ON CERTAIN INEQUALITIES FOR MEANS IN TWO VARIABLES

Inequalities for Means in Two Variables

József Sándor
vol. 10, iss. 2, art. 47, 2009
Babeş-Bolyai University
Department of Mathematics and Computer Sciences
Str. Kogălniceanu Nr. 1
400084 Cluj-Napoca, Romania
EMail: jsandor@math.ubbcluj.ro

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words.

Abstract:

26 May, 2008
10 April, 2009
S.S. Dragomir

26D07, 27E60.
Means and their inequalities.
We show that certain inequalities for the means A, G, L, I proved by H.-J. Seiffert [12] as well as by H. Alzer and S.-L. Qiu [3] are consequences of some results of the author [5], [7], [9].

Title Page
Contents

44

4

Page 1 of 7
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Main Results

Inequalities for Means in Two Variables József Sándor
vol. 10, iss. 2, art. 47, 2009

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 2 of 7	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: l443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

The logarithmic and identric means of two positive real numbers a and b with $a \neq b$ are defined by

$$
L=L(a, b)=\frac{b-a}{\log b-\log a} \quad \text { and } \quad I=I(a, b)=\frac{1}{e}\left(\frac{a^{a}}{b^{b}}\right)^{\frac{1}{a-b}}
$$

respectively. These means have been the subject of much intensive research, partly because they are related to many other important means and partly because these means have applications in physics, economics, meteorology, statistics, etc. For a survey of results, with an extended literature, see [3], [6]. For identities involving these, and other means, see e.g. [8], [10]. In particular, the identity

$$
\frac{I\left(a^{2}, b^{2}\right)}{I(a, b)}=\left(a^{a} \cdot b^{b}\right)^{\frac{1}{a+b}}=S=S(a, b)
$$

leads to the weighted geometric mean of a and b, denoted by $S(a, b)$ in [6], [8], [9].
In paper [12], the following two inequalities are proved

$$
\begin{equation*}
G(a, b) \exp \left(\frac{1}{3}\left(\frac{b-a}{b+a}\right)^{2}\right)<I(a, b)<A(a, b) \exp \left(-\frac{1}{6}\left(\frac{b-a}{b+a}\right)^{2}\right) \tag{1.1}
\end{equation*}
$$

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b $a \neq b, a, b>0$.

We note that, the right hand side inequality of (1.1) was first proved by the author in 1989 [5]. In that paper the following inequality was also shown:

$$
\begin{equation*}
\frac{A^{2}(a, b)}{I\left(a^{2}, b^{2}\right)}<\exp \left(-\frac{1}{3}\left(\frac{b-a}{b+a}\right)^{2}\right) . \tag{1.3}
\end{equation*}
$$

The aim of this note is to prove that the above inequalities are connected to each other by a chain of relations, and that, in fact, all are consequences of (1.3).

Inequalities for Means in Two Variables

József Sándor
vol. 10, iss. 2, art. 47, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 4 of 7	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

To begin with, we write all the inequalities in another form. The left and right sides of (1.1) may be written respectively as

$$
\begin{align*}
& \exp \left(\frac{1}{3}\left(\frac{b-a}{b+a}\right)^{2}\right)<\frac{I(a, b)}{G(a, b)} \tag{2.1}\\
& \exp \left(\frac{1}{3}\left(\frac{b-a}{b+a}\right)^{2}\right)<\frac{A^{2}(a, b)}{I^{2}(a, b)} \tag{2.2}
\end{align*}
$$

and the inequalities of (1.2) as

$$
\begin{align*}
& \exp \left(\frac{1}{3}\left(\frac{b-a}{b+a}\right)^{2}\right)<\frac{L^{2}(a, b)}{G^{2}(a, b)} \tag{2.3}\\
& \exp \left(\frac{1}{3}\left(\frac{b-a}{b+a}\right)^{2}\right)<\frac{A(a, b)}{L(a, b)}
\end{align*}
$$

Finally note that, (1.3) may be written as

$$
\begin{equation*}
\exp \left(\frac{1}{3}\left(\frac{b-a}{b+a}\right)^{2}\right)<\frac{I\left(a^{2}, b^{2}\right)}{A^{2}(a, b)}=\frac{I(a, b) S(a, b)}{A^{2}(a, b)} \tag{2.5}
\end{equation*}
$$

Theorem 2.1. The following chain of implications holds true:

$$
(2.5) \Rightarrow(2.2) \Rightarrow(2.4) \Rightarrow(2.1) \Rightarrow(2.3) .
$$

Title Page
Contents

Page 5 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. (2.5) \Rightarrow (2.2) means that $\frac{I \cdot S}{A^{2}}<\frac{A^{2}}{I^{2}}$, or $S<\frac{A^{4}}{I^{3}}$. This inequality is proved in [9, Theorem 1].
(2.2) $\Rightarrow(2.4)$ by $\frac{A^{2}}{I^{2}}<\frac{A}{L}$, i.e. $I^{2}>A \cdot L$. For this inequality, see [7, Relation (9)].
$(2.4) \Rightarrow(2.1)$ by $\frac{A}{L}<\frac{I}{G}$, i.e. $A \cdot G<L \cdot I$, see [1].
$(2.1) \Rightarrow(2.3)$ by $\frac{I}{G}<\frac{L^{2}}{G^{2}}$, i.e. $\sqrt{G I}<L$, see [2].
Therefore all implications are valid.
We note that inequality (2.5) was a consequence of an integral inequality due to the author [4], (discovered in 1982), to the effect that:
Theorem 2.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a $2 k$-times $(k \geq 1)$ differentiable function such that $f^{(2 k)}(x)>0$. Then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x>\sum_{j=0}^{k-1} \frac{(b-a)^{2 j+1}}{2^{2 j}(2 j+1)!} f^{(2 j)}\left(\frac{a+b}{2}\right) \tag{2.6}
\end{equation*}
$$

For $k=2$ we obtain that if f is 4-times differentiable, then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x>f\left(\frac{a+b}{2}\right)+\frac{(b-a)^{2}}{24} f^{\prime \prime}\left(\frac{a+b}{2}\right) . \tag{2.7}
\end{equation*}
$$

Clearly, (2.6) and (2.7) are extensions of the classical Hadamard inequality, which says that, if f is convex on $[a, b]$ then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x>f\left(\frac{a+b}{2}\right) . \tag{2.8}
\end{equation*}
$$

Applying (2.7) for $f(x)=x \log x$, and using the identity

$$
\begin{equation*}
\int_{a}^{b} x \log x d x=\frac{1}{4}\left(b^{2}-a^{2}\right) \log I\left(a^{2}, b^{2}\right) \tag{2.9}
\end{equation*}
$$

(see [6]), we get (2.5). Applying (2.7) to $f(x)=-\log x$, we get (2.2), i.e. the right side of (1.1) (see [5]). For another proof, see [11].

Inequalities for Means in Two Variables
József Sándor
vol. 10, iss. 2, art. 47, 2009

Title Page
Contents

Page 6 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] H. ALZER, Ungleichungen für Mittelwerte, Arch. Math., 47 (1986), 422-426.
[2] H. ALZER, Two inequalities for means, C.R. Math. Rep. Acad. Sci. Canada, 9 (1987), 11-16.
[3] H. ALZER and S.-L. QIU, Inequalities for means in two variables, Arch. Math., 80 (2003), 201-215.
[4] J. SÁNDOR, Some integral inequalities, El. Math., 43 (1988), 177-180.
[5] J. SÁNDOR, Inequalities for means, in: Proc. 3rd Symposium of Math. and its Appl., 3-4 Nov. 1989, 87-90, Timişoara (Romania).
[6] J. SÁNDOR, On the identric and logarithmic means, Aequat. Math., 40 (1990), 261-270.
[7] J. SÁNDOR, A note on some inequalities for means, Arch. Math., 56 (1991), 471-473.
[8] J. SÁNDOR, On certain identities for means, Studia Univ. Babeş-Bolyai Math., 38 (1993), 7-14.
[9] J. SÁNDOR AND I. RAŞA, Inequalities for certain means in two arguments, Nieuw Arch. Wisk., 15 (1997), 51-55.
[10] J. SÁNDOR AND W. WANG, On certain identities for means (Chinese), J. Chengdu Univ., 20 (2001), 6-8.
[11] J. SÁNDOR AND T. TRIF, Some new inequalities for means of two arguments, Internat. J. Math. Math. Sci., 25 (2001), 525-532.
[12] H.-J. SEIFFERT, Ungleichungen für Elementare Mittelwerte, Arch. Math., 64 (1995), 129-131.

Inequalities for Means in Two Variables
József Sándor
vol. 10, iss. 2, art. 47, 2009

Title Page
Contents

Page 7 of 7
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

