Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 6, Issue 3, Article 62, 2005

ABSOLUTE NÖRLUND SUMMABILITY FACTORS

HÜSEYİN BOR
Department of Mathematics
ERCIYES UNIVERSITY
38039 KAYSERI, TURKEY
bor@erciyes.edu.tr
$U R L:$ http://fef.erciyes.edu.tr/math/hbor.htm
Received 24 May, 2005; accepted 31 May, 2005
Communicated by L. Leindler

Abstract

In this paper a theorem on the absolute Nörlund summability factors has been proved under more weaker conditions by using a quasi β-power increasing sequence instead of an almost increasing sequence.

Key words and phrases: Nörlund summability, summability factors, power increasing sequences.
2000 Mathematics Subject Classification. 40D15, 40F05, 40G05.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [2]).

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$ and $w_{n}=n a_{n}$. By u_{n}^{α} and t_{n}^{α} we denote the n-th Cesàro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and $\left(w_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, \alpha|$, if (see [5], [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|<\infty . \tag{1.1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of constants, real or complex, and let us write

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+p_{2}+\cdots+p_{n} \neq 0, \quad(n \geq 0) . \tag{1.2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.3}
\end{equation*}
$$

ISSN (electronic): 1443-5756

(C) 2005 Victoria University. All rights reserved.

163-05
defines the sequence $\left(\sigma_{n}\right)$ of the Nörlund mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$, if (see [9])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\sigma_{n}-\sigma_{n-1}\right|<\infty \tag{1.4}
\end{equation*}
$$

In the special case when

$$
\begin{equation*}
p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \quad \alpha \geq 0 \tag{1.5}
\end{equation*}
$$

the Nörlund mean reduces to the (C, α) mean and $\left|N, p_{n}\right|$ summability becomes $|C, \alpha|$ summability. For $p_{n}=1$ and $P_{n}=n$, we get the $(C, 1)$ mean and then $\left|N, p_{n}\right|$ summability becomes $|C, 1|$ summability. For any sequence $\left(\lambda_{n}\right)$, we write $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$ and $\Delta^{2} \lambda_{n}=\Delta\left(\Delta \lambda_{n}\right)=$ $\Delta \lambda_{n}-\Delta \lambda_{n+1}$.

In [6] Kishore has proved the following theorem concerning $|C, 1|$ and $\left|N, p_{n}\right|$ summability methods.

Theorem 1.1. Let $p_{0}>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

Ahmad [1] proved the following theorem for absolute Nörlund summability factors.
Theorem 1.2. Let $\left(p_{n}\right)$ be as in Theorem 1.1. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|=O\left(X_{n}\right) \quad \text { as } n \rightarrow \infty \tag{1.6}
\end{equation*}
$$

where $\left(X_{n}\right)$ is a positive non-decreasing sequence and $\left(\lambda_{n}\right)$ is a sequence such that

$$
\begin{equation*}
\sum n X_{n}\left|\Delta^{2} \lambda_{n}\right|<\infty \tag{1.9}
\end{equation*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.
Later on Bor [3] proved Theorem 1.2] under weaker conditions in the following form.
Theorem 1.3. Let $\left(p_{n}\right)$ be as in Theorem 1.1 and let $\left(X_{n}\right)$ be a positive non-decreasing sequence. If the conditions (1.6) and (1.7) of Theorem 1.2 are satisfied and the sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ are such that

$$
\begin{equation*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\sum n X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{1.12}
\end{equation*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.
Also Bor [4] has proved Theorem 1.3 under the weaker conditions in the following form.

Theorem 1.4. Let $\left(p_{n}\right)$ be as in Theorem 1.1 and let $\left(X_{n}\right)$ be an almost increasing sequence. If the conditions (1.6), (1.7), (1.10) and (1.12) of Theorem 1.2 and Theorem 1.3 are satisfied, then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

2. Main Result

The aim of this paper is to prove Theorem 1.4 under more weaker conditions. For this we need the concept of a quasi β-power increasing sequence. A positive sequence $\left(\gamma_{n}\right)$ is said to be a quasi β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geq 1$ such that

$$
\begin{equation*}
K n^{\beta} \gamma_{n} \geq m^{\beta} \gamma_{m} \tag{2.1}
\end{equation*}
$$

holds for all $n \geq m \geq 1$. It should be noted that every almost increasing sequence is a quasi β-power increasing sequence for any nonnegative β, but the converse need not be true as can be seen by taking an example, say $\gamma_{n}=n^{-\beta}$ for $\beta>0$. So we are weakening the hypotheses of the theorem replacing an almost increasing sequence by a quasi β-power increasing sequence.

Now we shall prove the following theorem.
Theorem 2.1. Let $\left(p_{n}\right)$ be as in Theorem 1.1 and let $\left(X_{n}\right)$ be a quasi β-power increasing sequence. If the conditions (1.6), (1.7), (1.10) and (1.12) of Theorem 1.2 and Theorem 1.3 are satisfied, then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

We need the following lemma for the proof of our theorem.
Lemma 2.2 ([8]). Under the conditions on $\left(X_{n}\right),\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$, as taken in the statement of the theorem, the following conditions hold, when (1.12) is satisfied:

$$
\begin{equation*}
n \beta_{n} X_{n}=O(1) \quad \text { as } n \rightarrow \infty, \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{2.3}
\end{equation*}
$$

Proof of Theorem [2.1] In order to prove the theorem, we need consider only the special case in which $\left(N, p_{n}\right)$ is $(C, 1)$, that is, we shall prove that $\sum a_{n} \lambda_{n}$ is summable $|C, 1|$. Our theorem will then follow by means of Theorem 1.1. Let T_{n} be the n-th $(C, 1)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$, that is,

$$
\begin{equation*}
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v} . \tag{2.4}
\end{equation*}
$$

Using Abel's transformation, we have

$$
\begin{aligned}
T_{n} & =\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v} \\
& =\frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_{v}(v+1) t_{v}+\lambda_{n} t_{n} \\
& =T_{n, 1}+T_{n, 2}, \quad \text { say. }
\end{aligned}
$$

To complete the proof of the theorem, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}\right|<\infty \quad \text { for } r=1,2, \text { by (1.1). } \tag{2.5}
\end{equation*}
$$

Now, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}\right| & \leq \sum_{n=2}^{m+1} \frac{1}{n(n+1)}\left\{\sum_{v=1}^{n-1} \frac{v+1}{v} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}}\left\{\sum_{v=1}^{n-1} v \beta_{v}\left|t_{v}\right|\right\} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v}\left|t_{v}\right| \sum_{n=v+1}^{m+1} \frac{1}{n^{2}} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v} \frac{\left|t_{v}\right|}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{\left|t_{r}\right|}{r}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{\left|t_{v}\right|}{v} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by (1.6), (1.10), (1.12), (2.2) and (2.3).
Again

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|T_{n, 2}\right| & =\sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{\left|t_{n}\right|}{n} \\
& =\sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{\left|t_{v}\right|}{v}+\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\left|t_{n}\right|}{n} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } m \rightarrow \infty,
\end{aligned}
$$

by (1.6), (1.7), (1.10) and (2.3). This completes the proof of the theorem.

References

[1] Z.U. AHMAD, Absolute Nörlund summability factors of power series and Fourier series, Ann. Polon. Math., 27 (1972), 9-20.
[2] S. ALJANČIĆ and D. ARANDELOVIĆ, O-regularly varying functions, Publ. Inst. Math., 22 (1977), 5-22.
[3] H. BOR, Absolute Nörlund summability factors of power series and Fourier series, Ann. Polon. Math., 56 (1991), 11-17.
[4] H. BOR, On the Absolute Nörlund summability factors, Math. Commun., 5 (2000), 143-147.
[5] M. FETEKE, Zur Theorie der divergenten Reihen, Math. es Termes Ertesitö (Budapest), 29 (1911), 719-726.
[6] N. KISHORE, On the absolute Nörlund summability factors, Riv. Math. Univ. Parma, 6 (1965), 129-134.
[7] E. KOGBENTLIANTZ, Sur lés series absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math., 49 (1925), 234-256.
[8] L. LEINDLER, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58 (2001), 791-796.
[9] F.M. MEARS, Some multiplication theorems for the Nörlund mean, Bull. Amer. Math. Soc., 41 (1935), 875-880.

