Journal of Inequalities in Pure and Applied Mathematics

ABSOLUTE NÖRLUND SUMMABILITY FACTORS

HÜSEYİN BOR

Department of Mathematics Erciyes University 38039 Kayseri, Turkey

EMail: bor@erciyes.edu.tr *URL*: http://fef.erciyes.edu.tr/math/hbor.htm

volume 6, issue 3, article 62, 2005.

Received 24 May, 2005; accepted 31 May, 2005.

Communicated by: L. Leindler

©2000 Victoria University ISSN (electronic): 1443-5756 163-05

Abstract

In this paper a theorem on the absolute Nörlund summability factors has been proved under more weaker conditions by using a quasi β -power increasing sequence instead of an almost increasing sequence.

2000 Mathematics Subject Classification: 40D15, 40F05, 40G05. Key words: Nörlund summability, summability factors, power increasing sequences.

Contents

1	Introduction	3
2	Main Result	6
References		

Absolute Nörlund Summability Factors

Hüseyin Bor

J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005 http://jipam.vu.edu.au

1. Introduction

A positive sequence (b_n) is said to be almost increasing if there exist a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \leq b_n \leq Bc_n$ (see [2]).

Let $\sum a_n$ be a given infinite series with the sequence of partial sums (s_n) and $w_n = na_n$. By u_n^{α} and t_n^{α} we denote the *n*-th Cesàro means of order α , with $\alpha > -1$, of the sequences (s_n) and (w_n) , respectively. The series $\sum a_n$ is said to be summable $|C, \alpha|$, if (see [5], [7])

(1.1)
$$\sum_{n=1}^{\infty} \left| u_n^{\alpha} - u_{n-1}^{\alpha} \right| = \sum_{n=1}^{\infty} \frac{1}{n} \left| t_n^{\alpha} \right| < \infty.$$

Let (p_n) be a sequence of constants, real or complex, and let us write

(1.2)
$$P_n = p_0 + p_1 + p_2 + \dots + p_n \neq 0, \quad (n \ge 0).$$

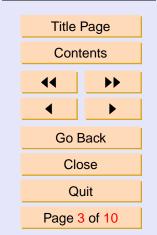
The sequence-to-sequence transformation

(1.3)
$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^n p_{n-v} s_v$$

defines the sequence (σ_n) of the Nörlund mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|N, p_n|$, if (see [9])

(1.4)
$$\sum_{n=1}^{\infty} |\sigma_n - \sigma_{n-1}| < \infty.$$

Absolute Nörlund Summability Factors



J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005 http://jipam.vu.edu.au

In the special case when

(1.5)
$$p_n = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha)\Gamma(n+1)}, \quad \alpha \ge 0$$

the Nörlund mean reduces to the (C, α) mean and $|N, p_n|$ summability becomes $|C, \alpha|$ summability. For $p_n = 1$ and $P_n = n$, we get the (C, 1) mean and then $|N, p_n|$ summability becomes |C, 1| summability. For any sequence (λ_n) , we write $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$ and $\Delta^2 \lambda_n = \Delta(\Delta \lambda_n) = \Delta \lambda_n - \Delta \lambda_{n+1}$.

In [6] Kishore has proved the following theorem concerning |C, 1| and $|N, p_n|$ summability methods.

Theorem 1.1. Let $p_0 > 0$, $p_n \ge 0$ and (p_n) be a non-increasing sequence. If $\sum a_n$ is summable |C, 1|, then the series $\sum a_n P_n (n+1)^{-1}$ is summable $|N, p_n|$.

Ahmad [1] proved the following theorem for absolute Nörlund summability factors.

Theorem 1.2. Let (p_n) be as in Theorem 1.1. If

(1.6)
$$\sum_{v=1}^{n} \frac{1}{v} |t_v| = O(X_n) \quad \text{as } n \to \infty,$$

where (X_n) is a positive non-decreasing sequence and (λ_n) is a sequence such that

$$(1.7) X_n \lambda_n = O(1)$$

(1.8) $n\Delta X_n = O(X_n),$

Absolute Nörlund Summability Factors

J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005 http://jipam.vu.edu.au

(1.9)
$$\sum n X_n \left| \Delta^2 \lambda_n \right| < \infty,$$

then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

Later on Bor [3] proved Theorem 1.2 under weaker conditions in the following form.

Theorem 1.3. Let (p_n) be as in Theorem 1.1 and let (X_n) be a positive nondecreasing sequence. If the conditions (1.6) and (1.7) of Theorem 1.2 are satisfied and the sequences (λ_n) and (β_n) are such that

$$(1.10) |\Delta\lambda_n| \le \beta_n,$$

$$(1.11) \qquad \qquad \beta_n \to 0,$$

(1.12)
$$\sum n X_n \left| \Delta \beta_n \right| < \infty,$$

then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

Also Bor [4] has proved Theorem 1.3 under the weaker conditions in the following form.

Theorem 1.4. Let (p_n) be as in Theorem 1.1 and let (X_n) be an almost increasing sequence. If the conditions (1.6), (1.7), (1.10) and (1.12) of Theorem 1.2 and Theorem 1.3 are satisfied, then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

Absolute Nörlund Summability Factors



J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005 http://jipam.vu.edu.au

2. Main Result

The aim of this paper is to prove Theorem 1.4 under more weaker conditions. For this we need the concept of a quasi β -power increasing sequence. A positive sequence (γ_n) is said to be a quasi β -power increasing sequence if there exists a constant $K = K(\beta, \gamma) \ge 1$ such that

(2.1)
$$Kn^{\beta}\gamma_n \ge m^{\beta}\gamma_m$$

holds for all $n \ge m \ge 1$. It should be noted that every almost increasing sequence is a quasi β -power increasing sequence for any nonnegative β , but the converse need not be true as can be seen by taking an example, say $\gamma_n = n^{-\beta}$ for $\beta > 0$. So we are weakening the hypotheses of the theorem replacing an almost increasing sequence by a quasi β -power increasing sequence.

Now we shall prove the following theorem.

Theorem 2.1. Let (p_n) be as in Theorem 1.1 and let (X_n) be a quasi β -power increasing sequence. If the conditions (1.6), (1.7), (1.10) and (1.12) of Theorem 1.2 and Theorem 1.3 are satisfied, then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

We need the following lemma for the proof of our theorem.

Lemma 2.2 ([8]). Under the conditions on (X_n) , (λ_n) and (β_n) , as taken in the statement of the theorem, the following conditions hold, when (1.12) is satisfied:

(2.2)
$$n\beta_n X_n = O(1) \quad \text{as } n \to \infty,$$

J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005

http://jipam.vu.edu.au

(2.3)
$$\sum_{n=1}^{\infty} \beta_n X_n < \infty.$$

Proof of Theorem 2.1. In order to prove the theorem, we need consider only the special case in which (N, p_n) is (C, 1), that is, we shall prove that $\sum a_n \lambda_n$ is summable |C, 1|. Our theorem will then follow by means of Theorem 1.1. Let T_n be the *n*-th (C, 1) mean of the sequence $(na_n\lambda_n)$, that is,

(2.4)
$$T_n = \frac{1}{n+1} \sum_{v=1}^n v a_v \lambda_v.$$

Using Abel's transformation, we have

$$T_n = \frac{1}{n+1} \sum_{v=1}^n v a_v \lambda_v$$

= $\frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_v (v+1) t_v + \lambda_n t_n$
= $T_{n,1} + T_{n,2}$, say.

To complete the proof of the theorem, it is sufficient to show that

(2.5)
$$\sum_{n=1}^{\infty} \frac{1}{n} |T_{n,r}| < \infty \quad \text{for } r = 1, 2, \text{ by (1.1)}.$$

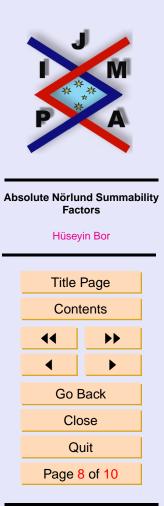
Absolute Nörlund Summability Factors

J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005 http://jipam.vu.edu.au

Now, we have

$$\begin{split} \sum_{n=2}^{m+1} \frac{1}{n} \left| T_{n,1} \right| &\leq \sum_{n=2}^{m+1} \frac{1}{n(n+1)} \left\{ \sum_{v=1}^{n-1} \frac{v+1}{v} v \left| \Delta \lambda_v \right| \left| t_v \right| \right\} \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^2} \left\{ \sum_{v=1}^{n-1} v \beta_v \left| t_v \right| \right\} \\ &= O(1) \sum_{v=1}^m v \beta_v \left| t_v \right| \sum_{n=v+1}^{m+1} \frac{1}{n^2} \\ &= O(1) \sum_{v=1}^m v \beta_v \frac{\left| t_v \right|}{v} \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v \beta_v) \sum_{r=1}^v \frac{\left| t_r \right|}{r} + O(1) m \beta_m \sum_{v=1}^m \frac{\left| t_v \right|}{v} \\ &= O(1) \sum_{v=1}^{m-1} \left| \Delta(v \beta_v) \right| X_v + O(1) m \beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} \left| (v+1) \Delta \beta_v - \beta_v \right| X_v + O(1) m \beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v \left| \Delta \beta_v \right| X_v + O(1) \sum_{v=1}^{m-1} \left| \beta_v \right| X_v + O(1) m \beta_m X_m \\ &= O(1) \text{ as } m \to \infty, \end{split}$$

by (1.6), (1.10), (1.12), (2.2) and (2.3).



J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005 http://jipam.vu.edu.au

Again

$$\begin{split} \sum_{n=1}^{m} \frac{1}{n} \left| T_{n,2} \right| &= \sum_{n=1}^{m} \left| \lambda_n \right| \frac{|t_n|}{n} \\ &= \sum_{n=1}^{m-1} \Delta \left| \lambda_n \right| \sum_{v=1}^{n} \frac{|t_v|}{v} + \left| \lambda_m \right| \sum_{n=1}^{m} \frac{|t_n|}{n} \\ &= O(1) \sum_{n=1}^{m-1} \left| \Delta \lambda_n \right| X_n + O(1) \left| \lambda_m \right| X_m \\ &= O(1) \sum_{n=1}^{m-1} \beta_n X_n + O(1) \left| \lambda_m \right| X_m = O(1) \quad \text{as } m \to \infty, \end{split}$$

by (1.6), (1.7), (1.10) and (2.3). This completes the proof of the theorem.

Absolute Nörlund Summability Factors

Hüseyin Bor

J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005 http://jipam.vu.edu.au

References

- [1] Z.U. AHMAD, Absolute Nörlund summability factors of power series and Fourier series, *Ann. Polon. Math.*, **27** (1972), 9–20.
- [2] S. ALJANČIĆ AND D. ARANDELOVIĆ, O-regularly varying functions, Publ. Inst. Math., 22 (1977), 5–22.
- [3] H. BOR, Absolute Nörlund summability factors of power series and Fourier series, *Ann. Polon. Math.*, **56** (1991), 11–17.
- [4] H. BOR, On the Absolute Nörlund summability factors, *Math. Commun.*, 5 (2000), 143–147.
- [5] M. FETEKE, Zur Theorie der divergenten Reihen, *Math. es Termes Ertesitö* (Budapest), **29** (1911), 719–726.
- [6] N. KISHORE, On the absolute Nörlund summability factors, *Riv. Math. Univ. Parma*, **6** (1965), 129–134.
- [7] E. KOGBENTLIANTZ, Sur lés series absolument sommables par la méthode des moyennes arithmétiques, *Bull. Sci. Math.*, **49** (1925), 234–256.
- [8] L. LEINDLER, A new application of quasi power increasing sequences, *Publ. Math. Debrecen*, **58** (2001), 791–796.
- [9] F.M. MEARS, Some multiplication theorems for the Nörlund mean, *Bull. Amer. Math. Soc.*, **41** (1935), 875–880.

Absolute Nörlund Summability Factors

J. Ineq. Pure and Appl. Math. 6(3) Art. 62, 2005 http://jipam.vu.edu.au