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ABSTRACT. In this paper a theorem on the absolute Nörlund summability factors has been
proved under more weaker conditions by using a quasiβ-power increasing sequence instead
of an almost increasing sequence.
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1. I NTRODUCTION

A positive sequence(bn) is said to be almost increasing if there exist a positive increasing
sequence(cn) and two positive constantsA andB such thatAcn ≤ bn ≤ Bcn (see [2]).

Let
∑

an be a given infinite series with the sequence of partial sums(sn) andwn = nan. By
uα

n andtαn we denote then-th Cesàro means of orderα, with α > −1, of the sequences(sn) and
(wn), respectively. The series

∑
an is said to be summable|C, α|, if (see [5], [7])

(1.1)
∞∑

n=1

∣∣uα
n − uα

n−1

∣∣ =
∞∑

n=1

1

n
|tαn| < ∞.

Let (pn) be a sequence of constants, real or complex, and let us write

(1.2) Pn = p0 + p1 + p2 + · · ·+ pn 6= 0, (n ≥ 0).

The sequence-to-sequence transformation

(1.3) σn =
1

Pn

n∑
v=0

pn−vsv
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defines the sequence(σn) of the Nörlund mean of the sequence(sn), generated by the sequence
of coefficients(pn). The series

∑
an is said to be summable|N, pn|, if (see [9])

(1.4)
∞∑

n=1

|σn − σn−1| < ∞.

In the special case when

(1.5) pn =
Γ(n + α)

Γ(α)Γ(n + 1)
, α ≥ 0

the Nörlund mean reduces to the(C, α) mean and|N, pn| summability becomes|C, α| summa-
bility. For pn = 1 andPn = n, we get the(C, 1) mean and then|N, pn| summability becomes
|C, 1| summability. For any sequence(λn), we write∆λn = λn−λn+1 and∆2λn = ∆(∆λn) =
∆λn −∆λn+1.

In [6] Kishore has proved the following theorem concerning|C, 1| and|N, pn| summability
methods.

Theorem 1.1.Letp0 > 0, pn ≥ 0 and(pn) be a non-increasing sequence. If
∑

an is summable
|C, 1|, then the series

∑
anPn(n + 1)−1 is summable|N, pn|.

Ahmad [1] proved the following theorem for absolute Nörlund summability factors.

Theorem 1.2.Let (pn) be as in Theorem 1.1. If

(1.6)
n∑

v=1

1

v
|tv| = O(Xn) asn →∞,

where(Xn) is a positive non-decreasing sequence and(λn) is a sequence such that

(1.7) Xnλn = O(1),

(1.8) n∆Xn = O(Xn),

(1.9)
∑

nXn

∣∣∆2λn

∣∣ < ∞,

then the series
∑

anPnλn(n + 1)−1 is summable|N, pn|.

Later on Bor [3] proved Theorem 1.2 under weaker conditions in the following form.

Theorem 1.3. Let (pn) be as in Theorem 1.1 and let(Xn) be a positive non-decreasing se-
quence. If the conditions (1.6) and (1.7) of Theorem 1.2 are satisfied and the sequences(λn)
and(βn) are such that

(1.10) |∆λn| ≤ βn,

(1.11) βn → 0,

(1.12)
∑

nXn |∆βn| < ∞,

then the series
∑

anPnλn(n + 1)−1 is summable|N, pn|.

Also Bor [4] has proved Theorem 1.3 under the weaker conditions in the following form.
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Theorem 1.4.Let (pn) be as in Theorem 1.1 and let(Xn) be an almost increasing sequence. If
the conditions (1.6), (1.7), (1.10) and (1.12) of Theorem 1.2 and Theorem 1.3 are satisfied, then
the series

∑
anPnλn(n + 1)−1 is summable|N, pn|.

2. M AIN RESULT

The aim of this paper is to prove Theorem 1.4 under more weaker conditions. For this we
need the concept of a quasiβ-power increasing sequence. A positive sequence(γn) is said to
be a quasiβ-power increasing sequence if there exists a constantK = K(β, γ) ≥ 1 such that

(2.1) Knβγn ≥ mβγm

holds for alln ≥ m ≥ 1. It should be noted that every almost increasing sequence is a quasi
β-power increasing sequence for any nonnegativeβ, but the converse need not be true as can be
seen by taking an example, sayγn = n−β for β > 0. So we are weakening the hypotheses of
the theorem replacing an almost increasing sequence by a quasiβ-power increasing sequence.

Now we shall prove the following theorem.

Theorem 2.1. Let (pn) be as in Theorem 1.1 and let(Xn) be a quasiβ-power increasing
sequence. If the conditions (1.6), (1.7), (1.10) and (1.12) of Theorem 1.2 and Theorem 1.3 are
satisfied, then the series

∑
anPnλn(n + 1)−1 is summable|N, pn|.

We need the following lemma for the proof of our theorem.

Lemma 2.2 ([8]). Under the conditions on(Xn), (λn) and (βn), as taken in the statement of
the theorem, the following conditions hold, when (1.12) is satisfied:

(2.2) nβnXn = O(1) asn →∞,

(2.3)
∞∑

n=1

βnXn < ∞.

Proof of Theorem 2.1.In order to prove the theorem, we need consider only the special case in
which (N, pn) is (C, 1), that is, we shall prove that

∑
anλn is summable|C, 1|. Our theorem

will then follow by means of Theorem 1.1. LetTn be then-th (C, 1) mean of the sequence
(nanλn), that is,

(2.4) Tn =
1

n + 1

n∑
v=1

vavλv.

Using Abel’s transformation, we have

Tn =
1

n + 1

n∑
v=1

vavλv

=
1

n + 1

n−1∑
v=1

∆λv(v + 1)tv + λntn

= Tn,1 + Tn,2, say.

To complete the proof of the theorem, it is sufficient to show that

(2.5)
∞∑

n=1

1

n
|Tn,r| < ∞ for r = 1, 2, by (1.1).
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Now, we have

m+1∑
n=2

1

n
|Tn,1| ≤

m+1∑
n=2

1

n(n + 1)

{
n−1∑
v=1

v + 1

v
v |∆λv| |tv|

}

= O(1)
m+1∑
n=2

1

n2

{
n−1∑
v=1

vβv |tv|

}

= O(1)
m∑

v=1

vβv |tv|
m+1∑

n=v+1

1

n2

= O(1)
m∑

v=1

vβv
|tv|
v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

|tr|
r

+ O(1)mβm

m∑
v=1

|tv|
v

= O(1)
m−1∑
v=1

|∆(vβv)|Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

|(v + 1)∆βv − βv|Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v |∆βv|Xv + O(1)
m−1∑
v=1

|βv|Xv + O(1)mβmXm

= O(1) asm →∞,

by (1.6), (1.10), (1.12), (2.2) and (2.3).
Again

m∑
n=1

1

n
|Tn,2| =

m∑
n=1

|λn|
|tn|
n

=
m−1∑
n=1

∆ |λn|
n∑

v=1

|tv|
v

+ |λm|
m∑

n=1

|tn|
n

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1) |λm|Xm

= O(1)
m−1∑
n=1

βnXn + O(1) |λm|Xm = O(1) asm →∞,

by (1.6), (1.7), (1.10) and (2.3). This completes the proof of the theorem. �
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