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ABSTRACT. In this paper we prove some uniqueness theorems of meromorphic functions which
improve a result of Tohge and answer a question given by him. Furthermore, an example shows
that the conditions of our results are sharp.
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1. I NTRODUCTION , DEFINITIONS AND RESULTS

Let f(z) be a nonconstant meromorphic function in the complex planeC. We shall use the
standard notations in Nevanlinna’s value distribution theory of meromorphic functions such
asT (r, f), N(r, f), andm(r, f) (see, e.g., [1]). In this paper, we useNk)(r, 1/(f − a)) to
denote the counting function ofa-points off with multiplicities less than or equal tok, and
N(k(r, 1/(f − a)) the counting function ofa-points of f with multiplicities greater than or
equal tok. We also useNk)(r, 1/(f − a)) andN (k(r, 1/(f − a)) to denote the corresponding
reduced counting functions, respectively (see [2]). The notationS(r, f) is defined to be any
quantity satisfyingS(r, f) = o(T (r, f)) asr → ∞ possibly outside a set ofr of finite linear
measure.
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2 JUN-FAN CHEN AND WEI-CHUAN L IN

Let f(z) andg(z) be two nonconstant meromorphic functions anda be a complex number. If
the zeros off−a andg−a have the same zeros counting multiplicities (ignoring multiplicities),
then we say thatf andg share the valuea CM (IM).

Let S0(f = a = g) be the set of all common zeros off(z) − a and g(z) − a ignoring
multiplicities, SE(f = a = g) be the set of all common zeros off(z) − a andg(z) − a with
the same multiplicities. Denote byN0(r, f = a = g), NE(r, f = a = g) the reduced counting
functions off andg corresponding to the setsS0(f = a = g) andSE(f = a = g), respectively.
If

N

(
r,

1

f − a

)
+ N

(
r,

1

g − a

)
− 2N0(r, f = a = g) = S(r, f) + S(r, g),

then we say thatf andg sharea IM ∗. If

N

(
r,

1

f − a

)
+ N

(
r,

1

g − a

)
− 2NE(r, f = a = g) = S(r, f) + S(r, g),

then we say thatf andg sharea CM∗.
Let k be a positive integer or infinity. We denote byEk)(a, f) the set ofa-points off with

multiplicities less than or equal tok (ignoring multiplicities).
In 1988, Tohge [3] proved the following result.

Theorem A ([3]). Letf andg be two nonconstant meromorphic functions sharing0, 1,∞ CM,
andf ′, g′ share 0 CM. Thenf andg satisfy one of the following relations:

(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,

(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,
wherec (6= 0, 1) is a constant.

In the same paper, Tohge [3] suggested the following problem:Is it possible to weaken the
restriction of CM sharing in Theorem A?

In 2000, Al-Khaladi [4] – [5] dealt with this problem and proved the following theorems,
which are improvements of Theorem A.

Theorem B ([4]). Letf andg be two nonconstant meromorphic functions sharing0, 1,∞ CM,
andf ′, g′ share 0 IM. Then the conclusions of Theorem A still hold.

Theorem C ([5]). Let f andg be two nonconstant meromorphic functions sharing0, ∞ CM,
andf ′, g′ share 0 IM. IfEk)(1, f) = Ek)(1, g), wherek is a positive integer or infinity, then the
conclusions of Theorem A still hold.

Now we explain the notion of weighted sharing as introduced in [6] – [7].

Definition 1.1 ([6] – [7]). Let k be a nonnegative integer or infinity. Fora ∈ C
⋃
{∞}, we

denote byEk(a, f) the set of alla-points off where ana-point of multiplicity m is countedm
times if m ≤ k andk + 1 times if m > k. If Ek(a, f) = Ek(a, g), we say thatf , g share the
valuea with weightk.

The definition implies that iff , g share a valuea with weightk thenz0 is a zero off − a
with multiplicity m (≤ k) if and only if it is a zero ofg− a with multiplicity m (≤ k) andz0 is
a zero off − a with multiplicity m (> k) if and only if it is a zero ofg − a with multiplicity n
(> k) wherem is not necessarily equal ton.
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TOHGE RESULT ON THEUNICITY OF MEROMORPHICFUNCTIONS 3

We writef , g share(a, k) to mean thatf , g share the valuea with weightk. Clearly if f , g
share(a, k) thenf , g share(a, p) for all integersp, 0 ≤ p < k. Also we note thatf , g share a
valuea IM or CM if and only if f , g share(a, 0) or (a,∞) respectively.

In particular, iff , g share a valuea IM ∗ or CM∗, then we say thatf , g share(a, 0)∗ or (a,∞)∗

respectively (see [8]).

Definition 1.2 ([8]). Fora ∈ C
⋃
{∞}, we put

δ(p(a, f) = 1− lim sup
r→∞

N(p

(
r, 1

f−a

)
T (r, f)

,

wherep is a positive number.

In 2005, the present author etc. [8] and Lahiri [9] also improved Theorem A and obtained the
following results, respectively.

Theorem D ([8]). Let f and g be two nonconstant meromorphic functions sharing(0, 1),
(1,∞), (∞,∞), and f ′, g′ share(0, 0)∗. If δ(2(0, f) > 1/2, then the conclusions of Theo-
rem A still hold.

Theorem E([9]). Letf andg be two nonconstant meromorphic functions sharing(0, 1), (1, m),
and(∞, k), wherek, m are positive integers or infinities satisfying(m−1)(km−1) > (1+m)2.
If E1)(0, f

′) ⊆ E∞)(0, g
′) andE1)(0, g

′) ⊆ E∞)(0, f
′), then the conclusions of Theorem A still

hold.

In this paper, we shall prove the following theorems, which improve and supplement the
above theorems.

Theorem 1.1.Letf andg be two nonconstant meromorphic functions sharing(a1, k1), (a2, k2),
and(a3, k3), where{a1, a2, a3} = {0, 1,∞}, andkj (j = 1, 2, 3) are positive integers satisfying

(1.1) k1k2k3 > k1 + k2 + k3 + 2.

If E1)(0, f
′) ⊆ E∞)(0, g

′) andE1)(0, g
′) ⊆ E∞)(0, f

′), thenf andg satisfy one of the following
relations:

(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,

(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,

wherec (6= 0, 1) is a constant.

From Theorem 1.1, we immediately deduce the following corollary.

Corollary 1.2. Letf andg be two nonconstant meromorphic functions sharing(a1, k1), (a2, k2),
and(a3, k3), where{a1, a2, a3} = {0, 1,∞}, andkj (j = 1, 2, 3) are positive integers satisfying
one of the following relations:

(i) k1 ≥ 1, k2 ≥ 3, andk3 ≥ 4,
(ii) k1 ≥ 2, k2 ≥ 2, andk3 ≥ 3,

(iii) k1 ≥ 1, k2 ≥ 2, andk3 ≥ 6.
If E1)(0, f

′) ⊆ E∞)(0, g
′) and E1)(0, g

′) ⊆ E∞)(0, f
′), thenf and g satisfy one of the

following relations:

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 111, 13 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,

(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,
wherec (6= 0, 1) is a constant.

Theorem 1.3.Letf andg be two nonconstant meromorphic functions sharing(a1, k1), (a2, k2),
and(a3, k3), where{a1, a2, a3} = {0, 1,∞}, andkj (j = 1, 2, 3) are positive integers satisfying
(1.1). If

(1.2) N1)

(
r,

1

f ′

)
+ N1)

(
r,

1

g′

)
< (λ + o(1))T (r), (r ∈ I),

where0 < λ < 1/3, T (r) = max{T (r, f), T (r, g)}, andI is a set of infinite linear measure,
thenf andg satisfy one of the following relations: (i)f≡g, (ii) fg≡1, (iii) (f − 1)(g − 1)≡1,
(iv)f + g≡1, (v)f≡cg, (vi)f − 1≡c(g − 1), (vii) [(c − 1)f + 1][(c − 1)g − c]≡ − c, wherec
(6= 0, 1) is a constant.

By Theorem 1.3, we instantly derive the following corollary.

Corollary 1.4. Letf andg be two nonconstant meromorphic functions sharing(a1, k1), (a2, k2),
and(a3, k3), where{a1, a2, a3} = {0, 1,∞}, andkj (j = 1, 2, 3) are positive integers satisfying
one of the following relations:

(i) k1 ≥ 1, k2 ≥ 3, andk3 ≥ 4,
(ii) k1 ≥ 2, k2 ≥ 2, andk3 ≥ 3,

(iii) k1 ≥ 1, k2 ≥ 2, andk3 ≥ 6.
If (1.2) holds, thenf andg satisfy one of the following relations:

(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,

(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,
wherec (6= 0, 1) is a constant.

The following example shows that any one ofkj (j = 1, 2, 3) in Theorem 1.1, Corollary 1.2,
Theorem 1.3 and Corollary 1.4 cannot be equal to 0.

Example 1.1. Let f = (ez − 1)−2 andg = (ez − 1)−1. Thenf andg share(0,∞), (1,∞),
(∞, 0), andf ′, g′ share(0,∞). However,f andg do not satisfy any one of the relations given
in Theorem 1.1, Corollary 1.2, Theorem 1.3 and Corollary 1.4.

2. L EMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1 ([10]). Let f and g be two nonconstant meromorphic functions sharing(0, 0),
(1, 0), and(∞, 0). Then

T (r, f) ≤ 3T (r, g) + S(r, f), T (r, g) ≤ 3T (r, f) + S(r, g),
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S(r, f) = S(r, g) := S(r).

Proof. Note thatf andg share(0, 0), (1, 0), and(∞, 0). By the second fundamental theorem,
we can easily obtain the conclusion of Lemma 2.1. �

The second lemma is due to Yi [11], which plays an important role in the proof.

Lemma 2.2 ([11]). Let f and g be two distinct nonconstant meromorphic functions sharing
(a1, k1), (a2, k2), and(a3, k3), where{a1, a2, a3} = {0, 1,∞}, andkj (j = 1, 2, 3) are positive
integers satisfying(1.1). Then

N (2

(
r,

1

f

)
+ N (2(r, f) + N (2

(
r,

1

f − 1

)
= S(r),

the same identity holds forg.

Lemma 2.3. Letf andg be two nonconstant meromorphic functions sharing(a1, k1), (a2, k2),
and(a3, k3), where{a1, a2, a3} = {0, 1,∞}, andkj (j = 1, 2, 3) are positive integers satisfying
(1.1). If

(2.1) α =
g

f
,

(2.2) β =
f − 1

g − 1
,

then

N

(
r,

1

α

)
= N(r, α) = N

(
r,

1

β

)
= N(r, β) = S(r).

Proof. If α or β is a constant, then the result is obvious. Next we suppose thatα andβ are
nonconstant. Sincef andg share(a1, k1), (a2, k2), and(a3, k3), by (2.1), (2.2), and Lemma 2.2
we have

N

(
r,

1

α

)
≤ N (2

(
r,

1

g

)
+ N (2(r, f) = S(r),

N(r, α) ≤ N (2

(
r,

1

f

)
+ N (2(r, g) = S(r),

N(r,
1

β
) ≤ N (2

(
r,

1

f − 1

)
+ N (2(r, g) = S(r),

N(r, β) ≤ N (2

(
r,

1

g − 1

)
+ N (2(r, f) = S(r),

which completes the proof of the lemma. �

Lemma 2.4. Let f andg be two distinct nonconstant meromorphic functions sharing(a1, k1),
(a2, k2), and(a3, k3), where{a1, a2, a3} = {0, 1,∞}, andkj (j = 1, 2, 3) are positive integers
satisfying(1.1). If f is not a fractional linear transformation ofg, then

N (2

(
r,

1

f ′

)
= S(r), N (2

(
r,

1

g′

)
= S(r).

Proof. Without loss of generality, we assume thata1 = 0, a2 = 1, anda3 = ∞. Let α andβ be
given by(2.1) and(2.2). From(2.1) and(2.2), we have

(2.3) f =
1− β

1− αβ
,
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(2.4) g =
(1− β)α

1− αβ
.

Sincef is not a fractional linear transformation ofg, we know thatα, β, andαβ are nonconstant.
Let

(2.5) h :=
αβ′

αβ′ + α′β
=

β′/β

α′/α + β′/β
.

Then we haveh 6≡ 0, 1. Note that

N

(
r,

α′

α

)
= N

(
r,

1

α

)
+ N(r, α),

N

(
r,

β′

β

)
= N

(
r,

1

β

)
+ N(r, β).

From this and Lemma 2.3, we get

(2.6) T

(
r,

α′

α

)
= T

(
r,

β′

β

)
= S(r),

and so

(2.7) T (r, h) = S(r).

By (2.3), we get

(2.8) f − h =
(1− β)− h(1− αβ)

1− αβ
.

Let

(2.9) F := (f − h)(1− αβ) = (1− β)− h(1− αβ).

From(2.5) and(2.9), we have

(2.10)
F ′

F
− β′

β
=
−β′ − h′(1− αβ) + αβ′ − β′F/β

F
=

1

f − h

[
β′

β
(h− 1)− h′

]
.

If β′(h− 1)/β − h′ ≡ 0, then from this and(2.10), we get

(2.11) h = c1β + 1,

and soF ′/F − β′/β ≡ 0, i.e.,

(2.12) F = c2β,

wherec1, c2 are nonzero constants. By(2.7), (2.11), and(2.12), we have

T (r, F ) = T (r, β) = S(r).

From this,(2.7), and(2.9), we get
T (r, α) = S(r),

and soT (r, f) = S(r), which is impossible. Thereforeβ′(h − 1)/β − h′ 6≡ 0. By (2.10), we
have

(2.13)
1

f − h
=

F ′/F − β′/β

β′(h− 1)/β − h′
.

From(2.6), (2.7), and(2.13), we get

(2.14) m

(
r,

1

f − h

)
≤ m

(
r,

F ′

F

)
+ S(r) = S(r).

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 111, 13 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


TOHGE RESULT ON THEUNICITY OF MEROMORPHICFUNCTIONS 7

SinceF ′/F andβ′/β have only simple poles, it follows again from(2.6), (2.7), and(2.13) that

N(2

(
r,

1

f − h

)
≤ 2N

(
r,

1

β′(h− 1)/β − h′

)
+ S(r)

≤ 2T

(
r,

β′(h− 1)

β
− h′

)
+ S(r)

≤ 2T

(
r,

β′

β

)
+ 2T (r, h) + 2T (r, h′) + S(r)

≤ S(r),

i.e.,

(2.15) N(2

(
r,

1

f − h

)
= S(r).

By (2.2) and(2.4), we have
g − f

g − 1
= 1− β,

g′

g
=

α′(1− αβ) + (α− 1)(αβ′ + α′β)

α(1− β)(1− αβ)
.

Therefore

(2.16)
g′(g − f)

g(g − 1)
=

(1− β)(αβ′ + α′β)− αβ′(1− αβ)

αβ(1− αβ)
.

From(2.5) and(2.8), we get

(2.17) (f − h)

(
α′

α
+

β′

β

)
=

(1− β)(αβ′ + α′β)− αβ′(1− αβ)

αβ(1− αβ)
.

By (2.16) and(2.17), we have

(2.18)
g′(g − f)

g(g − 1)
= (f − h)

(
α′

α
+

β′

β

)
.

Let N (2
0 (r, 1/g′) denote the counting function corresponding to multiple zeros ofg′ that are not

zeros ofg andg − 1. Then from(2.15) and(2.18), we get

N
(2
0

(
r,

1

g′

)
≤ N(2

(
r,

1

f − h

)
+ S(r) ≤ S(r).

From this and Lemma 2.2, we have

N (2

(
r,

1

g′

)
≤ N

(2
0

(
r,

1

g′

)
+ N (2

(
r,

1

g

)
+ N (2

(
r,

1

g − 1

)
≤ S(r),

i.e.,

N (2

(
r,

1

g′

)
= S(r).

Similarly, we can prove

N (2

(
r,

1

f ′

)
= S(r),

which also completes the proof of Lemma 2.4. �
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Lemma 2.5. Letf andg be two nonconstant meromorphic functions sharing(a1, k1), (a2, k2),
and(a3, k3), where{a1, a2, a3} = {0, 1,∞}, andkj (j = 1, 2, 3) are positive integers satisfying
(1.1). If f is a fractional linear transformation ofg, thenf andg satisfy one of the following
relations:

(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,

(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,

wherec (6= 0, 1) is a constant.

Proof. Without loss of generality, we assume thata1 = 0, a2 = 1, anda3 = ∞. Sincef is a
fractional linear transformation ofg, we can suppose that

f =
Ag + B

Cg + D
,

whereA, B, C,D are constants such thatAD −BC 6= 0.
If f ≡ g, then the relation (i) holds. Next we assume thatf 6≡ g and discuss the following

cases.

Case 1 If none of 0, 1, and∞ are Picard’s exceptional values off andg, thenf ≡ g, which
contradicts the assumption.
Case 2 If 0 and 1 are all Picard’s exceptional values off andg, thenf = αg+β = α(g+β/α),
whereα (6= 0), β are constants. Sincef 6= 0, it follows thatβ/α = 0 or−1.
Subcase 2.1 If β = 0, thenf = αg, i.e.,f − 1 = α(g − 1/α). Sincef 6= 1, it follows that
α = 1 and sof ≡ g. This is a contradiction.
Subcase 2.2 If β/α = −1, thenf = αg − α, i.e.,f − 1 = α(g − (α + 1)/α). Sincef 6= 1, it
follows thatα = −1. Thusf ≡ −g + 1, which implies the relation (iv).
Case 3 If 1 and∞ are all Picard’s exceptional values off andg, thenf = Ag/(Cg + D),
whereA (6= 0), D (6= 0) are constants.
Subcase 3.1 If C = 0, thenf = αg, i.e.,f − 1 = α(g − 1/α), whereα (6= 0) is a constant.
Sincef 6= 1 andg 6= 1,∞, it follows thatα = 1 and sof ≡ g. This is a contradiction.
Subcase 3.2 If C 6= 0, thenf = αg/(g − 1), i.e.,f − 1 = ((α − 1)g + 1)/(g − 1), whereα
(6= 0) is a constant. Sincef 6= 1 andg 6= 1,∞, it follows thatα = 1 and sof − 1 ≡ 1/(g− 1).
This is the relation (iii).
Case 4 If 0 and∞ are all Picard’s exceptional values off andg, thenf = (Ag+B)/(Cg+D),
whereA + B = C + D.
Subcase 4.1 If A = 0, thenf = B/(Cg + D), whereB (6= 0), C (6= 0) are constants. Since
f 6= ∞ andg 6= 0,∞, it follows thatD = 0. Thusfg ≡ 1 becausef andg share(1, k2). This
is the relation (ii).
Subcase 4.2 If A 6= 0 andC = 0, thenf = αg + β, whereα (6= 0), β are constants. Since
f 6= 0 andg 6= 0,∞, it follows thatβ = 0. Thusf ≡ g becausef andg share(1, k2). This is a
contradiction.
Subcase 4.3 If A 6= 0 andC 6= 0, then it follows thatB = D = 0 becausef 6= 0,∞ and
g 6= 0,∞. Thusf ≡ constant, which contradicts the assumption.
Case 5 If 0 is Picard’s exceptional value off andg but 1 and∞ are not, then it follows that
C = 0 becausef andg share(∞, k3). Thusf = αg + β, whereα (6= 0), β are constants such
thatα + β = 1.
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Subcase 5.1 If β = 0, then it follows thatα = 1 and sof ≡ g. This is a contradiction.
Subcase 5.2 If β 6= 0, then it follows thatβ = 1−α and sof ≡ αg +1−α, whereα (6= 0, 1)
is a constant. This is the relation (vi).
Case 6 If 1 is Picard’s exceptional value off andg but 0 and∞ are not, then it follows that
C = 0 becausef andg share(∞, k3). Sincef andg share(0, k1), it follows thatB = 0 and
sof ≡ αg, whereα (6= 0) is a constant. Ifα = 1, thenf ≡ g, which is a contradiction. Thus
f ≡ αg, whereα (6= 0, 1) is a constant. This is the relation (v).
Case 7 If ∞ is Picard’s exceptional value off andg but 0 and 1 are not, then it follows that
B = 0 andA = C + D becausef andg share(0, k1) and(1, k2). Thusf = Ag/(Cg + D),
whereA (6= 0), D (6= 0) are constants.
Subcase 7.1 If C = 0, then it follows thatA = D becausef andg share(1, k2). Thusf ≡ g,
which is a contradiction.
Subcase 7.2 If C 6= 0, then it follows thatf = αg/(g + β) andα = 1 + β, whereα (6= 0, 1),
β are constants. Thusf ≡ αg/(g + α − 1), i.e.,fg − (1 − α)f − αg ≡ 0, which implies the
relation (vii).

This completes the proof of Lemma 2.5. �

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1.Without loss of generality, we assume thata1 = 0, a2 = 1, anda3 = ∞.
Otherwise, a fractional linear transformation will do. Letα andβ be given by(2.1) and(2.2).

Suppose now thatf is not a fractional linear transformation ofg. Then from Lemma 2.4, we
have

(3.1) N (2

(
r,

1

f ′

)
= S(r), N (2

(
r,

1

g′

)
= S(r).

By (2.1), we get
α′

α
=

g′

g
− f ′

f
,

i.e.,

(3.2)
α′

α
f =

f

g
g′ − f ′.

Let z0 be a simple zero ofg′ that is not a zero off andg. Then it follows thatz0 is a simple zero
of f ′ becauseE1)(0, g

′) ⊆ E∞)(0, f
′). Again from(3.2), we deduce thatz0 is a zero ofα′/α.

On the other hand, the process of proving Lemma 2.4 shows that

T

(
r,

α′

α

)
= T

(
r,

β′

β

)
= S(r).

From this,(3.1), and Lemma 2.2, we have

N

(
r,

1

g′

)
= N (2

(
r,

1

g′

)
+ N1)

(
r,

1

g′

)
(3.3)

≤ N

(
r,

α′

α

)
+ N (2

(
r,

1

g

)
+ S(r)

≤ S(r).

Similarly, we can prove

(3.4) N

(
r,

1

f ′

)
= S(r).
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Let

∆1 :=

(
f ′′

f ′
− 2f ′

f

)
−

(
g′′

g′
− 2g′

g

)
.

If ∆1 ≡ 0, then by integration we obtain

1

f
=

c

g
+ d,

i.e.,

f =
g

c + dg
,

wherec (6= 0), d are constants. Thusf is a fractional linear transformation ofg, which contra-
dicts the assumption. Hence∆1 6≡ 0.

Sincef and g share(0, k1), it follows that a simple zero off is a simple zero ofg and
conversely. Letz0 be a simple zero off andg. Then in some neighborhood ofz0, we get
∆1 = (z − z0)γ(z), whereγ is analytic atz0. Thus by(3.3), (3.4), and Lemma 2.2, we get

N1)

(
r,

1

f

)
≤ N

(
r,

1

∆1

)
≤ N(r, ∆1) + S(r)

≤ N

(
r,

1

f ′

)
+ N

(
r,

1

g′

)
+ N (2

(
r,

1

f

)
+ N (2

(
r,

1

g

)
+ N (2(r, f) + N (2(r, g) + S(r)

≤ S(r),

and so

(3.5) N

(
r,

1

f

)
= N1)

(
r,

1

f

)
+ N (2

(
r,

1

f

)
= S(r).

Let

∆2 :=

(
f ′′

f ′
− 2f ′

f − 1

)
−

(
g′′

g′
− 2g′

g − 1

)
,

and

∆3 :=
f ′′

f ′
− g′′

g′
.

In the same manner as the above, we can obtain

(3.6) N

(
r,

1

f − 1

)
= S(r),

and

(3.7) N(r, f) = S(r).

From(3.5), (3.6), (3.7), and the second fundamental theorem, we have

T (r, f) ≤ N

(
r,

1

f

)
+ N(r, f) + N

(
r,

1

f − 1

)
+ S(r) ≤ S(r),

which is a contradiction. Thereforef is a fractional linear transformation ofg. Again from
Lemma 2.5, we obtain the conclusion of Theorem 1.1. �
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Proof of Theorem 1.3.Likewise, we can assume thata1 = 0, a2 = 1, anda3 = ∞. Suppose
now thatf is not a fractional linear transformation ofg.

Let

(3.8) T (r) =

 T (r, f), for r ∈ I1,

T (r, g), for r ∈ I2,

where

(3.9) I = I1 ∪ I2.

Note thatI is a set of infinite linear measure of(0,∞). We can see by(3.9) thatI1 is a set of
infinite linear measure of(0,∞) or I2 is a set of infinite linear measure of(0,∞). Without loss
of generality, we assume thatI1 is a set of infinite linear measure of(0,∞). Then by(3.8), we
have

(3.10) T (r) = T (r, f).

Let ∆1, ∆2, and∆3 be defined as in Theorem 1.1. Similar to the proof of(3.5), (3.6), and
(3.7) in Theorem 1.1, we easily get

N

(
r,

1

f

)
= N1)

(
r,

1

f

)
+ N (2

(
r,

1

f

)
(3.11)

≤ N1)

(
r,

1

f ′

)
+ N1)

(
r,

1

g′

)
+ S(r),

N

(
r,

1

f − 1

)
= N1)

(
r,

1

f − 1

)
+ N (2

(
r,

1

f − 1

)
(3.12)

≤ N1)

(
r,

1

f ′

)
+ N1)

(
r,

1

g′

)
+ S(r),

and

(3.13) N(r, f) = N1)(r, f) + N (2(r, f) ≤ N1)

(
r,

1

f ′

)
+ N1)

(
r,

1

g′

)
+ S(r).

From (1.2), (3.10), (3.11), (3.12), (3.13), and the second fundamental theorem, we have for
r ∈ I

T (r, f) ≤ N

(
r,

1

f

)
+ N(r, f) + N

(
r,

1

f − 1

)
+ S(r)

≤ 3

[
N1)

(
r,

1

f ′

)
+ N1)

(
r,

1

g′

)]
+ S(r)

< 3(λ + o(1))T (r, f),

which is impossible since0 < λ < 1/3. Thereforef is a fractional linear transformation ofg.
Again from Lemma 2.5, we obtain the conclusion of Theorem 1.3. �

4. FINAL REMARKS

Clearly, if kj (j = 1, 2, 3) are positive integers satisfying(1.1), then

kjki > 1 (j 6= i, j, i = 1, 2, 3).
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Theorem 4.1.Letf andg be two nonconstant meromorphic functions sharing(a1, k1), (a2, k2),
and(a3,∞), where{a1, a2, a3} = {0, 1,∞}, andk1 andk2 are positive integers satisfying

(4.1) k1k2 > 1.

If E1)(0, f
′) ⊆ E∞)(0, g

′) andE1)(0, g
′) ⊆ E∞)(0, f

′), thenf andg satisfy one of the following
relations:

(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,

(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,

wherec (6= 0, 1) is a constant.

Theorem 4.2.Letf andg be two nonconstant meromorphic functions sharing(a1, k), (a2,∞),
and(a3,∞), where{a1, a2, a3} = {0, 1,∞}, andk is an integer satisfying

(4.2) k ≥ 1.

If E1)(0, f
′) ⊆ E∞)(0, g

′) andE1)(0, g
′) ⊆ E∞)(0, f

′), thenf andg satisfy one of the following
relations:

(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,

(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,

wherec (6= 0, 1) is a constant.

Theorem 4.3.Letf andg be two nonconstant meromorphic functions sharing(a1, k1), (a2, k2),
and (a3,∞), where{a1, a2, a3} = {0, 1,∞}, and k1 and k2 are positive integers satisfying
(4.1). If (1.2) holds, thenf andg satisfy one of the following relations:

(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,

(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,

wherec (6= 0, 1) is a constant.

Theorem 4.4.Letf andg be two nonconstant meromorphic functions sharing(a1, k), (a2,∞),
and(a3,∞), where{a1, a2, a3} = {0, 1,∞}, andk is an integer satisfying(4.2). If (1.2) holds,
thenf andg satisfy one of the following relations:

(i) f≡g,
(ii) fg≡1,

(iii) (f − 1)(g − 1)≡1,
(iv) f + g≡1,
(v) f≡cg,
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(vi) f − 1≡c(g − 1),
(vii) [(c− 1)f + 1][(c− 1)g − c]≡− c,
wherec (6= 0, 1) is a constant.

Proofs of Theorems 4.1 and 4.3.Without loss of generality, we assume thatk1 ≤ k2. Then by
(4.1) we see thatk1 ≥ 1 andk2 ≥ 2. Note that iff andg share(a, k) thenf andg share(a, p)
for all integersp, 0 ≤ p < k. Sincef andg share(a1, k1), (a2, k2), and(a3,∞), it follows that
f andg share(a1, 1), (a2, 2), and(a3, 6). Thus form Corollaries 1.2 and 1.4 we immediately
obtain the conclusions of Theorems 4.1 and 4.3 respectively. �

Proofs of Theorems 4.2 and 4.4.Note that iff andg share(a1, k), (a2,∞), (a3,∞), andk ≥ 1,
then we know thatf andg share(a1, 1), (a2, 2), and(a3, 6). Thus from Corollaries 1.2 and 1.4
we instantly get the conclusions of Theorems 4.2 and 4.4 respectively. �
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