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1. I NTRODUCTION

Let (H; 〈·, ·〉) be an inner product space over the real or complex number fieldK. The fol-
lowing inequality is known in the literature asSchwarz’s inequality:

(1.1) |〈x, y〉|2 ≤ ‖x‖2 ‖y‖2 , x, y ∈ H;

where‖z‖2 = 〈z, z〉 , z ∈ H. The equality occurs in (1.1) if and only ifx andy are linearly
dependent.

In [7], the following reverseof Schwarz’s inequality has been obtained:

(1.2) 0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
|A− a|2 ‖y‖4 ,

providedx, y ∈ H anda, A ∈ K are so that either

(1.3) Re 〈Ay − x, x− ay〉 ≥ 0,

or, equivalently,

(1.4)

∥∥∥∥x− a + A

2
· y
∥∥∥∥ ≤ 1

2
|A− a| ‖y‖ ,
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2 S.S. DRAGOMIR

holds. The constant1
4

is best possible in (1.2) in the sense that it cannot be replaced by a smaller
quantity.

If x, y, A, a satisfy either (1.3) or (1.4), then the following reverse of Schwarz’s inequality
also holds [8]

‖x‖ ‖y‖ ≤ 1

2
·
Re
[
A〈x, y〉+ a 〈x, y〉

]
[Re (aA)]

1
2

(1.5)

≤ 1

2
· |A|+ |a|
[Re (aA)]

1
2

|〈x, y〉| ,

provided that, the complex numbersa andA satisfy the conditionRe (aA) > 0. In both in-
equalities in (1.5), the constant1

2
is best possible.

An additive version of (1.5) may be stated as well (see also [9])

(1.6) 0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
· (|A| − |a|)2 + 4 [|Aa| − Re (aA)]

Re (aA)
|〈x, y〉|2 .

In this inequality,1
4

is the best possible constant.
It has been proven in [10], that

(1.7) 0 ≤ ‖x‖2 − |〈x, y〉|2 ≤ 1

4
|φ− ϕ|2 −

∣∣∣∣φ + ϕ

2
− 〈x, e〉

∣∣∣∣2 ;

provided, either

(1.8) Re 〈φe− x, x− ϕe〉 ≥ 0,

or, equivalently,

(1.9)

∥∥∥∥x− φ + ϕ

2
e

∥∥∥∥ ≤ 1

2
|φ− ϕ| ,

wheree ∈ H, ‖e‖ = 1. The constant1
4

in (1.7) is also best possible.
If we choosee = y

‖y‖ , φ = Γ ‖y‖ , ϕ = γ ‖y‖ (y 6= 0) , Γ, γ ∈ K, then by (1.8), (1.9) we
have,

(1.10) Re 〈Γy − x, x− γy〉 ≥ 0,

or, equivalently,

(1.11)

∥∥∥∥x− Γ + γ

2
y

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖y‖ ,

imply the following reverse of Schwarz’s inequality:

(1.12) 0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
|Γ− γ|2 ‖y‖4 −

∣∣∣∣Γ + γ

2
‖y‖2 − 〈x, y〉

∣∣∣∣2 .

The constant1
4

in (1.12) is sharp.
Note that this inequality is an improvement of (1.2), but it might not be very convenient for

applications.
Now, let {ei}i∈I be a finite or infinite family of orthornormal vectors in the inner product

space(H; 〈·, ·〉) , i.e., we recall that

〈ei, ej〉 =

 0 if i 6= j

1 if i = j
, i, j ∈ I.
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REVERSES OFSCHWARZ, TRIANGLE AND BESSELINEQUALITIES 3

In [11], we proved that, if{ei}i∈I is as above,F ⊂ I is a finite part ofI such that either

(1.13) Re

〈∑
i∈F

φiei − x, x−
∑
i∈F

ϕiei

〉
≥ 0,

or, equivalently,

(1.14)

∥∥∥∥∥x−∑
i∈F

φi + ϕi

2
ei

∥∥∥∥∥ ≤ 1

2

(∑
i∈F

|φi − ϕi|2
) 1

2

,

holds, where(φi)i∈I , (ϕi)i∈I are real or complex numbers, then we have the following reverse
of Bessel’s inequality:

0 ≤ ‖x‖2 −
∑
i∈F

|〈x, ei〉|2(1.15)

≤ 1

4
·
∑
i∈F

|φi − ϕi|2 − Re

〈∑
i∈F

φiei − x, x−
∑
i∈F

ϕiei

〉

≤ 1

4
·
∑
i∈F

|φi − ϕi|2 .

The constant1
4

in both inequalities is sharp. This result improves an earlier result by N. Ujević
obtained only for real spaces [21].

In [10], by the use of a different technique, another reverse of Bessel’s inequality has been
proven, namely:

0 ≤ ‖x‖2 −
∑
i∈F

|〈x, ei〉|2(1.16)

≤ 1

4
·
∑
i∈F

|φi − ϕi|2 −
∑
i∈F

∣∣∣∣φi + ϕi

2
− 〈x, ei〉

∣∣∣∣2
≤ 1

4
·
∑
i∈F

|φi − ϕi|2 ,

provided that(ei)i∈I , (φi)i∈I , (ϕi)i∈I , x andF are as above.
Here the constant1

4
is sharp in both inequalities.

It has also been shown that the bounds provided by (1.15) and (1.16) for the Bessel’s differ-
ence‖x‖2 −

∑
i∈F |〈x, ei〉|2 cannot be compared in general, meaning that there are examples

for which one is smaller than the other [10].
Finally, we recall another type of reverse for Bessel inequality that has been obtained in [12]:

(1.17) ‖x‖2 ≤ 1

4
·
∑

i∈F (|φi|+ |ϕi|)2∑
i∈F Re (φiϕi)

∑
i∈F

|〈x, ei〉|2 ;

provided(φi)i∈I , (ϕi)i∈I satisfy (1.13) (or, equivalently (1.14)) and
∑

i∈F Re (φiϕi) > 0. Here
the constant1

4
is also best possible.
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An additive version of (1.17) is

0 ≤ ‖x‖2 −
∑
i∈F

|〈x, ei〉|2(1.18)

≤ 1

4
·
∑

i∈F

{
(|φi| − |ϕi|)2 + 4 [|φiϕi| − Re (φiϕi)]

}∑
i∈F Re (φiϕi)

∑
i∈F

|〈x, ei〉|2 .

The constant1
4

is best possible.
It is the main aim of the present paper to point out new reverse inequalities to Schwarz’s,

triangle and Bessel’s inequalities.
Some results related to Grüss’ inequality in inner product spaces are also pointed out. Natural

applications for integrals are also provided.

2. SOME REVERSES OF SCHWARZ ’ S I NEQUALITY

The following result holds.

Theorem 2.1. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K (K = R, K = C) andx, a ∈ H, r > 0 are such that

(2.1) x ∈ B (a, r) := {z ∈ H| ‖z − a‖ ≤ r} .

(i) If ‖a‖ > r, then we have the inequalities

(2.2) 0 ≤ ‖x‖2 ‖a‖2 − |〈x, a〉|2 ≤ ‖x‖2 ‖a‖2 − [Re 〈x, a〉]2 ≤ r2 ‖x‖2 .

The constant1 in front of r2 is best possible in the sense that it cannot be replaced by a
smaller one.

(ii) If ‖a‖ = r, then

(2.3) ‖x‖2 ≤ 2 Re 〈x, a〉 ≤ 2 |〈x, a〉| .
The constant2 is best possible in both inequalities.

(iii) If ‖a‖ < r, then

(2.4) ‖x‖2 ≤ r2 − ‖a‖2 + 2 Re 〈x, a〉 ≤ r2 − ‖a‖2 + 2 |〈x, a〉| .
Here the constant2 is also best possible.

Proof. Sincex ∈ B (a, r) , then obviously‖x− a‖2 ≤ r2, which is equivalent to

(2.5) ‖x‖2 + ‖a‖2 − r2 ≤ 2 Re 〈x, a〉 .

(i) If ‖a‖ > r, then we may divide (2.5) by
√
‖a‖2 − r2 > 0 getting

(2.6)
‖x‖2√
‖a‖2 − r2

+

√
‖a‖2 − r2 ≤ 2 Re 〈x, a〉√

‖a‖2 − r2

.

Using the elementary inequality

αp +
1

α
q ≥ 2

√
pq, α > 0, p, q ≥ 0,

we may state that

(2.7) 2 ‖x‖ ≤ ‖x‖2√
‖a‖2 − r2

+

√
‖a‖2 − r2.
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REVERSES OFSCHWARZ, TRIANGLE AND BESSELINEQUALITIES 5

Making use of (2.6) and (2.7), we deduce

(2.8) ‖x‖
√
‖a‖2 − r2 ≤ Re 〈x, a〉 .

Taking the square in (2.8) and re-arranging the terms, we deduce the third inequality in
(2.2). The others are obvious.

To prove the sharpness of the constant, assume, under the hypothesis of the theorem,
that, there exists a constantc > 0 such that

(2.9) ‖x‖2 ‖a‖2 − [Re 〈x, a〉]2 ≤ cr2 ‖x‖2 ,

providedx ∈ B (a, r) and‖a‖ > r.
Let r =

√
ε > 0, ε ∈ (0, 1) , a, e ∈ H with ‖a‖ = ‖e‖ = 1 and a ⊥ e. Put

x = a+
√

εe. Then obviouslyx ∈ B (a, r) , ‖a‖ > r and‖x‖2 = ‖a‖2 +ε ‖e‖2 = 1+ε,
Re 〈x, a〉 = ‖a‖2 = 1, and thus‖x‖2 ‖a‖2− [Re 〈x, a〉]2 = ε. Using (2.9), we may write
that

ε ≤ cε (1 + ε) , ε > 0

giving

(2.10) c + cε ≥ 1 for anyε > 0.

Letting ε → 0+, we get from (2.10) thatc ≥ 1, and the sharpness of the constant is
proved.

(ii) The inequality (2.3) is obvious by (2.5) since‖a‖ = r. The best constant follows in a
similar way to the above.

(iii) The inequality (2.3) is obvious. The best constant may be proved in a similar way to the
above. We omit the details.

�

The following reverse of Schwarz’s inequality holds.

Theorem 2.2. Let (H; 〈·, ·〉) be an inner product space overK andx, y ∈ H, γ, Γ ∈ K such
that either

(2.11) Re 〈Γy − x, x− γy〉 ≥ 0,

or, equivalently,

(2.12)

∥∥∥∥x− Γ + γ

2
y

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖y‖ ,

holds.

(i) If Re (Γγ) > 0, then we have the inequalities

‖x‖2 ‖y‖2 ≤ 1

4
·
{
Re
[(

Γ + γ
)
〈x, y〉

]}2

Re (Γγ)
(2.13)

≤ 1

4
· |Γ + γ|2

Re (Γγ)
|〈x, y〉|2 .

The constant1
4

is best possible in both inequalities.
(ii) If Re (Γγ) = 0, then

(2.14) ‖x‖2 ≤ Re
[(

Γ + γ
)
〈x, y〉

]
≤ |Γ + γ| |〈x, y〉| .
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(iii) If Re (Γγ) < 0, then

‖x‖2 ≤ −Re (Γγ) ‖y‖2 + Re
[(

Γ + γ
)
〈x, y〉

]
(2.15)

≤ −Re (Γγ) ‖y‖2 + |Γ + γ| |〈x, y〉| .

Proof. The proof of the equivalence between the inequalities (2.11) and (2.12) follows by the
fact that in an inner product spaceRe 〈Z − x, x− z〉 ≥ 0 for x, z, Z ∈ H is equivalent with∥∥x− z+Z

2

∥∥ ≤ 1
2
‖Z − z‖ (see for example [9]).

Consider, fory 6= 0, a = γ+Γ
2

y andr = 1
2
|Γ− γ| ‖y‖ . Then

‖a‖2 − r2 =
|Γ + γ|2 − |Γ− γ|2

4
‖y‖2 = Re (Γγ) ‖y‖2 .

(i) If Re (Γγ) > 0, then the hypothesis of (i) in Theorem 2.1 is satisfied, and by the second
inequality in (2.2) we have

‖x‖2 |Γ + γ|2

4
‖y‖2 − 1

4

{
Re
[(

Γ + γ
)
〈x, y〉

]}2 ≤ 1

4
|Γ− γ|2 ‖x‖2 ‖y‖2

from where we derive

|Γ + γ|2 − |Γ− γ|2

4
‖x‖2 ‖y‖2 ≤ 1

4

{
Re
[(

Γ + γ
)
〈x, y〉

]}2
,

giving the first inequality in (2.13).
The second inequality is obvious.
To prove the sharpness of the constant1

4
, assume that the first inequality in (2.13)

holds with a constantc > 0, i.e.,

(2.16) ‖x‖2 ‖y‖2 ≤ c ·
{
Re
[(

Γ + γ
)
〈x, y〉

]}2

Re (Γγ)
,

providedRe (Γγ) > 0 and either (2.11) or (2.12) holds.
Assume thatΓ, γ > 0, and letx = γy. Then (2.11) holds and by (2.16) we deduce

γ2 ‖y‖4 ≤ c · (Γ + γ)2 γ2 ‖y‖4

Γγ

giving

(2.17) Γγ ≤ c (Γ + γ)2 for any Γ, γ > 0.

Let ε ∈ (0, 1) and choose in (2.17),Γ = 1 + ε, γ = 1 − ε > 0 to get1 − ε2 ≤ 4c for
anyε ∈ (0, 1) . Letting ε → 0+, we deducec ≥ 1

4
, and the sharpness of the constant is

proved.
(ii) and (iii) are obvious and we omit the details.

�

Remark 2.3. We observe that the second bound in (2.13) for‖x‖2 ‖y‖2 is better than the second
bound provided by (1.5).

The following corollary provides a reverse inequality for the additive version of Schwarz’s
inequality.

Corollary 2.4. With the assumptions of Theorem 2.2 and ifRe (Γγ) > 0, then we have the
inequality:

(2.18) 0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
· |Γ− γ|2

Re (Γγ)
|〈x, y〉|2 .
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REVERSES OFSCHWARZ, TRIANGLE AND BESSELINEQUALITIES 7

The constant1
4

is best possible in (2.18).

The proof is obvious from (2.13) on subtracting in both sides the same quantity|〈x, y〉|2 .
The sharpness of the constant may be proven in a similar manner to the one incorporated in the
proof of (i), Theorem 2.2. We omit the details.

Remark 2.5. It is obvious that the inequality (2.18) is better than (1.6) obtained in [9].

For some recent results in connection to Schwarz’s inequality, see [2], [13] and [15].

3. REVERSES OF THE TRIANGLE I NEQUALITY

The following reverse of the triangle inequality holds.

Proposition 3.1. Let(H; 〈·, ·〉) be an inner product space over the real or complex number field
K (K = R, C) andx, a ∈ H, r > 0 are such that

(3.1) ‖x− a‖ ≤ r < ‖a‖ .

Then we have the inequality

(3.2) 0 ≤ ‖x‖+ ‖a‖ − ‖x + a‖ ≤
√

2r ·

√√√√√ Re 〈x, a〉√
‖a‖2 − r2

(√
‖a‖2 − r2 + ‖a‖

) .

Proof. Using the inequality (2.8), we may write that

‖x‖ ‖a‖ ≤ ‖a‖Re 〈x, a〉√
‖a‖2 − r2

,

giving

0 ≤ ‖x‖ ‖a‖ − Re 〈x, a〉(3.3)

≤
‖a‖ −

√
‖a‖2 − r2√

‖a‖2 − r2

Re 〈x, a〉

=
r2 Re 〈x, a〉√

‖a‖2 − r2

(√
‖a‖2 − r2 + ‖a‖

) .

Since
(‖x‖+ ‖a‖)2 − ‖x + a‖2 = 2 (‖x‖ ‖a‖ − Re 〈x, a〉) ,

hence, by (3.3), we have

‖x‖+ ‖a‖ ≤

√√√√√‖x + a‖2 +
2r2 Re 〈x, a〉√

‖a‖2 − r2

(√
‖a‖2 − r2 + ‖a‖

)

≤ ‖x + a‖+
√

2r ·

√√√√√ Re 〈x, a〉√
‖a‖2 − r2

(√
‖a‖2 − r2 + ‖a‖

) ,

giving the desired inequality (3.2). �

The following proposition providing a simpler reverse for the triangle inequality also holds.
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Proposition 3.2. Let (H; 〈·, ·〉) be an inner product space overK andx, y ∈ H, M ≥ m > 0
such that either

(3.4) Re 〈My − x, x−my〉 ≥ 0,

or, equivalently,

(3.5)

∥∥∥∥x− M + m

2
· y
∥∥∥∥ ≤ 1

2
(M −m) ‖y‖ ,

holds. Then we have the inequality

(3.6) 0 ≤ ‖x‖+ ‖y‖ − ‖x + y‖ ≤
√

M −
√

m
4
√

mM

√
Re 〈x, y〉.

Proof. Choosing in (2.8),a = M+m
2

y, r = 1
2
(M −m) ‖y‖ we get

‖x‖ ‖y‖
√

Mm ≤ M + m

2
Re 〈x, y〉

giving

0 ≤ ‖x‖ ‖y‖ − Re 〈x, y〉 ≤

(√
M −

√
m
)2

2
√

mM
Re 〈x, y〉 .

Following the same arguments as in the proof of Proposition 3.1, we deduce the desired in-
equality (3.6). �

For some results related to triangle inequality in inner product spaces, see [3], [17], [18] and
[19].

4. SOME GRÜSSTYPE I NEQUALITIES

We may state the following result.

Theorem 4.1. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K (K = R, K = C) andx, y, e ∈ H with ‖e‖ = 1. If r1, r2 ∈ (0, 1) and

(4.1) ‖x− e‖ ≤ r1, ‖y − e‖ ≤ r2,

then we have the inequality

(4.2) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ r1r2 ‖x‖ ‖y‖ .

The inequality (4.2) is sharp in the sense that the constant1 in front of r1r2 cannot be replaced
by a smaller quantity.

Proof. Apply Schwarz’s inequality in(H; 〈·, ·〉) for the vectorsx− 〈x, e〉 e, y − 〈y, e〉 e, to get
(see also [9])

(4.3) |〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤
(
‖x‖2 − |〈x, e〉|2

) (
‖y‖2 − |〈y, e〉|2

)
.

Using Theorem 2.1 fora = e, we may state that

(4.4) ‖x‖2 − |〈x, e〉|2 ≤ r2
1 ‖x‖

2 , ‖y‖2 − |〈y, e〉|2 ≤ r2
2 ‖y‖

2 .

Utilizing (4.3) and (4.4), we deduce

(4.5) |〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤ r2
1r

2
2 ‖x‖

2 ‖y‖2 ,

which is clearly equivalent to the desired inequality (4.2).
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The sharpness of the constant follows by the fact that forx = y, r1 = r2 = r, we get from
(4.2) that

(4.6) ‖x‖2 − |〈x, e〉|2 ≤ r2 ‖x‖2 ,

provided‖e‖ = 1 and‖x− e‖ ≤ r < 1. The inequality (4.6) is sharp, as shown in Theorem
2.1, and the proof is completed. �

Another companion of the Grüss inequality may be stated as well.

Theorem 4.2. Let (H; 〈·, ·〉) be an inner product space overK andx, y, e ∈ H with ‖e‖ = 1.
Suppose also thata, A, b, B ∈ K (K = R, C) such thatRe (Aa) , Re

(
Bb
)

> 0. If either

(4.7) Re 〈Ae− x, x− ae〉 ≥ 0, Re 〈Be− y, y − be〉 ≥ 0,

or, equivalently,

(4.8)

∥∥∥∥x− a + A

2
e

∥∥∥∥ ≤ 1

2
|A− a| ,

∥∥∥∥y − b + B

2
e

∥∥∥∥ ≤ 1

2
|B − b| ,

holds, then we have the inequality

(4.9) |〈x, y〉 − 〈x, e〉 〈e, y〉| ≤ 1

4
· |A− a| |B − b|√

Re (Aa) Re
(
Bb
) |〈x, e〉 〈e, y〉| .

The constant1
4

is best possible.

Proof. We know, by (4.3), that

(4.10) |〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤
(
‖x‖2 − |〈x, e〉|2

) (
‖y‖2 − |〈y, e〉|2

)
.

If we use Corollary 2.4, then we may state that

(4.11) ‖x‖2 − |〈x, e〉|2 ≤ 1

4
· |A− a|2

Re (Aa)
|〈x, e〉|2

and

(4.12) ‖y‖2 − |〈y, e〉|2 ≤ 1

4
· |B − b|2

Re
(
Bb
) |〈y, e〉|2 .

Utilizing (4.10) – (4.12), we deduce

|〈x, y〉 − 〈x, e〉 〈e, y〉|2 ≤ 1

16
· |A− a|2 |B − b|2

Re (Aa) Re
(
Bb
) |〈x, e〉 〈e, y〉|2 ,

which is clearly equivalent to the desired inequality (4.9).
The sharpness of the constant follows from Corollary 2.4, and we omit the details. �

Remark 4.3. With the assumptions of Theorem 4.2 and if〈x, e〉 , 〈y, e〉 6= 0 (that is actually the
interesting case), then one has the inequality

(4.13)

∣∣∣∣ 〈x, y〉
〈x, e〉 〈e, y〉

− 1

∣∣∣∣ ≤ 1

4
· |A− a| |B − b|√

Re (Aa) Re
(
Bb
) .

The constant1
4

is best possible.

Remark 4.4. The inequality (4.9) provides a better bound for the quantity

|〈x, y〉 − 〈x, e〉 〈e, y〉|
than (2.3) of [9].
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For some recent results on Grüss type inequalities in inner product spaces, see [4], [6] and
[20].

5. REVERSES OF BESSEL’ S I NEQUALITY

Let (H; 〈·, ·〉) be a real or complex infinite dimensional Hilbert space and(ei)i∈N an or-
thornormal family inH, i.e., we recall that〈ei, ej〉 = 0 if i, j ∈ N, i 6= j and‖ei‖ = 1 for
i ∈ N.

It is well known that, ifx ∈ H, then the series
∑∞

i=1 |〈x, ei〉|2 is convergent and the following
inequality, calledBessel’s inequality

(5.1)
∞∑
i=1

|〈x, ei〉|2 ≤ ‖x‖2 ,

holds.
If `2 (K) :=

{
a = (ai)i∈N ⊂ K

∣∣∑∞
i=1 |ai|2 < ∞

}
, whereK = C or K = R, is the Hilbert

space of all complex or real sequences that are2-summable andλ = (λi)i∈N ∈ `2 (K) , then the

series
∑∞

i=1 λiei is convergent inH and ify :=
∑∞

i=1 λiei ∈ H, then‖y‖ =
(∑∞

i=1 |λi|2
) 1

2 .
We may state the following result.

Theorem 5.1. Let (H; 〈·, ·〉) be an infinite dimensional Hilbert space over the real or complex
number fieldK, (ei)i∈N an orthornormal family inH, λ = (λi)i∈N ∈ `2 (K) andr > 0 with the
property that

(5.2)
∞∑
i=1

|λi|2 > r2.

If x ∈ H is such that

(5.3)

∥∥∥∥∥x−
∞∑
i=1

λiei

∥∥∥∥∥ ≤ r,

then we have the inequality

‖x‖2 ≤
(∑∞

i=1 Re
[
λi 〈x, ei〉

])2∑∞
i=1 |λi|2 − r2

(5.4)

≤
∣∣∑∞

i=1 λi 〈x, ei〉
∣∣2∑∞

i=1 |λi|2 − r2

≤
∑∞

i=1 |λi|2∑∞
i=1 |λi|2 − r2

∞∑
i=1

|〈x, ei〉|2 ;

and

0 ≤ ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2(5.5)

≤ r2∑∞
i=1 |λi|2 − r2

∞∑
i=1

|〈x, ei〉|2 .(5.6)

Proof. Applying the third inequality in (2.2) fora =
∑∞

i=1 λiei ∈ H, we have

(5.7) ‖x‖2

∥∥∥∥∥
∞∑
i=1

λiei

∥∥∥∥∥
2

−

[
Re

〈
x,

∞∑
i=1

λiei

〉]2

≤ r2 ‖x‖2
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and since ∥∥∥∥∥
∞∑
i=1

λiei

∥∥∥∥∥
2

=
∞∑
i=1

|λi|2 ,

Re

〈
x,

∞∑
i=1

λiei

〉
=

∞∑
i=1

Re
[
λi 〈x, ei〉

]
,

hence, by (5.7) we deduce

‖x‖2
∞∑
i=1

|λi|2 −

[
Re

〈
x,

∞∑
i=1

λiei

〉]2

≤ r2 ‖x‖2 ,

giving the first inequality in (5.4).
The second inequality is obvious by the modulus property.
The last inequality follows by the Cauchy-Bunyakovsky-Schwarz inequality∣∣∣∣∣

∞∑
i=1

λi 〈x, ei〉

∣∣∣∣∣
2

≤
∞∑
i=1

|λi|2
∞∑
i=1

|〈x, ei〉|2 .

The inequality (5.5) follows by the last inequality in (5.4) on subtracting in both sides the
quantity

∑∞
i=1 |〈x, ei〉|2 < ∞. �

The following result provides a generalization for the reverse of Bessel’s inequality obtained
in [12].

Theorem 5.2. Let (H; 〈·, ·〉) and (ei)i∈N be as in Theorem 5.1. Suppose thatΓ = (Γi)i∈N ∈
`2 (K) , γ = (γi)i∈N ∈ `2 (K) are sequences of real or complex numbers such that

(5.8)
∞∑
i=1

Re (Γiγi) > 0.

If x ∈ H is such that either

(5.9)

∥∥∥∥∥x−
∞∑
i=1

Γi + γi

2
ei

∥∥∥∥∥ ≤ 1

2

(
∞∑
i=1

|Γi − γi|2
) 1

2

or, equivalently,

(5.10) Re

〈
∞∑
i=1

Γiei − x, x−
∞∑
i=1

γiei

〉
≥ 0

holds, then we have the inequalities

‖x‖2 ≤ 1

4
·
(∑∞

i=1 Re
[(

Γi + γi

)
〈x, ei〉

])2∑∞
i=1 Re (Γiγi)

(5.11)

≤ 1

4
·
∣∣∑∞

i=1

(
Γi + γi

)
〈x, ei〉

∣∣2∑∞
i=1 Re (Γiγi)

≤ 1

4
·
∑∞

i=1 |Γi + γi|2∑∞
i=1 Re (Γiγi)

∞∑
i=1

|〈x, ei〉|2 .

The constant1
4

is best possible in all inequalities in (5.11).
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We also have the inequalities:

(5.12) 0 ≤ ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2 ≤
1

4
·
∑∞

i=1 |Γi − γi|2∑∞
i=1 Re (Γiγi)

∞∑
i=1

|〈x, ei〉|2 .

Here the constant1
4

is also best possible.

Proof. SinceΓ, γ ∈ `2 (K) , then also1
2
(Γ± γ) ∈ `2 (K) , showing that the series

∞∑
i=1

∣∣∣∣Γi + γi

2

∣∣∣∣2 ,

∞∑
i=1

∣∣∣∣Γi − γi

2

∣∣∣∣2 and
∞∑
i=1

Re (Γiγi)

are convergent. Also, the series

∞∑
i=1

Γiei,

∞∑
i=1

γiei and
∞∑
i=1

γi + Γi

2
ei

are convergent in the Hilbert spaceH.
The equivalence of the conditions (5.9) and (5.10) follows by the fact that in an inner prod-

uct space we have, forx, z, Z ∈ H, Re 〈Z − x, x− z〉 ≥ 0 is equivalent to
∥∥x− z+Z

2

∥∥ ≤
1
2
‖Z − z‖ , and we omit the details.
Now, we observe that the inequalities (5.11) and (5.12) follow from Theorem 5.1 on choosing

λi = γi+Γi

2
, i ∈ N andr = 1

2

(∑∞
i=1 |Γi − γi|2

) 1
2 .

The fact that1
4

is the best constant in both (5.11) and (5.12) follows from Theorem 2.2 and
Corollary 2.4, and we omit the details. �

Remark 5.3. Note that (5.11) improves (1.17) and (5.12) improves (1.18), that have been ob-
tained in [12].

For some recent results related to Bessel inequality, see [1], [5], [14], and [16].

6. SOME GRÜSSTYPE I NEQUALITIES FOR ORTHONORMAL FAMILIES

The following result related to Grüss inequality in inner product spaces, holds.

Theorem 6.1. Let (H; 〈·, ·〉) be an infinite dimensional Hilbert space over the real or complex
number fieldK, and (ei)i∈N an orthornormal family inH. Assume thatλ = (λi)i∈N , µ =
(µi)i∈N ∈ `2 (K) andr1, r2 > 0 with the properties that

(6.1)
∞∑
i=1

|λi|2 > r2
1,

∞∑
i=1

|µi|2 > r2
2.

If x, y ∈ H are such that

(6.2)

∥∥∥∥∥x−
∞∑
i=1

λiei

∥∥∥∥∥ ≤ r1,

∥∥∥∥∥y −
∞∑
i=1

µiei

∥∥∥∥∥ ≤ r2,
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then we have the inequalities∣∣∣∣∣〈x, y〉 −
∞∑
i=1

〈x, ei〉 〈ei, y〉

∣∣∣∣∣(6.3)

≤ r1r2√∑∞
i=1 |λi|2 − r2

1

√∑∞
i=1 |µi|2 − r2

2

·

√√√√ ∞∑
i=1

|〈x, ei〉|2
∞∑
i=1

|〈y, ei〉|2

≤ r1r2 ‖x‖ ‖y‖√∑∞
i=1 |λi|2 − r2

1

√∑∞
i=1 |µi|2 − r2

2

.

Proof. Applying Schwarz’s inequality for the vectorsx −
∑∞

i=1 〈x, ei〉 ei, y −
∑∞

i=1 〈y, ei〉 ei,
we have

(6.4)

∣∣∣∣∣
〈

x−
∞∑
i=1

〈x, ei〉 ei, y −
∞∑
i=1

〈y, ei〉 ei

〉∣∣∣∣∣
2

≤

∥∥∥∥∥x−
∞∑
i=1

〈x, ei〉 ei

∥∥∥∥∥
2 ∥∥∥∥∥y −

∞∑
i=1

〈y, ei〉 ei

∥∥∥∥∥
2

.

Since 〈
x−

∞∑
i=1

〈x, ei〉 ei, y −
∞∑
i=1

〈y, ei〉 ei

〉
= 〈x, y〉 −

∞∑
i=1

〈x, ei〉 〈ei, y〉

and ∥∥∥∥∥x−
∞∑
i=1

〈x, ei〉 ei

∥∥∥∥∥
2

= ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2 ,

hence, by (5.5) applied forx andy, and from (6.4), we deduce the first part of (6.3).
The second part follows by Bessel’s inequality. �

The following Grüss type inequality may be stated as well.

Theorem 6.2.Let (H; 〈·, ·〉) be an infinite dimensional Hilbert space and(ei)i∈N an orthornor-
mal family inH. Suppose that(Γi)i∈N , (γi)i∈N , (φi)i∈N , (Φi)i∈N ∈ `2 (K) are sequences of real
and complex numbers such that

(6.5)
∞∑
i=1

Re (Γiγi) > 0,
∞∑
i=1

Re
(
Φiφi

)
> 0.

If x, y ∈ H are such that either∥∥∥∥∥x−
∞∑
i=1

Γi + γi

2
· ei

∥∥∥∥∥ ≤ 1

2

(
∞∑
i=1

|Γi − γi|2
) 1

2

(6.6)

∥∥∥∥∥y −
∞∑
i=1

Φi + φi

2
· ei

∥∥∥∥∥ ≤ 1

2

(
∞∑
i=1

|Φi − φi|2
) 1

2
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or, equivalently,

Re

〈
∞∑
i=1

Γiei − x, x−
∞∑
i=1

γiei

〉
≥ 0,(6.7)

Re

〈
∞∑
i=1

Φiei − y, y −
∞∑
i=1

φiei

〉
≥ 0,

holds, then we have the inequality∣∣∣∣∣〈x, y〉 −
∞∑
i=1

〈x, ei〉 〈ei, y〉

∣∣∣∣∣(6.8)

≤ 1

4
·
(∑∞

i=1 |Γi − γi|2
) 1

2
(∑∞

i=1 |Φi − φi|2
) 1

2

(
∑∞

i=1 Re (Γiγi))
1
2
(∑∞

i=1 Re
(
Φiφi

)) 1
2

×

(
∞∑
i=1

|〈x, ei〉|2
) 1

2
(

∞∑
i=1

|〈y, ei〉|2
) 1

2

≤ 1

4
·
(∑∞

i=1 |Γi − γi|2
) 1

2
(∑∞

i=1 |Φi − φi|2
) 1

2

[
∑∞

i=1 Re (Γiγi)]
1
2
[∑∞

i=1 Re
(
Φiφi

)] 1
2

‖x‖ ‖y‖ .

The constant1
4

is best possible in the first inequality.

Proof. Follows by (5.12) and (6.4).
The best constant follows from Theorem 4.2, and we omit the details. �

Remark 6.3. We note that the inequality (6.8) is better than the inequality (3.3) in [12]. We
omit the details.

7. I NTEGRAL I NEQUALITIES

Let (Ω, Σ, µ) be a measurable space consisting of a setΩ, a σ−algebra of partsΣ and a
countably additive and positive measureµ on Σ with values inR∪{∞} . Let ρ ≥ 0 be a
Lebesgue measurable function onΩ with

∫
Ω

ρ (s) dµ (s) = 1. Denote byL2
ρ (Ω, K) the Hilbert

space of all real or complex valued functions defined onΩ and2− ρ−integrable onΩ, i.e.,

(7.1)
∫

Ω

ρ (s) |f (s)|2 dµ (s) < ∞.

It is obvious that the following inner product

(7.2) 〈f, g〉ρ :=

∫
Ω

ρ (s) f (s) g (s)dµ (s) ,

generates the norm‖f‖ρ :=
(∫

Ω
ρ (s) |f (s)|2 dµ (s)

) 1
2 of L2

ρ (Ω, K) , and all the above results
may be stated for integrals.

It is important to observe that, if

(7.3) Re
[
f (s) g (s)

]
≥ 0 for µ− a.e.s ∈ Ω,
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then, obviously,

Re 〈f, g〉ρ = Re

[∫
Ω

ρ (s) f (s) g (s)dµ (s)

]
(7.4)

=

∫
Ω

ρ (s) Re
[
f (s) g (s)

]
dµ (s) ≥ 0.

The reverse is evidently not true in general.
Moreover, if the space is real, i.e.,K = R, then a sufficient condition for (7.4) to hold is:

(7.5) f (s) ≥ 0, g (s) ≥ 0 for µ− a.e.s ∈ Ω.

We provide now, by the use of certain results obtained in Section 2, some integral inequalities
that may be used in practical applications.

Proposition 7.1. Letf, g ∈ L2
ρ (Ω, K) andr > 0 with the properties that

(7.6) |f (s)− g (s)| ≤ r ≤ |g (s)| for µ− a.e.s ∈ Ω.

Then we have the inequalities

0 ≤
∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)−
∣∣∣∣∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣∣∣∣2(7.7)

≤
∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)

−
[∫

Ω

ρ (s) Re
(
f (s) g (s)

)
dµ (s)

]2

≤ r2

∫
Ω

ρ (s) |g (s)|2 dµ (s) .

The constant1 in front of r2 is best possible.

The proof follows by Theorem 2.1 and we omit the details.

Proposition 7.2. Letf, g ∈ L2
ρ (Ω, K) andγ, Γ ∈ K such thatRe (Γγ) > 0 and

(7.8) Re
[
(Γg (s)− f (s))

(
f (s)− γg (s)

)]
≥ 0 for µ− a.e.s ∈ Ω.

Then we have the inequalities∫
Ω

ρ (s) |f (s)|2dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)(7.9)

≤ 1

4
·

{
Re
[(

Γ + γ
) ∫

Ω
ρ (s) f (s) g (s)dµ (s)

]}2

Re (Γγ)

≤ 1

4
· |Γ + γ|2

Re (Γγ)

∣∣∣∣∫
Ω

ρ (s) f (s) g (s)dµ (s)

∣∣∣∣2 .

The constant1
4

is best possible in both inequalities.

The proof follows by Theorem 2.2 and we omit the details.
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Corollary 7.3. With the assumptions of Proposition 7.2, we have the inequality

0 ≤
∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫
Ω

ρ (s) |g (s)|2 dµ (s)(7.10)

−
∣∣∣∣∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣∣∣∣2
≤ 1

4
· |Γ− γ|2

Re (Γγ)

∣∣∣∣∫
Ω

ρ (s) f (s) g (s)dµ (s)

∣∣∣∣2 .

The constant1
4

is best possible.

Remark 7.4. If the space is real and we assume, forM ≥ m > 0, that

(7.11) mg (s) ≤ f (s) ≤ Mg (s) , for µ− a.e.s ∈ Ω,

then, by (7.9) and (7.10), we deduce the inequalities

(7.12)
∫

Ω

ρ (s) [f (s)]2 dµ (s)

∫
Ω

ρ (s) [g (s)]2 dµ (s)

≤ 1

4
· (M + m)2

mM

[∫
Ω

ρ (s) f (s) g (s) dµ (s)

]2

.

and

0 ≤
∫

Ω

ρ (s) [f (s)]2 dµ (s)

∫
Ω

ρ (s) [g (s)]2 dµ (s)(7.13)

−
[∫

Ω

ρ (s) f (s) g (s) dµ (s)

]2

≤ 1

4
· (M −m)2

mM

[∫
Ω

ρ (s) f (s) g (s) dµ (s)

]2

.

The inequality (7.12) is known in the literature asCassel’s inequality.

The following Grüss type integral inequality for real or complex-valued functions also holds.

Proposition 7.5. Let f, g, h ∈ L2
ρ (Ω, K) with

∫
Ω

ρ (s) |h (s)|2 dµ (s) = 1 anda, A, b, B ∈ K
such thatRe (Aa) , Re

(
Bb
)

> 0 and

Re
[
(Ah (s)− f (s))

(
f (s)− ah (s)

)]
≥ 0,

Re
[
(Bh (s)− g (s))

(
g (s)− bh (s)

)]
≥ 0,

for µ−a.e.s ∈ Ω. Then we have the inequalities∣∣∣∣∫
Ω

ρ (s) f (s) g (s)dµ (s)−
∫

Ω

ρ (s) f (s) h (s)dµ (s)

∫
Ω

ρ (s) h (s) g (s)dµ (s)

∣∣∣∣(7.14)

≤ 1

4
· |A− a| |B − b|√

Re (Aa) Re
(
Bb
) ∣∣∣∣∫

Ω

ρ (s) f (s) h (s)dµ (s)

∫
Ω

ρ (s) h (s) g (s)dµ (s)

∣∣∣∣
The constant1

4
is best possible.

The proof follows by Theorem 4.2.

Remark 7.6. All the other inequalities in Sections 3 – 6 may be used in a similar way to obtain
the corresponding integral inequalities. We omit the details.

J. Inequal. Pure and Appl. Math., 5(3) Art. 76, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


REVERSES OFSCHWARZ, TRIANGLE AND BESSELINEQUALITIES 17

REFERENCES

[1] X.H. CAO, Bessel sequences in a Hilbert space,Gongcheng Shuxue Xuebao, 17(2) (2000), 92–98.

[2] A. De ROSSI, A strengthened Cauchy-Schwarz inequality for biorthogonal wavelets,Math. In-
equal. Appl., 2(2) (1999), 263–282.

[3] J.B. DIAZ AND F.T. METCALF, A complementary triangle inequality in Hilbert and Banach
spaces,Proc. Amer. Math. Soc., 17 (1966), 88–97.

[4] S.S. DRAGOMIR, A generalization of Grüss inequality in inner product spaces and applications.
J. Math. Anal. Appl., 237(1) (1999), 74–82.

[5] S.S. DRAGOMIR, A note on Bessel’s inequality,Austral. Math. Soc. Gaz., 28(5) (2001), 246–248.

[6] S.S. DRAGOMIR, Some Grüss type inequalities in inner product spaces,J. Inequal. Pure &
Appl. Math., 4(2) (2003), Article 42, [ONLINEhttp://jipam.vu.edu.au/article.
php?sid=280 ].

[7] S.S. DRAGOMIR, A counterpart of Schwarz’s inequality in inner product spaces,RGMIA Res.
Rep. Coll.,6(2003),Supplement, Article 18, [ONLINE http://rgmia.vu.edu.au/v6(E)
.html ].

[8] S.S. DRAGOMIR, A generalisation of the Cassels and Grueb-Reinboldt inequalities in inner
product spaces, Preprint,Mathematics ArX iv, math.CA/0307130, [ONLINEhttp://front.
math.ucdavis.edu/ ]. Nonlinear Analysis Forum, 8(2) (2003), 169–178.

[9] S.S. DRAGOMIR, Some companions of the Grüss inequality in inner product spaces,J. In-
equal. Pure & Appli. Math.,4(5) (2003), Article 87, [ONLINEhttp://jipam.vu.edu.au/
article.php?sid=328 ].

[10] S.S. DRAGOMIR, On Bessel and Grüss inequalities for orthornormal families in inner product
spaces,RGMIA Res. Rep. Coll.,6(2003),Supplement, Article 12, [ONLINE http://rgmia.
vu.edu.au/v6(E).html ]. Bull. Austral. Math. Soc., 69(2) (2004), 327–340.

[11] S.S. DRAGOMIR, A counterpart of Bessel’s inequality in inner product spaces and some Grüss
type related results,RGMIA Res. Rep. Coll.,6(2003),Supplement, Article 10, [ONLINE http:
//rgmia.vu.edu.au/v6(E).html]

[12] S.S. DRAGOMIR, Some new results related to Bessel and Grüss inequalities for orthornormal fam-
ilies in inner product spaces,RGMIA Res. Rep. Coll.,6(2003),Supplement, Article 13, [ONLINE
http://rgmia.vu.edu.au/v6(E).html ].

[13] S.S. DRAGOMIRAND B. MOND, On the superadditivity and monotonicity of Schwarz’s inequal-
ity in inner product spaces,Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi,15(2)
(1994), 5–22 (1996).

[14] S.S. DRAGOMIRAND J. SÁNDOR, On Bessel’s and Gram’s inequalities in pre-Hilbertian spaces,
Period. Math. Hungar., 29(3) (1994), 197–205.

[15] H. GUNAWAN, On n-inner products,n-norms, and the Cauchy-Schwarz inequality,Sci. Math.
Jpn., 55(1) (2002), 53–60.

[16] H. GUNAWAN, A generalization of Bessel’s inequality and Parseval’s identity,Period. Math. Hun-
gar., 44(2) (2002), 177–181.

[17] S.M. KHALEELULLA, On Diaz-Metcalf’s complementary triangle inequality,Kyungpook Math.
J., 15 (1975), 9–11.
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