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1. INTRODUCTION

Let (H;(-,-)) be an inner product space over the real or complex nhumberKiel@he fol-
lowing inequality is known in the literature &hwarz’s inequality

(1.1) () < ll=l” lyll®, =,y € H;

where||z||> = (z,2), z € H. The equality occurs i.l) if and only if andy are linearly
dependent.
In [7], the following reverseof Schwarz’s inequality has been obtained:

1.2) 0.< el Il ~ 1w o) < 3 14— af o],
providedz,y € H anda, A € K are so that either

(1.3) Re (Ay — xz,x — ay) > 0,

or, equivalently,

a+ A
2

x —

(1.4)

1
o] < 514 alll,
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2 S.S. RAGOMIR

holds. The constarj;tis best possible i.2) in the sense that it cannot be replaced by a smaller
quantity.

If z,y, A, a satisfy either[(1.3) or (114), then the following reverse of Schwarz’s inequality
also holds([8]

1 Re [A(x, y) +a(z,y)
(

1.5 T < — -
(1.5) ][ |yl Re @A)}
1 Al +]a
< - —— [z, )],
2 [Re(ad)]?

provided that, the complex numbersand A satisfy the conditioRe (@A) > 0. In both in-
equalities in[(1.5), the constatis best possible.

An additive version of (1]5) may be stated as well (see also [9])

L (1A = |a)® + 4[| Aa| — Re (@A)] 2

: < |zl ly|I* = P :
(16)  0< [lal* Jyl® - () < e (o) [z, )]
In this inequality,; is the best possible constant.

It has been proven in[10], that

2

(1.7) 0< [lz)” = [z, ) < = 1o — o —

I

‘M_@_@;’e)

|

provided, either

(1.8) Re (pe — z,x — pe) > 0,
or, equivalently,

¢+90€
2

wheree € H, e[| = 1. The constant in (L.7) is also best possible.

) If we choosee = 4, ¢ = T'[lyll, » = 7llyll (y #0), T’y € K, then by (1.8),[(1}9) we
ave,

or, equivalently,

1

€ —

B A e
9 Y

imply the following reverse of Schwarz’s mequallty:

(1.11) |F Yy

2

1
(1.12) 0 < [lal* lyl* = [z )" < 5 T =P flul* = lyl* = (x,y)

The constant in (1.12) is sharp.
Note that this inequality is an improvement pf (1.2), but it might not be very convenient for
applications.

’F+7

Now, let {e;},., be a finite or infinite family of orthornormal vectors in the inner product
space H; (-,-)), i.e., we recall that
0 if i#y
<€i,€j>: , Z,jGI
1 ifi=j
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In [11], we proved that, ife; },., is as abovel’ C I is a finite part off such that either

(1.13) Re <Z oie; —x,x — Z(piei> >0,

el 1EF

or, equivalently,

N

(1.14) Hx_zﬁ%e

el

< % (Z |9 — S0i|2> )

el

holds, wherg¢;),., , (¢i),c; are real or complex numbers, then we have the following reverse
of Bessel's inequality:

(1.15) 0< 2l =) [ e
=y
1
<7D loi- %|—m<§}wz J—Z]%>
ieF 1eF 1eF
1
Z Z |¢z 901
el

The constan§ in both inequalities is sharp. This result improves an earlier result by N. tJjevi
obtained only for real spaces [21].

In [10], by the use of a different technique, another reverse of Bessel's inequality has been
proven, namely:

(1.16) 0< | = > [, e))”
1€EF
o1 i +¢i ?
Z Z‘(bz 901| _Z 92 _<x7€i>
i€EF i€l
1
Z Z ‘(bl 901 Y
ieF

provided thate;),c; , (1)1, (¥i);; - * @andF are as above.

Here the constarﬁ[ is sharp in both inequalities.

It has also been shown that the bounds provided by|(1.15) and (1.16) for the Bessel's differ-
ence|z|” — Yoier (T, e;)|> cannot be compared in general, meaning that there are examples
for which one is smaller than the other [10].

Finally, we recall another type of reverse for Bessel inequality that has been obtained in [12]:

1 Z 7 (1] + lpil)
(1.17) ic E
H H ZzeF Re ¢1§01 zeF’

provided(¢; ), , (i);c; satisfy [1.1B) (or, equivalently (1.]14)) and,. . Re (¢:;) > 0. Here

the constan§ is also best possible.
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An additive version of{ (1.17) is
(1.18) 0 falf" =) e’

L Sier {161 - lo + dllowpl ~ Re(6F} §~ e

The constan§ is best possible.

It is the main aim of the present paper to point out new reverse inequalities to Schwarz’s,
triangle and Bessel’s inequalities.

Some results related to Griiss’ inequality in inner product spaces are also pointed out. Natural
applications for integrals are also provided.

<

2. SOME REVERSES OF SCHWARZ 'S INEQUALITY
The following result holds.

Theorem 2.1.Let (H; (-,-)) be an inner product space over the real or complex number field
K(K=R, K=C)andz,a € H,r > 0 are such that

(2.1) € B(a,r):={z€ H||z—al <r}.
(i) If [|a|| > r, then we have the inequalities
(2.2) 0 < flalf* fall* = [{z, @)” < [l lall” — [Re {z, a)}* < r*||]>.

The constant in front of 2 is best possible in the sense that it cannot be replaced by a
smaller one.
(i) If ||a|| = r, then

(2.3) |z||” < 2Re (z,a) < 2|(x,a)] .

The constan? is best possible in both inequalities.
(iii) If ||a]| < r, then

(2.4) lz]* < * — all* + 2Re (z,a) <7 — |lal|* + 2 |(z,a)]| .
Here the constarl is also best possible.

Proof. Sincez € B (a,r) , then obviously|z — a||* < 72, which is equivalent to

(2.5) ||| + ||a]|* = 7* < 2Re (z, a) .

(i) If ||a|| > r, then we may divid5) b}(/ |a||* — r2 > 0 getting

/ 2Re <ZE‘ CL>
2 )
—2 + HGH —r2 L —2

HCLH r? \/ ||CLH 7

Using the elementary inequality

(2.6)

1
Oép"'—QZQ\/pa Oé>0, paqzoa
(0%

we may state that

2
@7 2ol < A\l 2

lal|” =72
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Making use of[(2.6) and (2.7), we deduce

(2.8) ]l \/llall* =72 < Re (z,a).

Taking the square i (2.8) and re-arranging the terms, we deduce the third inequality in
(2.2). The others are obvious.

To prove the sharpness of the constant, assume, under the hypothesis of the theorem,
that, there exists a constant- 0 such that

(2.9) |]1* llall* = [Re (z, a)]* < e |l*,

providedz € B (a,r) and||al| > r.
Letr = /e > 0,e € (0,1), a,e € H with ||a|| = |le|| = 1 anda L e. Put
& = a++/ze. Then obviously: € B (a,r), ||la|| > rand|jz|* = ||a||+< |le]|* = 1+¢,
Re (z,a) = |la]|* = 1, and thug|z|® ||a||” — [Re (z, a)]* = ¢. Using (2.9), we may write
that
e<ce(l4+¢), €>0

giving

(2.10) c+ce >1 foranye > 0.
Lettinge — 0+, we get from[(2.ID) that > 1, and the sharpness of the constant is
proved.

(ii) The inequality [(2.8) is obvious by (24.5) singe|| = r. The best constant follows in a

similar way to the above.

(iii) The inequality [2.8) is obvious. The best constant may be proved in a similar way to the
above. We omit the details.

O
The following reverse of Schwarz’s inequality holds.

Theorem 2.2.Let (H; (-,-)) be an inner product space ov& andz,y € H, v,I" € K such
that either

(2.11) Re (T'y — z,x — vy) > 0,

or, equivalently,

(2.12) T =l llyll,

'+~ 1
2

— Tl <
o3| <

holds.
(i) If Re (I'y) > 0, then we have the inequalities

1 {Re[(T+7) (9]}

2.13 2yl <
(2.13) (" llyll <7 Re (D7)
1 | +4)? )
< —. .

The constan§ is best possible in both inequalities.
(i) If Re (I'y) =0, then

(2.14) |z)|* < Re [(T+7) (z,y)] < [T +[{z,y)].
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(iii) If Re (I'y) < 0, then
(2.15) |z]|* < —=Re () lyll* + Re [(T +7) (z,9)]
—Re (T9) lyll* + T + 7] [{z, )] -

Proof. The proof of the equivalence between the inequalifies [2.11)[and (2.12) follows by the
fact that in an inner product spate (7 — xz,x — z) > 0 for z,z, Z € H is equivalent with
|z — 22| < 1 11Z - 2| (see for example- [9]).

Consider, fory # 0, a = 2y andr = 1 [T — 4/ ||y . Then

T +4* — T — 42 _
r’ = 1 lyl*> = Re (T7) |ly||” .

(i) If Re (I'y) > 0, then the hypothesis of (i) in Theorém P.1 is satisfied, and by the second
inequality in [2.2) we have

r + gl = =
ol T e = 2 (e [(F 4+9) ()] <
from Where we derive
'+~ R y 2 1 = _ 2
LB e gy < 2 qRe [(F+7) (]}
giving the first inequality in[(2.73).
The second inequality is obvious.
To prove the sharpness of the consténassume that the first inequality i13)
holds with a constant > 0, i.e.,

2
lall” =

T — ] Iy

FMH

ARe[T+7) (9]}
Re (I'7) ’
providedRe (I'y) > 0 and either[(2.1]1) of (2.12) holds.
Assume that’, v > 0, and letz = ~y. Then [2.11) holds and by (2.[16) we deduce

L T [l
Iy

(2.16) z]* ylI* < ¢

Y llyll* <
giving
(2.17) Iy <¢(T'+~)° forany I,y > 0.

Lete € (0,1) and choose if (2.17); = 1 + ¢, 7= 1 —¢>0togetl —e? < 4c¢for
anye € (0,1). Lettinge — 0+, we deduce: z , and the sharpness of the constant is
proved.

(if) and (iii) are obvious and we omit the details.

0

Remark 2.3. We observe that the second boun.13}|f1.jr2 ly||* is better than the second
bound provided by (1}5).

The following corollary provides a reverse inequality for the additive version of Schwarz’s
inequality.

Corollary 2.4. With the assumptions of Theor¢m|2.2 an®&éf(I'y) > 0, then we have the
inequality:

(2.18) 0 < [lz]* lyll* — ()" <

J. Inequal. Pure and Appl. Maths(3) Art. 76, 2004 http://jipam.vu.edu.au/
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The constant is best possible irf (2.18).

The proof is obvious from[ (2.13) on subtracting in both sides the same quintity)|” .
The sharpness of the constant may be proven in a similar manner to the one incorporated in the
proof of (i), Theorenp 2]2. We omit the details.

Remark 2.5. It is obvious that the inequality (2.]L8) is better than|(1.6) obtained/in [9].

For some recent results in connection to Schwarz’s inequality, seé [2], [13] and [15].

3. REVERSES OF THE TRIANGLE |INEQUALITY
The following reverse of the triangle inequality holds.

Proposition 3.1. Let (H; (-, -)) be an inner product space over the real or complex number field
K (K=R,C)andz,a € H,r > 0 are such that

(3.1) [l —all < < lall.
Then we have the inequality

Re (z,a)

Vi = (il =2+ )

Proof. Using the inequality{ (2]8), we may write that
|all Re (z,a)

Y
2
\lall” =72

(3.2) 0 < [lz]| + llall — |z + all < V2r -

[ lall <

giving
(3.3 0 < llol lall - Re (2, a)
2 2
all — a — T
=l
lal? =2
B r?Re (z,a)
Vil = (el =2 4 )
Since

(lzll + llal)® = llz + all” = 2 (ll«[l a] - Re {z,a)),
hence, by[(3]3), we have

2
|zl + [lal] < |||z +al?+ r?Re (z, a)
Viel? =2 (el =+ 5 i
<l +al +v2r Re (r,a) |
Vil = (lalF =2+ o)
giving the desired inequality (3.2). -

The following proposition providing a simpler reverse for the triangle inequality also holds.

J. Inequal. Pure and Appl. Mathb(3) Art. 76, 2004 http://jipam.vu.edu.au/
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Proposition 3.2. Let (H; (-, -)) be an inner product space ov& andxz,y € H, M > m > 0
such that either

(3.4) Re (My — x,x — my) >0,
or, equivalently,

M+m 1
@5 o= 25 < g 0 = my .
holds. Then we have the inequality
vVM —+/m
3.6 0 < ||z|| + — |z +y|| L ————+/Re(z,y).
(3.6) < el + gl = lle + vl < =gt/ Re ,0)

Proof. Choosing in[(2.B)a = 252y, r = 1 (M —m) |ly|| we get

2

M+m
2l iyl viMm < ——Re (2, y)

giving
2
) _ (VT - vm)
0 < [[z]l lyll = Re (z,y) < SNETi Re (z,y) .
Following the same arguments as in the proof of Proposjtioh 3.1, we deduce the desired in-
equality [3.6). O

For some results related to triangle inequality in inner product spaces, see [3], [17], [18] and
[19].
4. SOME GRUSSTYPE INEQUALITIES
We may state the following result.

Theorem 4.1.Let (H; (-,-)) be an inner product space over the real or complex number field
K(K=R,K=C)andz,y,e € Hwith|le|| =1.1fr,r, € (0,1) and

(4.1) |z —ell <7, ly —el <
then we have the inequality
(4.2) [(z,y) — (@, e) {e,y)| < rirz [l [yl -

The inequality[(4]2) is sharp in the sense that the constamfront of ;75 cannot be replaced
by a smaller quantity.

Proof. Apply Schwarz's inequality inH; (-, -)) for the vectorst — (x,e) e, y — (y, e) e, to get
(see also]9])

(4.3) [z, y) = @ e) e y)l” < (I2” = . e)*) (lyll* = [y, e)) -
Using Theorem 2]1 fot = e, we may state that

(4.4) l2ll” = [z, ) < v llel®, llyl® = Ky e)l” < 3 llyll”.
Utilizing (4.3) and [(4.%), we deduce

(4.5) (2, y) = (€} {e,y)* < rivd ||z lyll*,

which is clearly equivalent to the desired inequality (4.2).

J. Inequal. Pure and Appl. Maths(3) Art. 76, 2004 http://jipam.vu.edu.au/
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The sharpness of the constant follows by the fact thatfer y, r, = ro = r, we get from

(4.2) that

(4.6) l2]* = [z, e)* < 72 ],
provided||e|| = 1 and||z —e|| < r < 1. The inequality[(46) is sharp, as shown in Theorem
[2.1, and the proof is completed. O

Another companion of the Griss inequality may be stated as well.

Theorem 4.2. Let (H; (-, -)) be an inner product space ov&randz,y,e € H with [le|| = 1.
Suppose also that, A, b, B € K (K = R, C) such thatRe (4a) , Re (Bb) > 0. If either

4.7) Re (Ae —x,z —ae) >0, Re(Be —y,y —be) >0,
or, equivalently,

a+ A 1 b+ B 1
. — < Z|A— _ <2|B_
(4.8) ‘x 5 e _2|A al, Hy 5 e _2|B bl,
holds, then we have the inequality
A—al|lB—-b
(4.9) o) — (me) ey < & AAZAB I oy ).

1
+\/Re (4a) Re (BY)
The constang is best possible.

Proof. We know, by [(4.B), that

(4.10) (2, y) = (@ e) le.u)” < (I2” = o ) ) (lyll* = [y, e)) -
If we use Corollary 24, then we may state that

(4.11) ol = [z, e < L A= o
) T x,e = 1" Re (4a) x,e
and

LB,
4.12 2y, e)? < = - ~|({y, e)|?.
(4.12) O N L]

Utilizing (¢.10) — [4.12), we deduce
s 1 |A—a)*|B-0b]
x,y) — (z,e) (e, < —- =
o.y) = (e eyl < 3 Re (A7) Re (Bb)
which is clearly equivalent to the desired inequality {4.9).
The sharpness of the constant follows from Corolfary 2.4, and we omit the details. [

Remark 4.3. With the assumptions of Theor¢m 4.2 andlife) , (y, e) # 0 (that is actually the
interesting case), then one has the inequality

(2, y) _4<1_|A—MB—M _
(z,e)(ey) |7 4 thAmRQBQ

[z, ) {e.y)I"

(4.13)

The constan§ is best possible.

Remark 4.4. The inequality[(4.9) provides a better bound for the quantity

(2, y) — (2, €) (e, )]
than (2.3) of [9].
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For some recent results on Griss type inequalities in inner product spaces, see [4], [6] and
[20].

5. REVERSES OF BESSEL' S INEQUALITY

Let (H;(-,-)) be a real or complex infinite dimensional Hilbert space énd. ., an or-
thornormal family inH, i.e., we recall thate;,e;) = 0if i,j € N, i # j and||e;|| = 1 for
ieN.

Itis well known that, ifz € H, then the serie3_>°, |(x, e;)|” is convergent and the following
inequality, calledBessel’'s inequality

(5.1) Sl edl? < Jlall
i=1
holds.
If 2(K) := {a=(a;);cx C K|, |as]* < 00}, whereK = C or K = R, is the Hilbert

space of aII complex or real sequences thatssammable and = (\;),.y € ¢* (K), then the

1
seriesy 2| \e; is convergent il and ify := 3" \e; € H, then|ly| = (33, |A[°)?
We may state the following result.

Theorem 5.1. Let (H; (-, -)) be an infinite dimensional Hilbert space over the real or complex
number fieldK, (e;),. an orthornormal family inff, A = (\;),.y € ¢* (K) andr > 0 with the
property that

(5.2) SN >
=1
If z € H is such that

(5.3)

e
r — E )\iei
=1

then we have the inequality

o (E2Re [ (z.e)])”

(54) Hx” = Z;)ol ’)\‘2 —r2
R A e
Zz 1 ’)\‘ _7-2

Z’i: |>\'L| - 2
— Zoo ‘;\.’2_7ﬂ22|<x’ei>| )
=1 17" i=1

and

(5.5) 0

IA

l]* Z (2, &)

(5.6) < S ’)\| _T22|xe

Proof. Applying the third inequality in[(2]2) for = }~°, \ie; € H, we have

- 2
Re <x,2)\iei>] < 72 ||z|?
i=1

(5.7) &1

J. Inequal. Pure and Appl. Math5(3) Art. 76, 2004 http://jipam.vu.edu.au/
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and since

(e e}

- 2
D el =) N
i=1 i=1

Re<x,§:)\iei> ZRe xe, ,
i=1

hence, by[(5]7) we deduce
00 2
Re <x, Z )\iei>] <r?|z|?,
i=1

el Y P -
=1
giving the first inequality in[(5]4).
The second inequality is obvious by the modulus property.
The last inequality follows by the Cauchy-Bunyakovsky-Schwarz inequality

Z)\_Z-@:, e)| < Z I\ Z (z, &)
=1 =1

The inequality [(5.p) follows by the last inequality in (b.4) on subtracting in both sides the
quantity> %, |(z, e;)|* < oo. O

The following result provides a generalization for the reverse of Bessel’'s inequality obtained
in [12].

Theorem 5.2. Let (H; (-,-)) and (e;),oy be as in Theorern §.1. Suppose that= (T;), €
0 (K), v = (Yi)ien € 62 (K) are sequences of real or complex numbers such that

(5.8) f: Re (I'7%) > 0

If x € H is such that either

Sﬁ—iri;%ei

=1

S

(5.9)

<3 (Z D - W)

i=1

or, equivalently,

(5.10) Re <iFiei —x,x—i%ei> >0
i=1 i=1

holds, then we have the inequalities

(S Re[(T5+7) (@ e)])”
> i1 Re (I777)
ZE @7 @]
> o1 Re (I'y3)
.Z§1|Fi+%!2 -

Yo Re(I'im) ; (z, ei)’2 )

The constant is best possible in all inequalities ih (5]11).

IN

(5.11)

8

IN

VAN
| = »-lkIH »lkl»—‘
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We also have the inequalities:

2 1 25—
(5.12) 0< |z —Z|:L‘ez < S= R

~, Re (')

’71 Z|5L‘€Z

Here the constan} is also best possible.

Proof. Sincerl’, v € ¢*(K), then also; (I + +) € ¢? (K), showing that the series

o0 [e.e]
2 >3
=1 i=1
are convergent. Also, the series

i Fiei, i Yi€; and i i —|2— L €
=1 =1 =1

are convergent in the Hilbert spaée

The equivalence of the conditiorjs (5.9) ahd (5.10) follows by the fact that in an inner prod-
uct space we have, far,z,Z € H, Re(Z —z,x —z) > 0 is equivalent to||z — =Z| <
+11Z — z|| , and we omit the details.

Now, we observe that the inequaliti.lll) dnd (5.12) follow from Theprgm 5.1 on choosing

)\ = ’YL;F 1€ N andr =3 (221 |Fz — 71’2)5 .
The fact that; is the best constant in both (5]11) ahd (5.12) follows from Thegrein 2.2 and
Corollary[2.4, and we omit the details. O

p———
2

I+ ?
2

and ) " Re (I'7)
=1

Remark 5.3. Note that[(5.1]1) improve$ (1.[17) arjd (5.12) improyes (1.18), that have been ob-
tained in [12].

For some recent results related to Bessel inequality) seé [1], [5], [14],.and [16].

6. SOME GRUSSTYPE INEQUALITIES FOR ORTHONORMAL FAMILIES
The following result related to Griss inequality in inner product spaces, holds.
Theorem 6.1.Let (H; (-, -)) be an infinite dimensional Hilbert space over the real or complex

number fieldK, and (¢;),.y an orthornormal family inf. Assume thald = (\),.y, B =
(1) ;en € € (K) andry, 7, > 0 with the properties that

(6.1) Z‘)‘| >, Z‘NJ > 13,

=1

If z,y € H are such that

(6.2) l'—z)\iei <r,
=1

S T2,

oo
- E Hi€i
i=1
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then we have the inequalities

[eS)
(z,9) E (z,e;) (e, y
=1

(6.3)

[e.e]

rire 9 > 9
< D e P [y e
JZZ VRN T I =

rura ]l [y
—_ 2 .
@Z R o Dt [T

Proof. Applying Schwarz’s inequality for the vectors— > >°, (z,e;) e;, y — Yooy (Y, &) €5,
we have

(6.4) ‘< Z e ey — Z y,e >
x—Z(x,e,}ei

2

2 2

Mg

< y— > (y,e)e
=1 =1
Since
o0 o0
<x x el €Y — Z y,eZ Z> = Z e@,
i=1 =1
and
o0 2 oo
90—2@6061‘ = ||$||2—Z|<$,6i>|2,
i=1 i=1

hence, by[(5)5) applied far andy, and from [6.4), we deduce the first part[of (6.3).
The second part follows by Bessel’s inequality. O

The following Griss type inequality may be stated as well.

Theorem 6.2.Let(H; (-, -)) be an infinite dimensional Hilbert space afid), , an orthornor-
mal family inH. Suppose thafl’;), ., (Vi)iex » (@4)ien » (Pi);en € €2 (K) are sequences of real
and complex numbers such that

(6.5) D> Re(I'#i) >0, > Re(®id;) >0
=1 i=1

If 2,y € H are such that either

i=1
y_ZI:@r;@.ei (Z@_@)

l

(6.6)

N)Ir—\

=

N)Ir—\
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or, equivalently,

(6.7) Re <§: e —x,x — i%ei> >0
i=1 i=1

Re <§: Qie; —y,y — i¢z’€z’> >0
i=1 i=1

holds, then we have the inequality
<$7 y> - Z <$7 e’i> <€i7 y>
i=1

1(zsz W) (25 19: — o)
P, (m»(ZﬁRMiED

(Ge) (o)

mzimi—w>ﬂ2?n — 6

(6.8)

NI

IN

[N
[N

1
< s el vl
[Zi:l Re ( ﬂ/z)] [Z Re ( )}
The constang is best possible in the first inequality.
Proof. Follows by [5.12) and (6]4).
The best constant follows from Theorém|4.2, and we omit the details. O

Remark 6.3. We note that the inequality (6.8) is better than the inequality (3.3)ih [12]. We
omit the details.

7. INTEGRAL INEQUALITIES

Let (2,3, 1) be a measurable space consisting of alkeh oc—algebra of parts2 and a
countably additive and positive measyreon ¥ with values inRU {oco}. Let p > 0 be a
Lebesgue measurable function@rwith [, p (s) du (s) = 1. Denote byL? (2, K) the Hilbert
space of all real or complex valued functions definedXamd2 — p—integrable orf), i.e.,

(7.) L o@1F P dnts) < .

It is obvious that the following inner product

(7.2 <ﬂ®p=Aﬂ@f@M@MM$,

generates the norif||, : = (fyp(s )P du (s ))% of L2 (2,K), and all the above results

may be stated for integrals
It is important to observe that, if

(7.3) Re [f (s) m] >0 foru—a.e.s e,

J. Inequal. Pure and Appl. Maths(3) Art. 76, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

REVERSES OFSCHWARZ, TRIANGLE AND BESSELINEQUALITIES 15

then, obviously,

(7.4) Re(f.g), = Re [ [ o) )56 <s>]
- / p(s)Re [ (5)75)] du (s) = 0.

The reverse is evidently not true in general.
Moreover, if the space is real, i.&, = R, then a sufficient condition fof (7.4) to hold is:

(7.5) f(s)>0, g(s) >0 foru—a.e.seq.

We provide now, by the use of certain results obtained in Selckion 2, some integral inequalities
that may be used in practical applications.

Proposition 7.1. Let f, g € Li (©,K) andr > 0 with the properties that
(7.6) lf(s)—g(s)] <r<|g(s)| foru—a.e.sec.

Then we have the inequalities
77 o< / o ()11 () dia () / 0 (5) g ()2 du (5) — / 0 (5) £ ()9 (5)dp (s)

S/QP(SHJC(S)’QCZM(S)/QP(S) 9 ()" du(s)

[ [oere(ra@)an]
< / p(5)1g () dp (s) .

The constant in front of 72 is best possible.
The proof follows by Theorem 2.1 and we omit the details.
Proposition 7.2. Let f, g € L2 (2,K) and,T € K such thatRe (I'y) > 0 and

(7.8) Re [(rg (s) — £ (s)) (m - WW)} >0 for i — a.e.s € Q.

Then we have the inequalities

(7.9) / o ()11 ()P (s) / p(5) g ()2 s (5)

L {Re[T47) fup () F ()9 (s)] )
< =
— 4 Re (I'7)
< e | L9765 (9

The constanﬁ Is best possible in both inequalities.

The proof follows by Theorein 2.2 and we omit the details.
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Corollary 7.3. With the assumptions of Proposition|7.2, we have the inequality
(7.10) 0< [ oI @Pduts) [ oo (6) duls

2

/Q 0 (5) F (5)g (5)elp (s)

2

_1r=qf
~— 4 Re(I'y)
The constanﬁ is best possible.

/Q 0 () £ (5) 7 (8)dp (s)

Remark 7.4. If the space is real and we assume, f6r> m > 0, that
(7.112) mg (s) < f(s) < Mg(s), foru—a.e.seqQ,
then, by [[7.P) and (7.10), we deduce the inequalities

(7.12) / p(s) [f () dp (s) / p(s) g () dpu(s)

Q

<1 S [r@r@aean]
and
(7.13) 0< / o (3) [ ()2 dpe (s) / o (5) (g ()2 du (s)

- MP(S)f(S)g(S)du(S)r

LA o5 i)

The inequality[(7.12) is known in the literature @assel’s inequality.

The following Gruss type integral inequality for real or complex-valued functions also holds.
Proposition 7.5. Let f, g, h € L2 (Q,K) with [, p(s) |k (s)|*du(s) = 1 anda, A,b, B € K
such thatRe (Aa) , Re (Bb) > 0 and

Re (A (s) = £ () (F(5) —ah ()| = 0,
Re [(Bh (s) — g (5)) (m —bh (s))] >0,
for p—a.e.s € €. Then we have the inequalities
|01 an ) = [ o) £ TG [ p(s) ()56
1 |A—dl|B-}
4 \/Re(4a) Re (BY)
The constanﬁ is best possible.
The proof follows by Theorein 4.2.

Remark 7.6. All the other inequalities in Sectiop$ 3 { 6 may be used in a similar way to obtain
the corresponding integral inequalities. We omit the details.

(7.14)

/Qp(S)f(S)h(S)du (8)/QP(S)h(S)g(S)d/L (s)
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