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ABSTRACT. An inequality involving a functionf,, (z) = I'(« + 1)(2/x)*Jo(z) (o > —3) is
obtained. The lower and upper bounds for this function are also derived.
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1. INTRODUCTION AND DEFINITIONS

In this note we deal with the function

2 (0%
(L.1) o) =+ 1) (2) sato)
r€eR, a> —% and.J, stands for the Bessel function of the first kind of orderit is known

(see, e.g./]1, (9.1.69)]) that

f()—F - +1__:E_2 —i; _x_Qn

AT T T ) T Zla v, )
where(a), = I'(a + k)/I'(a) (k = 0,1,...). It is obvious from the above representation that
fa(—2) = fu(x) and also thayf,(0) = 1. The function under discussion admits the integral

representation

1.2) fa(:r):/ cos(zt)du(t)

1

(see, e.g./[1, (9.1.20)]) whetk(t) = w(t)dt with

(1.3) p(t) = (1 - t2)a_5/ (220‘3 (a - % , ot %))
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2 EDWARD NEUMAN

being the Dirichlet measure on the interyall, 1] and B(-, -) stands for the beta function.
Clearly

(1.4) /_ du(t) = 1.

1

Thus(t) is the probability measure on the interVall, 1].
In [2], R. Askey has shown that the following inequality

(1.5) fa(®) + fa(y) <1+ fu(2)

holds true for alle > 0 andz?> = 2? + y?. This provides a generalization of Griinbaum'’s
inequality ([4]) who has establishgd (IL.5) for= 0.

In this note we give a different upper bound for the syipiz) + f.(y) (see [2.1L)). Also,
lower and upper bounds for the function in question are derived.

2. MAIN RESULTS
Our first result reads as follows.

Theorem 2.1.Letz,y € R. If a > —3 , then

(2.1) [fa(@) + fa@)] < L+ falz + )L+ falz — y)].

Proof. Using (1.2), some elementary trigonometric identities, Cauchy-Schwarz inequality for
integrals, and (1]4) we obtain

o)+ Tl < [ costat) + costylutr)
by, 1
2 { / 11 cos? & : y)tdu(t)} ’ { / "o @ ;y)tdu(t)] ’

2 B /_1 (1 + cos(x + y)t)dﬂ(t):|

1

t —y)t
Cos (@ —; y) Ccos (x 5 v) ‘ dpu(t)

IN
= =

1
-1
=[1+ falz +y)|2[1 + falz — y)]2.
Hence, the assertion follows. O

« B / (14 cos(r — y)t)d,u(t)}

Whenz = y, inequality [Z:1) simplifies t@ f2(z) < 1+ f,(2x) which bears resemblance of
the double-angle formula for the cosine functides? z = 1 + cos 2x.

Our next goal is to establish computable lower and upper bounds for the furfgtione
recall some well-known facts about Gegenbauer polynondiglgc: > —%, k € N) and the
Gauss-Gegenbauer quadrature formulas. They are orthogonal on the ifterval with the
weight functionw(t) = (1 — #2)°~2. The explicit formula forCy is

[5/2) -
Cilt) = Z<_1)mr(rof)amT(Z - 2771)! (20"

m=0
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(see, e.g./]1, (22.3.4)]). In particular,
2.2) Co(t) = 2a(a+ 1) —a, C(E) = ga(oz +1)[2(a+ 2)F — 31

The classical Gauss-Gegenbauer quadrature formula with the remainder is [3]

1 k
2.9 =gt =3 wiglt) + g ™),
-1 i=1
whereg € C%([—1,1]), v, is a positive number and does not depend oandy is an interme-
diate point in the interval—1, 1). Recall that the node's (1 < i < n) are the roots of’;' and
the weightsw; are given explicitly byl[5, (15.3.2)]
I'(2a + k) 1

(2.4) R ¥ | 9 R TR [ (oRy I (A

(1<i<k).
We are in a position to prove the following.

Theorem 2.2.Leta > —% . If [z| < %, then

T

(2.5) Ccos (W) < fal(z)

<

3
a1 20(+1+(Oé+2)COS< mx)]

Equalities hold in2.5)if « = 0.

Proof. In order to establish the lower bound jn (2.5) we use the Gauss-Gegenbauer quadrature
formula [2.3) withg(t) = cos(xt) andk = 2. Sinceg™ (t) = x* cos(xt) > 0fort € [—1,1]
and|z| < Z,

1

(2.6) wig(ty) + wag(ta) < / (1 — t2)*72 cos(wt)dt.
-1
Making use of[(2.R) and (2.4) we obtain
1
=ty — ——
TR Al

andw; = wy = 122*B(a + 1, o+ 1). This in conjunction with[(2]6) gives

1 1 ! .
2B <a + -, a+ —> cos [ ——— | < / (1 — %)™ 2 cos(at)dt.
2 2 2(a+1) ~1

Application of (1.3) together with the use ¢f (]L.2) gives the asserted result. In order to derive
the upper bound in (2.5) we use agdin [2.3). Letting) = cos(zt) andk = 3 one has
9@ (t) = —a8 cos(zt) < 0for |¢| < 1and|z| < Z. Hence

1
(2.7) / (1 — %)% cos(at)dt < wig(t) + wag(ts) + wag(ts).
-1
It follows from (2.2) and[(2.4) that
3
—tl = t3 = m, t2 =0
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and
1 1 a+2
— w. = 22°B z ) ==
w1 W3 <a+2,a+2)6(a+1),
1 1\ 2a+1
—=2%p = -
e (O‘+2’a+2)3(a+1)
This in conjunction with[(2]7)[(1]3), and (1.2) gives the desired result. The proof is complete.

0
Sharper lower and upper bounds fgrcan be obtained using higher order quadrature formu-
las (2.3) with even and odd numbers of knots, respectively.
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