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ABSTRACT. In this paper we consider some integral operators and we determine conditions for
the univalence of these integral operators.
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1. I NTRODUCTION

Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane. The classA and the class
S are defined in [2]: letA be the class of functionsf(z) = z + a2z

2 + · · · , which are analytic
in the unit disk normalized withf(0) = f ′(0) − 1 = 0; let S the class of the functionsf ∈ A
which are univalent inU.

In [7] is defined the classS(α). For0 < α ≤ 2, let S(α) denote the class of functionsf ∈ A
which satisfy the conditions:

(1.1) f(z) 6= 0 for 0 < |z| < 1

and

(1.2)

∣∣∣∣( z

f(z)

)′′∣∣∣∣ ≤ α

for all z ∈ U.
In [7] is proved the next result. For0 < α ≤ 2, the functionsf ∈ S(α) are univalent.
In this work, we consider the integral operators

(1.3) Gα(z) =

[
α

∫ z

0

gα−1(u) du

] 1
α
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and

(1.4) Hα, γ(z) =

[
α

∫ z

0

uα−1

(
h(u)

u

)γ

du

] 1
α

for g(z) ∈ S, h(z) ∈ S and for someα, γ ∈ C.
Kim - Merkes [1] studied the integral operator

(1.5) Fγ(z) =

∫ z

0

(
h(u)

u

)γ

du

and obtained the following result

Theorem 1.1.If the functionh(z) belongs to the classS, then for any complex numberγ, |γ| ≤
1
4
, the functionFγ(z) defined by (1.5) is in the classS.

2. PRELIMINARY RESULTS

In order to prove our main results we will use the lemma due to N.N. Pascu [4] presented in
this section.

Lemma 2.1. Let the functionf ∈ A andα a complex number,Re α > 0. If

(2.1)
1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U , then for all complex numbersβ, Re β ≥ Re α the function

(2.2) Fβ(z) =

[
β

∫ z

0

uβ−1 f ′(u)du

] 1
β

is regular and univalent inU .

3. M AIN RESULTS

Theorem 3.1. Let α be a complex number,Re α ≥ 0 and the functiong ∈ S, g(z) = z +
a2z

2 + · · · . If

(j1) |α− 1| ≤ Re α

4
for Re α ∈ (0, 1)

or

(j2) |α− 1| ≤ 1

4
for Re α ∈ [1,∞),

then the function

(3.1) Gα(z) =

[
α

∫ z

0

gα−1(u) du

] 1
α

is in the classS.

Proof. From (3.1) we have

(3.2) Gα(z) =

[
α

∫ z

0

uα−1

(
g(u)

u

)α−1

du

] 1
α

.

The functiong(z) is regular and univalent, henceg(z)
z
6= 0 for all z ∈ U. We can choose the

regular branch of the function
[

g(z)
z

]α−1

to be equal to 1 at the origin.
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Let us consider the regular function inU , given by

(3.3) p(z) =

∫ z

0

(
g(u)

u

)α−1

du.

Becauseg ∈ S, we obtain

(3.4)

∣∣∣∣z g′(z)

g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

for all z ∈ U.
We have

1− |z|2 Re α

Re α

∣∣∣∣z p′′(z)

p′(z)

∣∣∣∣ =
1− |z|2 Re α

Re α

∣∣∣∣z g′(z)

g(z)
− 1

∣∣∣∣(3.5)

≤ 1− |z|2 Re α

Re α
|α− 1|

(∣∣∣∣zg′(z)

g(z)

∣∣∣∣ + 1

)
.

From (3.5) and (3.4) we obtain

(3.6)
1− |z|2 Re α

Re α

∣∣∣∣z p′′(z)

p′(z)

∣∣∣∣ ≤ 1− |z|2 Re α

Re α
|α− 1| 2

1− |z|
.

Now, we consider the cases
i1) 0 < Re α < 1.

The function
s : (0, 1) → <, s(x) = 1− a2x (0 < a < 1)

is a increasing function and fora = |z|, z ∈ U, we obtain

(3.7) 1− |z|2 Re α ≤ 1− |z|2

for all z ∈ U.
From (3.6) and (3.7), we have

(3.8)
1− |z|2Re α

Re α

∣∣∣∣zp′′(z)

p′(z)

∣∣∣∣ ≤ 4 |α− 1|
Re α

for all z ∈ U.
Using the condition (j1) and (3.8) we get

(3.9)
1− |z|2 Re α

Re α

∣∣∣∣zp′′(z)

p′(z)

∣∣∣∣ ≤ 1

for all z ∈ U.
i2) Re α ≥ 1.

We observe that the function

q : [1,∞) → <, q(x) =
1− a2x

x
(0 < a < 1)

is a decreasing function, and that, if we takea = |z|, z ∈ U, then

(3.10)
1− |z|2Re α

Re α
≤ 1− |z|2

for all z ∈ U.
From (3.6) and (3.10) we obtain

(3.11)
1− |z|2Re α

Re α

∣∣∣∣zp′′(z)

p′(z)

∣∣∣∣ ≤ 4 |α− 1|.
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From (3.11) and (j2), we have

(3.12)
1− |z|2 Re α

Re α

∣∣∣∣zp′′(z)

p′(z)

∣∣∣∣ ≤ 1

for all z ∈ U.

Using (3.9), (3.12) and becausep′(z) =
(

g(z)
z

)α−1

, from Lemma 2.1 forα = β it results that

the functionGα(z) is in the classS. �

Theorem 3.2. If α is a real number,α ∈
[

4
5
, 5

4

]
and the functiong ∈ S(α), then the function

(3.13) Gα(z) =

[
α

∫ z

0

gα−1(u) du

] 1
α

is in the classS.

Proof. If g ∈ S(α), theng ∈ S and by Theorem 3.1 forα ∈
[

4
5
, 5

4

]
, we obtain the function

Gα(z) in the classS. �

Theorem 3.3.Letα, γ be a complex numbers and the functionh ∈ S, h(z) = z + a2z
2 + · · · .

If

(p1) |γ| ≤ Re α

4
for Re α ∈ (0, 1)

or

(p2) |γ| ≤ 1

4
for Re α ∈ [1,∞)

then the function

(3.14) Hα, γ(z) =

[
α

∫ z

0

uα−1

(
h(u)

u

)γ

du

] 1
α

is regular and univalent inU.

Proof. Let us consider the regular function inU, defined by

(3.15) f(z) =

∫ z

0

(
h(u)

u

)γ

du.

For the functionh ∈ S, we obtain

(3.16)

∣∣∣∣z h′(z)

h(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

for all z ∈ U.
We obtain

(3.17)
1− |z|2 Re α

Re α

∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣ ≤ 1− |z|2 Re α

Re α
|γ|

(∣∣∣∣zh′(z)

h(z)

∣∣∣∣ + 1

)
.

From (3.17) and (3.16), we have

(3.18)
1− |z|2 Re α

Re α

∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣ ≤ 1− |z|2 Re α

Re α
|γ| 2

1− |z|
We consider the cases
j1) 0 < Re α < 1.

In this case we obtain

(3.19) 1− |z|2 Re α ≤ 1− |z|2
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for all z ∈ U.
From (3.18) and (3.19), we get

(3.20)
1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 4 |γ|
Re α

for all z ∈ U.
By (3.20) and (p1) we have

(3.21)
1− |z|2 Re α

Re α

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1

for all z ∈ U.
j2) Re α ≥ 1.

For this case we obtain

(3.22)
1− |z|2 Re α

Re α
≤ 1− |z|2

for all z ∈ U.
From (3.18) and (3.22) we have

(3.23)
1− |z|2 Re α

Re α

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 4 |γ|.

From (3.23) and (p2), we get

(3.24)
1− |z|2 Re α

Re α

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1

for all z ∈ U.

From (3.21), (3.24) and becausef ′(z) =
(

h(z)
z

)γ

, from Lemma 2.1 forα = β it results that

the functionHα,γ(z) is in the classS. �

Remark 3.4. For α = 1, from Theorem 3.3 we obtain Theorem 1.1, the result due to Kim-
Merkes.

Theorem 3.5.Letγ be a complex number and the functionh ∈ S(a).
If

(3.25) |γ| ≤ α

4
for α ∈ (0, 1)

or

(3.26) |γ| ≤ 1

4
for α ∈ [1, 2]

then the functionHα, γ(z) defined by (3.14) is in the classS.

Proof. Becauseh(z) ∈ S(α), 0 < α ≤ 2, thenh(z) ∈ S and by Theorem 3.3 the function
Hα, γ(z) belongs to the classS. �
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