13}
\end{equation*}
$$

for $n=2,3, \ldots$ Let

$$
\begin{equation*}
\gamma_{k}:=\alpha_{1} \alpha_{2} \cdots \alpha_{k} . \tag{2.14}
\end{equation*}
$$

It is readily seen that

$$
\begin{equation*}
F(n, x)=\left(n-x-y_{n-2}\right) \gamma_{n-1}-x y_{n-1} \gamma_{n-2}+(-1)^{n-1} x^{n-1} y_{n-1} . \tag{2.15}
\end{equation*}
$$

The sequences y_{k} and γ_{k} satisfy the recurrence relations

$$
\begin{equation*}
x y_{k}+(2-2 x) y_{k-1}+x y_{k-2}=k x \tag{2.16}
\end{equation*}
$$

for $k \geq 2$, with $y_{0}=0, y_{1}=1$, and

$$
\begin{equation*}
\gamma_{k}-(2-2 x) \gamma_{k-1}+x^{2} \gamma_{k-2}=(-1)^{k+1} x^{k} \tag{2.17}
\end{equation*}
$$

for $k \geq 2$, with $\gamma_{0}:=1-x, \gamma_{1}=(x-1)(x-2)$. These recurrence relations can be solved by elementary means (a mathematical software may help). We find that

$$
\begin{equation*}
y_{k}=y_{k}(x)=\frac{((x-1)-\sqrt{1-2 x})^{k+1}-((x-1)+\sqrt{1-2 x})^{k+1}}{4 x^{k-1} \sqrt{1-2 x}}+\frac{(k+1) x}{2} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{align*}
\gamma_{k}=\gamma_{k}(x)=\frac{(-x)^{k+1}}{2} & +\frac{((2-3 x)+(2-x) \sqrt{1-2 x})((1-x)+\sqrt{1-2 x})^{k}}{4 \sqrt{1-2 x}} \tag{2.19}\\
& +\frac{((3 x-2)+(2-x) \sqrt{1-2 x})((1-x)-\sqrt{1-2 x})^{k}}{4 \sqrt{1-2 x}}
\end{align*}
$$

Substituting in the right-hand member of (2.15), we finally obtain an explicit representation for $F(n, x)$:

$$
\begin{align*}
& \text { 0) } F(n, x)=\frac{1}{4 \sqrt{1-2 x}}\left(((1-x)-\sqrt{1-2 x})^{n}((n-x) \sqrt{1-2 x}+(n+1) x-n)\right. \tag{2.20}\\
& \left.+((1-x)+\sqrt{1-2 x})^{n}((n-x) \sqrt{1-2 x}-(n+1) x+n)+2(-1)^{n+1} x^{n+1} \sqrt{1-2 x}\right) .
\end{align*}
$$

It follows from (2.20) that

$$
\begin{align*}
F(n, x) & =\frac{(n-x)}{2} \sum_{j=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 j}(1-2 x)^{j}(1-x)^{n-2 j} \tag{2.21}\\
& -\frac{1}{2}((n+1) x-n) \sum_{j=0}^{\left[\frac{n-1}{2}\right]}\binom{n}{2 j+1}(1-2 x)^{j}(1-x)^{n-2 j-1}+\frac{(-1)^{n+1}}{2} x^{n+1} .
\end{align*}
$$

The identity

$$
\begin{equation*}
F(n, x)=D(n, x), \tag{2.22}
\end{equation*}
$$

where $D(n, x)$ is defined by (1.7), also follows from (2.20). It is a direct verification noticing that the well-known representation

$$
T_{m}(x)=\frac{\left(x+\sqrt{x^{2}-1}\right)^{m}+\left(x-\sqrt{x^{2}-1}\right)^{m}}{2}
$$

and

$$
U_{m}(x)=\frac{\left(x+\sqrt{x^{2}-1}\right)^{m+1}-\left(x-\sqrt{x^{2}-1}\right)^{m+1}}{2 \sqrt{x^{2}-1}}
$$

readily give

$$
\begin{array}{r}
T_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right)=\frac{i(-1)^{n}}{2 \sqrt{2 x} x^{n}}\left(((1-x)+\sqrt{1-2 x})^{n}(1+\sqrt{1-2 x})\right. \\
\left.\quad-((1-x)-\sqrt{1-2 x})^{n}(1-\sqrt{1-2 x})\right)
\end{array}
$$

and

$$
U_{2 n+1}\left(\sqrt{1-\frac{1}{2 x}}\right)=\frac{i(-1)^{n}}{\sqrt{2 x} x^{n}}\left(((1-x)+\sqrt{1-2 x})^{n+1}-((1-x)-\sqrt{1-2 x})^{n+1}\right)
$$

Since $M(n-x, n-1, \ldots, 2,1,0)$ is a symmetric matrix we know from the general theory that all its eigenvalues are real. It is evident from (2.21) that $F(n, x)>0$ for $x \leq 0$. The proof of Theorem 1.1 will be complete if we can show that $F(n, x) \neq 0$ for $0 \leq x \leq \frac{1}{2}$. In fact, the polynomials $F(n, x)$ are decreasing in $\left[0, \frac{1}{2}\right]$, with

$$
F(n, 0)=n 2^{n-1} \quad \text { and } \quad F\left(n, \frac{1}{2}\right)=\frac{1}{2^{n+1}}\left(n^{2}+\frac{\left((-1)^{n}+1\right)}{2}\right)
$$

If n is even then the foregoing affirmation is evident since all the fundamental terms are decreasing in (2.21). If n is odd then all the fundamental terms are decreasing except $(-1)^{n+1} x^{n+1}=$ x^{n+1}. In that case we note that $(n-x)(1-x)^{n}=(n-1)(1-x)^{n}+(1-x)^{n+1}$; it is then sufficient to observe that the function $(1-x)^{n+1}+x^{n+1}=: \varphi(x)$ is decreasing (we have $\varphi^{\prime}(x)=(n+1)\left(x^{n}-(1-x)^{n}\right) \leq 0$ for $\left.0 \leq x \leq \frac{1}{2}\right)$.
Proof of Theorem 1.2 The representation (2.21) gives

$$
\begin{align*}
& \frac{2^{n+1}}{n^{2}} F\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right) \tag{2.23}\\
& \quad=\left(1-\frac{1}{2 n}+\frac{c^{2}}{8 n^{3}}\right) \sum_{j=0}^{\left[\frac{n}{2}\right]} \frac{n!}{n^{2 j+1}(n-2 j)!}\left(1-\frac{c^{2}}{4 n^{2}}\right)^{n-2 j} \frac{\left(-c^{2}\right)^{j}}{(2 j)!} \\
& \quad+\left(\frac{(n-1)}{n}-\frac{(n+1) c^{2}}{4 n^{3}}\right) \sum_{j=0}^{\left[\frac{n-1}{2}\right]} \frac{n!}{n^{2 j+1}(n-2 j-1)!}\left(1-\frac{c^{2}}{4 n^{2}}\right)^{n-2 j-1} \frac{\left(-c^{2}\right)^{j}}{(2 j+1)!} \\
& \quad+\frac{(-1)^{n+1}}{2 n^{2}}\left(1+\frac{c^{2}}{4 n^{2}}\right)^{n+1} .
\end{align*}
$$

For any fixed integer m we have $\frac{n!}{(n-m)!} \sim n^{m}$, as $n \rightarrow \infty$. It follows from (2.23) and the dominated convergence theorem that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{2^{n+1}}{n^{2}} F\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right)=\sum_{j=0}^{\infty} \frac{(-1)^{j} c^{2 j}}{(2 j+1)!}=\frac{\sin (c)}{c} \tag{2.24}
\end{equation*}
$$

which is the relation (1.8).
For large n, we deduce from (2.24) that $F\left(n, \frac{1}{2}+\frac{c^{2}}{8 n^{2}}\right)>0$ if $0<c<\pi$ and that $F\left(n, \frac{1}{2}+\right.$ $\left.\frac{c^{2}}{8 n^{2}}\right)<0$ if $\pi<c<2 \pi$. We obtain (1.9) by continuity.

3. Concluding Remarks and Open Problems

There exists inequalities similar to $\sqrt{1.4}$ that cannot be proved with the method of convolution. An example is

$$
\begin{equation*}
\left\|z p^{\prime}(z)-2 a_{n} z^{n}\right\| \leq(n-1)\|p\| \tag{3.1}
\end{equation*}
$$

for $n>1$. The inequality (3.1) is a consequence of the particular case $\gamma=\pi, m=1$ of [1], Lemma 2]. If we wish to apply the method described at the beginning of Section 2 then the relevant polynomial should be $R(z)=\frac{(n-2)}{(n-1)}+\sum_{j=1}^{n} \frac{(n-j)}{(n-1)} z^{j}$. But $R(0)=\frac{(n-2)}{(n-1)} \neq 1$, so that Lemma 2.1 is not applicable.

The constant x_{n} of Theorem 1.1 can be computed explicitly for some values of n. We have $x_{1}=1, x_{2}=2-\sqrt{2}, x_{3}=2-\sqrt{2}, x_{5}=2(2-\sqrt{3}), x_{7}=4+2 \sqrt{2}-\sqrt{2(10+7 \sqrt{2})}$, $x_{9}=6+2 \sqrt{5}-\sqrt{2(25+11 \sqrt{5})}$ and $x_{11}=8-3 \sqrt{6}-\sqrt{2(49-20 \sqrt{6})}$. The values x_{4} and x_{6} are more complicated. For other values of n, it seems difficult to express the roots of $D(n, x)$ by means of radicals. It is numerically evident that $x_{n+1}<x_{n}$.
The substitution $\sqrt{1-\frac{1}{2 x}} \mapsto x$ permits us to write the equation (1.6) as

$$
\begin{equation*}
n\left(1-x^{2}\right) U_{2 n+1}(x)-T_{2 n+1}(x)=x \tag{3.2}
\end{equation*}
$$

We thus have

$$
\begin{equation*}
x_{n}=\frac{1}{2\left(1-y_{n}^{2}\right)}, \tag{3.3}
\end{equation*}
$$

where y_{n} is the smallest positive root of the equation (3.2). The identities $\left(1-x^{2}\right) U_{m}(x)=$ $x T_{m+1}(x)-T_{m+2}(x)$ and $T_{\ell+m}(x)+T_{\ell-m}(x)=2 T_{\ell}(x) T_{m}(x)$ lead us to the factorization

$$
\begin{equation*}
n\left(1-x^{2}\right) U_{2 n+1}(x)-T_{2 n+1}(x)-x=T_{n+1}(x)\left((n-2) T_{n}(x)-n T_{n+2}(x)\right) . \tag{3.4}
\end{equation*}
$$

It follows that the value y_{n} defined by (3.3) is the least positive root of the polynomial $T_{n+1}(x)$ or the least positive root of the equation $(n-2) T_{n}(x)=n T_{n+2}(x)$.
Conjecture 3.1. If n is odd then $y_{n}=\sin \left(\frac{\pi}{2(n+1)}\right)$ (so that $x_{n}=\frac{1}{2 \cos ^{2}\left(\frac{\pi}{2(n+1)}\right)}$. If n is even then y_{n} is the smallest positive root of the equation $(n-2) T_{n}(x)=n T_{n+2}(x)$.

We finally mention the following (not proved) representation of $D(n, x)$:

$$
\begin{equation*}
D(n, x)=\sum_{k=0}^{n}(-1)^{k} \frac{(2 n-k+1)!\left(n^{2}-(k-1) n+k\right)}{(2 n-2 k+2)!k!} 2^{n-k} x^{k}+(-1)^{n+1} x^{n+1} \tag{3.5}
\end{equation*}
$$

References

[1] C. FRAPPIER, Representation formulas for integrable and entire functions of exponential type II, Canad. J. Math., 43(1) (1991), 34-47.
[2] C. FRAPPIER, Q.I. RAHMAN AND St. RUSCHEWEYH, New inequalities for polynomials, Trans. Amer. Math. Soc., 288(1) (1985), 69-99.
[3] F.R. GANTMACHER, The Theory of Matrices, Volume 1, AMS Chelsea Publishing, New York 1959.
[4] Q.I. RAHMAN and G. SCHMEISSER, Analytic Theory of Polynomials, Oxford Science Publications, Clarendon Press, Oxford 2002.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 The author was supported by the Natural Sciences and Engineering Research Council of Canada Grant OGP0009331. A part of the calculations presented in the proof of Theorem 1.1 was done by Dr. M. A. Qazi while he was a doctoral student of the author.

 172-05

