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1. I NTRODUCTION

The integral inequalities which furnish explicit bounds on unknown functions has become a
rich source of inspiration in the development of the theory of differential and integral equations.
Over the years a great deal of attention has been given to such inequalities and their applications.
A detailed account related to such inequalities can be found in [1] – [6] and the references given
therein. However, in certain situations the bounds provided by such inequalities available in
the literature are inadequate and we need bounds on some new integral inequalities in order to
achieve a diversity of desired goals. In this paper, we offer some basic integral inequalities in
two independent variables which can be used more conveniently in specific applications. Some
applications are also given to study the behavior of solutions of non-self-adjoint hyperbolic
partial differential equations with several retarded arguments.

2. STATEMENT OF RESULTS

In what followsR denotes the set of real numbers,R+ = [0,∞), I1 = [x0, X), I2 = [y0, Y )
are the subsets ofR and∆ = I1 × I2. The partial derivatives of a functionz(x, y), x, y ∈ R
with respect tox, y andxy are denoted byD1z (x, y) , D2z (x, y) andD1D2z (x, y) (or zxy)
respectively.
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2 B.G. PACHPATTE

Our main results are established in the following theorems.

Theorem 2.1.Letu, a, bi ∈ C (∆,R+) andαi ∈ C1 (I1, I1) , βi ∈ C1 (I2, I2) be nondecreasing
with αi (x) ≤ x on I1, βi (y) ≤ y on I2 for i = 1, ..., n andk ≥ 0 be a constant.

(A1) If

(2.1) u (x, y) ≤ k +

∫ x

x0

a (s, y)u (s, y) ds+
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t)u (s, t) dtds,

for x ∈ I1, y ∈ I2 , then

(2.2) u (x, y) ≤ kq (x, y) exp

(
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) q (s, t) dtds

)
,

for x ∈ I1, y ∈ I2 , where

(2.3) q (x, y) = exp

(∫ x

x0

a (ξ, y) dξ

)
,

for x ∈ I1, y ∈ I2 .
(A2) If

(2.4) u (x, y) ≤ k +

∫ y

y0

a (x, t)u (x, t) dt+
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t)u (s, t) dtds,

for x ∈ I1, y ∈ I2 , then

(2.5) u (x, y) ≤ kr (x, y) exp

(
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) r (s, t) dtds

)
,

for x ∈ I1, y ∈ I2 , where

(2.6) r (x, y) = exp

(∫ y

y0

a (x, η) dη

)
,

for x ∈ I1, y ∈ I2.

Theorem 2.2.Letu, a, bi, αi, βi, k be as in Theorem 2.1. Letg ∈ C (R+,R+) be nondecreasing
and submultiplicative function withg (u) > 0 for u > 0.

(B1) If

(2.7) u (x, y) ≤ k +

∫ x

x0

a (s, y)u (s, y) ds+
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (u (s, t)) dtds,

for x ∈ I1, y ∈ I2 ; then forx0 ≤ x ≤ x1, y0 ≤ y ≤ y1;x, x1 ∈ I1, y, y1 ∈ I2,

(2.8) u (x, y) ≤ q (x, y)G−1

[
G (k) +

n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (q (s, t)) dtds

]
,

whereq (x, y) is given by (2.3) andG−1 is the inverse function of

(2.9) G (r) =

∫ r

r0

ds

g (s)
, r > 0,

r0 > 0 is arbitrary andx1 ∈ I1, y1 ∈ I2 are chosen so that

G (k) +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (q (s, t)) dtds ∈ Dom(G−1) ,
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INEQUALITIES APPLICABLE TO CERTAIN PARTIAL DIFFERENTIAL EQUATIONS 3

for all x and y lying in[x0, x1] and [y0, y1] respectively.
(B2) If

(2.10) u (x, y) ≤ k +

∫ y

y0

a (x, t)u (x, t) dt+
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (u (s, t)) dtds,

for x ∈ I1, y ∈ I2 ; then forx0 ≤ x ≤ x2, y0 ≤ y ≤ y2;x, x2 ∈ I1, y, y2 ∈ I2,

(2.11) u (x, y) ≤ r (x, y)G−1

[
G (k) +

n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (r (s, t)) dtds

]
,

whereG,G−1 are as in part(B1), r (x, y) is given by (2.6) andx2 ∈ I1, y2 ∈ I2 are
chosen so that

G (k) +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (r (s, t)) dtds ∈ Dom(G−1),

for all x andy lying in [x0, x2] and[y0, y2] respectively.

The inequalities in the following theorems can be used in the qualitative analysis of certain
partial integrodifferential equations involving several retarded arguments.

Theorem 2.3.Letu, a, bi, αi, βi, k be as in Theorem 2.1.

(C1) If c ∈ C (∆,R+) and

(2.12) u (x, y) ≤ k +

∫ x

x0

a (s, y)

(
u (s, y) +

∫ s

x0

c (σ, y)u (σ, y) dσ

)
ds

+
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t)u (s, t) dtds,

for x ∈ I1, y ∈ I2 , then

(2.13) u (x, y) ≤ kp (x, y) exp

(
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) p (s, t) dtds

)
,

for x ∈ I1, y ∈ I2 , where

(2.14) p (x, y) = 1 +

∫ x

x0

a (ξ, y) exp

(∫ ξ

x0

[a (σ, y) + c (σ, y)] dσ

)
dξ,

for x ∈ I1, y ∈ I2.
(C2) If c ∈ C (∆,R+) and

(2.15) u (x, y) ≤ k +

∫ y

y0

a (x, t)

(
u (x, t) +

∫ t

y0

c (x, τ)u (x, τ) dτ

)
dt

+
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t)u (s, t) dtds,

for x ∈ I1, y ∈ I2 , then

(2.16) u (x, y) ≤ kw (x, y) exp

(
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t)w (s, t) dtds

)
,
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for x ∈ I1, y ∈ I2 , where

(2.17) w (x, y) = 1 +

∫ y

y0

a (x, η) exp

(∫ η

y0

[a (x, τ) + c (x, τ)] dτ

)
dη,

for x ∈ I1, y ∈ I2.

Theorem 2.4.Letu, a, bi, αi, βi, k be as in Theorem 2.1 andg be as in Theorem 2.2.

(D1) If c ∈ C (∆,R+) and

(2.18) u (x, y) ≤ k +

∫ x

x0

a (s, y)

(
u (s, y) +

∫ s

x0

c (σ, y)u (σ, y) dσ

)
ds

+
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (u (s, t)) dtds,

for x ∈ I1, y ∈ I2; then forx0 ≤ x ≤ x3, y0 ≤ y ≤ y3;x, x3 ∈ I1, y, y3 ∈ I2 ,

(2.19) u (x, y) ≤ p (x, y)G−1

[
G (k) +

n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (p (s, t)) dtds

]
,

wherep (x, y) is given by (2.14),G,G−1 are as in part(B1) in Theorem 2.2 andx3 ∈
I1, y3 ∈ I2 are chosen so that

G (k) +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (p (s, t)) dtds ∈ Dom(G−1) ,

for all x and y lying in[x0, x3] and [y0, y3] respectively.
(D2) If c ∈ C (∆,R+) and

(2.20) u (x, y) ≤ k +

∫ y

y0

a (x, t)

(
u (x, t) +

∫ t

y0

c (x, τ)u (x, τ) dτ

)
dt

+
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (u (s, t)) dtds,

for x ∈ I1, y ∈ I2; then forx0 ≤ x ≤ x4, y0 ≤ y ≤ y4;x, x4 ∈ I1, y, y4 ∈ I2 ,

(2.21) u (x, y) ≤ w (x, y)G−1

[
G (k) +

n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (w (s, t)) dtds

]
,

wherew (x, y) is given by (2.17),G,G−1 are as in part(B1) in Theorem 2.2 andx4 ∈
I1, y4 ∈ I2 are chosen so that

G (k) +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (w (s, t)) dtds ∈ Dom(G−1),

for all x andy lying in [x0, x4] and[y0, y4] respectively.

3. PROOFS OF THEOREMS 2.1 – 2.4

We give the details of the proofs of(A1) , (B1) and(C1) only. The proofs of the remaining in-
equalities can be completed by closely looking at the proofs of the above mentioned inequalities
with suitable modifications.

J. Inequal. Pure and Appl. Math., 5(2) Art. 27, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INEQUALITIES APPLICABLE TO CERTAIN PARTIAL DIFFERENTIAL EQUATIONS 5

(A1) Define a functionz (x, y) by

(3.1) z (x, y) = k +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t)u (s, t) dtds.

Then (2.1) can be restated as

(3.2) u (x, y) ≤ z (x, y) +

∫ x

x0

a (s, y)u (s, y) ds.

It is easy to observe thatz (x, y) is a nonnegative, continuous and nondecreasing func-
tion for x ∈ I1, y ∈ I2. Treatingy, y ∈ I2 fixed in (3.2) and using Lemma 2.1 in [4] (see
also [3, Theorem 1.3.1]) to (3.2), we get

(3.3) u (x, y) ≤ q (x, y) z (x, y) ,

for x ∈ I1, y ∈ I2 , whereq (x, y) is defined by (2.3). From (3.1) and (3.3) we have

(3.4) z (x, y) ≤ k +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) q (s, t) z (s, t) dtds.

Let k > 0 and define a functionv (x, y) by the right hand side of (3.4). Then it is easy
to observe that

v (x, y) > 0, v (x0, y) = v (x, y0) = k, z (x, y) ≤ v (x, y)

and

D1v (x, y) =
n∑
i=1

(∫ βi(y)

βi(y0)

bi (αi (x) , t) q (αi (x) , t) z (αi (x) , t) dt

)
α′i (x)

≤
n∑
i=1

(∫ βi(y)

βi(y0)

bi (αi (x) , t) q (αi (x) , t) v (αi (x) , t) dt

)
α′i (x)

≤ v (x, y)
n∑
i=1

(∫ βi(y)

βi(y0)

bi (αi (x) , t) q (αi (x) , t) dt

)
α′i (x)

i.e.

(3.5)
D1v (x, y)

v (x, y)
≤

n∑
i=1

(∫ βi(y)

βi(y0)

bi (αi (x) , t) q (αi (x) , t) dt

)
α′i (x) .

Keepingy fixed in (3.5) , settingx = σ and integrating it with respect toσ from x0 to
x, x ∈ I1, and making the change of variables we get

(3.6) v (x, y) ≤ k exp

(
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) q (s, t) dtds

)
,

for x ∈ I1, y ∈ I2 . Using (3.6) inz (x, y) ≤ v (x, y) we get

(3.7) z (x, y) ≤ k exp

(
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) q (s, t) dtds

)
.

Using (3.7) in (3.3) we get the required inequality in (2.5).
If k ≥ 0 we carry out the above procedure withk + ε instead ofk, whereε > 0 is an

arbitrary small constant, and subsequently pass the limitε→ 0 to obtain (2.5).
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(B1) Define a functionz (x, y) by

(3.8) z (x, y) = k +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (u (s, t)) dtds.

Then (2.7) can be stated as

(3.9) u (x, y) ≤ z (x, y) +

∫ x

x0

a (s, y)u (s, y) ds.

As in the proof of part(A1), using Lemma 2.1 in [4] to (3.9) we have

(3.10) u (x, y) ≤ q (x, y) z (x, y) ,

for x ∈ I1, y ∈ I2 , whereq (x, y) andz (x, y) are defined by (2.3) and (3.8). From (3.8)
and (3.10) and the hypotheses ong we have

z (x, y) ≤ k +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (q (s, t) z (s, t)) dtds(3.11)

≤ k +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (q (s, t)) g (z (s, t)) dtds.

Let k > 0 and define a functionv (x, y) by the right hand side of (3.11). Then, it is easy
to observe thatv (x, y) > 0, v (x0, y) = v (x, y0) = k, z (x, y) ≤ v (x, y) and

D1v (x, y) =
n∑
i=1

(∫ βi(y)

βi(y0)

bi (αi (x) , t) g (q (αi (x) , t)) g (z (αi (x) , t)) dt

)
α′i (x)(3.12)

≤
n∑
i=1

(∫ βi(y)

βi(y0)

bi (αi (x) , t) g (q (αi (x) , t)) g (v (αi (x) , t)) dt

)
α′i (x)

≤ g (v (x, y))
n∑
i=1

(∫ βi(y)

βi(y0)

bi (αi (x) , t) g (q (αi (x) , t)) dt

)
α′i (x) .

From (2.9) and (3.12) we have

D1G (v (x, y)) =
D1v (x, y)

g (v (x, y))
(3.13)

≤
n∑
i=1

(∫ βi(y)

βi(y0)

bi (αi (x) , t) g (q (αi (x) , t)) dt

)
α′i (x) .

Keepingy fixed in (3.13), settingx = σ and integrating it with respect toσ from x0 to
x, x ∈ I1 and making the change of variables we get

(3.14) G (v (x, y)) ≤ G (k) +
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (q (s, t)) dtds.

SinceG−1 (v) is increasing, from (3.14) we have

(3.15) v (x, y) ≤ G−1

[
G (k) +

n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (s, t) g (q (s, t)) dtds

]
.

Using (3.15) inz (x, y) ≤ v (x, y) and then the bound onz (x, y) in (3.10) we get the
required inequality in (2.8). The casek ≥ 0 can be completed as mentioned in the proof
of (A1).
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(C1) Define a functionz (x, y) by (3.1) . Then (2.12) can be stated as

(3.16) u (x, y) ≤ z (x, y) +

∫ x

x0

a (s, y)

(
u (s, y) +

∫ s

x0

c (σ, y)u (σ, y) dσ

)
ds.

Clearly,z (x, y) is nonnegative, continuous and nondecreasing function forx ∈ I1, y ∈
I2 . Treatingy, y ∈ I2 fixed in (3.16) and applying Theorem 1.7.4 given in [3, p. 39] to
(3.16) yields

u (x, y) ≤ p (x, y) z (x, y) ,

wherep (x, y) andz (x, y) are defined by (2.14) and (3.1). Now by following the proof
of (A1) with suitable changes we get the desired inequality in (2.13).

4. SOME APPLICATIONS

In this section, we present applications of the inequality(A1) given in Theorem 2.1 which
display the importance of our results to the literature. Consider the following retarded non-self-
adjoint hyperbolic partial differential equation

(4.1) zxy (x, y) = D2 (a (x, y) z (x, y))

+ f (x, y, z (x− h1 (x) , y − g1 (y)) , . . . , z (x− hn (x) , y − gn (y))) ,

with the given initial boundary conditions

(4.2) z (x, y0) = a1 (x) , z (x0, y) = a2 (y) , a1 (x0) = a2 (y0) = 0,

wheref ∈ C (∆× Rn,R) , a1 ∈ C1 (I1,R) , a2 ∈ C1 (I2,R) , anda ∈ C (∆,R) is differ-
entiable with respect to y;hi ∈ C (I1,R+) , gi ∈ C (I2,R+) are nonincreasing, and such that
x − hi (x) ≥ 0, x − hi (x) ∈ C1 (I1, I1) , y − gi (y) ≥ 0, y − gi (y) ∈ C1 (I2, I2) , h

′
i (x) < 1,

g′i (y) < 1 , hi (x0) = gi (y0) = 0 for i = 1, . . . , n; x ∈ I1, y ∈ I2 and

(4.3) Mi = max
x∈I1

1

1− h′i (x)
, Ni = max

y∈I2

1

1− g′i (y)
.

Our first result gives the bound on the solution of the problem (4.1) – (4.2).

Theorem 4.1.Suppose that

(4.4) |f (x, y, u1, . . . , un)| ≤
n∑
i=1

bi (x, y) |ui| ,

(4.5) |e (x, y)| ≤ k,

wherebi (x, y) , k are as in Theorem 2.1 and

(4.6) e (x, y) = a1 (x) + a2 (y)−
∫ x

x0

a (s, y0) a1 (s) ds.

If z (x, y) is any solution of (4.1) – (4.2), then

(4.7) |z (x, y)| ≤ kq̄ (x, y) exp

(
n∑
i=1

∫ φi(x)

φi(x0)

∫ ψ(y)

ψi(y0)

b̄i (σ, τ) q̄ (σ, τ) dτdσ

)
,

for x ∈ I1, y ∈ I2, whereφi (x) = x − hi (x) , x ∈ I1, ψi (y) = y − gi (y) , y ∈ I2, b̄i (σ, τ) =
MiNibi (σ + hi (s) , τ + gi (t)) for σ, s ∈ I1, τ, t ∈ I2 and

(4.8) q̄ (x, y) = exp

(∫ x

x0

|a (ξ, y)| dξ
)
,

for x ∈ I1, y ∈ I2.
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Proof. It is easy to see that, the solutionz(x, y) of the problem (4.1) – (4.2) satisfies the equiv-
alent integral equation

(4.9) z (x, y) = e (x, y) +

∫ x

x0

a (s, y) z (s, y) ds

+

∫ x

x0

∫ y

y0

f (s, t, z (s− h1 (s) , t− g1 (t)) , . . . , z (s− hn (s) , t− gn (t))) dtds,

wheree(x, y) is given by (4.6). From (4.9), (4.4), (4.5), (4.3) and making the change of variables
we have

|z (x, y)| ≤ k +

∫ x

x0

|a (s, y)| |z (s, y)| ds(4.10)

+

∫ x

x0

∫ y

y0

n∑
i=1

bi (s, t) |z (s− hi (s) , t− gi (t))| dtds

≤ k +

∫ x

x0

|a (s, y)| |z (s, y)| ds

+
n∑
i=1

∫ φi(x)

φi(x0)

∫ ψi(y)

ψi(y0)

b̄i (σ, τ) |z (σ, τ)| dτdσ.

Now a suitable application of the inequality(A1) given in Theorem 2.1 to (4.10) yields (4.7).
�

The next theorem deals with the uniqueness of solutions of (4.1) – (4.2).

Theorem 4.2. . Suppose that the functionf in (4.1) satisfies the condition

(4.11) |f (x, y, u1, . . . , un)− f (x, y, v1, . . . , vn)| ≤
n∑
i=1

bi (x, y) |ui − vi| ,

wherebi (x, y) are as in Theorem 2.1. LetMi, Ni, φi, ψi, b̄i be as in Theorem 4.1. Then the
problem (4.1) – (4.2) has at most one solution on∆ .

Proof. Let u (x, y) andv (x, y) be two solutions of (4.1) – (4.2) on∆ , then

(4.12) u (x, y)− v (x, y) =

∫ x

x0

a (s, y) {u (s, y)− v (s, y)} ds

+

∫ x

x0

∫ y

y0

{f (s, t, u (s− h1 (s) , t− g1 (t)) , . . . , u (s− hn (s) , t− gn (t)))

−f (s, t, v (s− h1 (s) , t− g1 (t)) , . . . , v (s− hn (s) , t− gn (t)))} dtds .

From (4.12), (4.11), making the change of variables and in view of (4.3) we have

|u (x, y)− v (x, y)|(4.13)

≤
∫ x

x0

|a (s, y)| |u (s, y)− v (s, y)| ds

+

∫ x

x0

∫ y

y0

n∑
i=1

bi (s, t) |u (s− hi (s) , t− gi (t))− v (s− hi (s) , t− gi (t))| dtds
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≤
∫ x

x0

|a (s, y)| |u (s, y)− v (s, y)| ds

+
n∑
i=1

∫ φi(x)

φi(x0)

∫ ψ(y)

ψ(y0)

b̄i (σ, τ) |u (σ, τ)− v (σ, τ)| dτdσ.

A suitable application of the inequality(A1) in Theorem 2.1 to (4.13) yields

|u (x, y)− v (x, y)| ≤ 0.

Thereforeu(x, y) = v(x, y) i.e. there is at most one solution of the problem (4.1) – (4.2).�

The following theorem shows the dependency of solutions of equation (4.1) on given initial
boundary data.

Theorem 4.3. Letu (x, y) andv (x, y) be the solutions of (4.1) with the given initial boundary
data

(4.14) u (x, y0) = c1 (x) , u (x0, y) = c2 (y) , c1 (x0) = c2 (y0) = 0,

and

(4.15) v (x, y0) = d1 (x) , v (x0, y) = d2 (y) , d1 (x0) = d2 (y0) = 0,

respectively, wherec1, d1 ∈ C1 (I1,R) , c2, d2 ∈ C1 (I2,R) . Suppose that the functionf satis-
fies the condition (4.11) in Theorem 4.2. Let

(4.16) e1 (x, y) = c1 (x) + c2 (y)−
∫ x

x0

a (s, y0) c1 (s) ds,

(4.17) e2 (x, y) = d1 (x) + d2 (y)−
∫ x

x0

a (s, y0) d1 (s) ds,

for x ∈ I1, y ∈ I2 and

(4.18) |e1 (x, y)− e2 (x, y)| ≤ k,

wherek is as in Theorem 2.1. LetMi, Ni, φi, ψi, b̄i, q̄ be as in Theorem 4.1. Then

(4.19) |u (x, y)− v (x, y)| ≤ kq̄ (x, y) exp

(
n∑
i=1

∫ φi(x)

φi(x0)

∫ ψ(y)

ψ(y0)

b̄i (σ, τ) q̄ (σ, τ) dτdσ

)
,

for x ∈ I1, y ∈ I2.

Proof. Sinceu(x, y) andv(x, y) are the solutions of (4.1) – (4.14) and (4.1) – (4.15) respec-
tively, we have

(4.20) u (x, y)− v (x, y) = e1 (x, y)− e2 (x, y) +

∫ x

x0

a (s, y) {u(s, y)− v (s, y)} ds

+

∫ x

x0

∫ y

y0

{f (s, t, u (s− h1 (s) , t− g1 (t)) , . . . , u (s− hn (s) , t− gn (t)))

−f (s, t, v (s− h1 (s) , t− g1 (t)) , . . . , v (s− hn (s) , t− gn (t)))} dtds ,
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for x ∈ I1, y ∈ I2. From (4.20), (4.18), (4.11), making the change of variables and in view of
(4.3) we have

(4.21) |u (x, y)− v (x, y)| ≤ k +

∫ x

x0

|a (s, y)| |u (s, y)− v (s, y)| ds

+
n∑
i=1

∫ φi(x)

φi(x0)

∫ ψ(y)

ψ(y0)

b̄i (σ, τ) |u (σ, τ)− v (σ, τ)| dτdσ,

for x ∈ I1, y ∈ I2 . Now a suitable application of the inequality(A1) in Theorem 2.1 to (4.21)
yields the required estimate in (4.19), which shows the dependency of solutions of (4.1) on
given initial boundary data. �

We next consider the following retarded non-self-adjoint hyperbolic partial differential equa-
tions

(4.22) zxy (x, y) = D2 (a (x, y) z (x, y))

+ f (x, y, z (x− h1 (x) , y − g1 (y)) , . . . , z (x− hn (x) , y − gn (y)) , µ) ,

(4.23) zxy (x, y) = D2 (a (x, y) z (x, y))

+ f (x, y, z (x− h1 (x) , y − g1 (y)) , . . . , z (x− hn (x) , y − gn (y)) , µ0) ,

with the given initial boundary conditions (4.2), wheref ∈ C (∆× Rn × R,R) , hi, gi are as in
(4.1) andµ, µ0 are real parameters.

The following theorem shows the dependency of solutions of problems (4.22) – (4.2) and
(4.23) – (4.2) on parameters.

Theorem 4.4.Suppose that

(4.24) |f (x, y, u1, . . . , un, µ)− f (x, y, v1, . . . , vn, µ)| ≤
n∑
i=1

bi (x, y) |ui − vi| ,

(4.25) |f (x, y, u1, . . . , un, µ)− f (x, y, u1, . . . , un, µ)| ≤ m (x, y) |µ− µ0| ,

wherebi (x, y) are as in Theorem 2.1 andm : ∆ → R is a continuous function such that

(4.26)
∫ x

x0

∫ y

y0

m (s, t) dtds ≤M,

whereM ≥ 0 is a real constant . LetMi, Ni, φi, ψi, b̄i be as in Theorem 4.1. Ifz1 (x, y) and
z2 (x, y) are the solutions of (4.22) – (4.2) and (4.23) =- (4.2), then

(4.27) |z1 (x, y)− z2 (x, y)| ≤ k̄q̄ (x, y) exp

(
n∑
i=1

∫ φi(x)

φi(x0)

∫ ψ(y)

ψ(y0)

b̄i (σ, τ) q̄ (σ, τ) dτdσ

)
,

for x ∈ I1, y ∈ I2,wherek̄ = |µ− µ0|M and q̄ (x, y) is defined by (4.8).
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Proof. Let z (x, y) = z1 (x, y) − z2 (x, y) for x ∈ I1, y ∈ I2. As in the proof of Theorem 4.2,
from the hypotheses we have

(4.28) z (x, y) =

∫ x

x0

a (s, y) z (s, y) ds

+

∫ x

x0

∫ y

y0

{f (s, t, z1 (s− h1 (s) , t− g1 (t)) , . . . , z1 (s− hn (s) , t− gn (t)) , µ)

− f (s, t, z2 (s− h1 (s) , t− g1 (t)) , . . . , z2 (s− hn (s) , t− gn (t)) , µ)

+ f (s, t, z2 (s− h1 (s) , t− g1 (t)) , . . . , z2 (s− hn (s) , t− gn (t)) , µ)

−f (s, t, z2 (s− h1 (s) , t− g1 (t)) , . . . , z2 (s− hn (s) , t− gn (t)) , µ0)} dtds.

From (4.28), (4.24) – (4.26), making the change of variables and in view of (4.3) we have

|z (x, y)|(4.29)

≤
∫ x

x0

|a (s, y)| |z (s, y)| ds

+

∫ x

x0

∫ y

y0

n∑
i=1

bi (s, t) |z1 (s− hi (s) , t− gi (t))− z2 (s− hi (s) , t− gi (t))|dtds

+

∫ x

x0

∫ y

y0

m (s, t) |µ− µ0| dtds

≤ k̄ +

∫ x

x0

|a (s, y)| |z (s, y)| ds

+
n∑
i=1

∫ φi(x)

φi(x0)

∫ ψ(y)

ψi(y0)

b̄i (σ, τ) |z (σ, τ)| dτdσ.

A suitable application of the inequality(A1) in Theorem 2.1 to (4.29) yields (4.27), which
shows the dependency of solutions of problems (4.22) – (4.2) and (4.23) – (4.2) on parameters
µ andµ0. �

We note that the inequality given in Theorem 2.1 part(A2) can be used to study the similar
properties as in Theorems 4.1 – 4.4 by replacingD2 (a (x, y) z (x, y)) by D1 (a (x, y) z (x, y))
in the equations (4.1), (4.22), (4.23) with the corresponding given initial-boundary conditions,
under some suitable conditions on the functions involved therein. We also note that the inequal-
ities given in Theorem 2.3 can be used to establish similar results as in Theorems 4.1 – 4.4 by
replacingD2 (a (x, y) z (x, y)) by

D2

(
Q1

(
x, y, z (x, y) ,

∫ x

x0

k1 (σ, y, z (σ, y)) dσ

))
or

D1

(
Q2

(
x, y, z (x, y) ,

∫ y

y0

k2 (x, τ, z (x, τ)) dτ

))
in the equations (4.1), (4.22), (4.23) with the corresponding given initial-boundary conditions
and under some suitable conditions on the functions involved therein.

Further it is to be noted that the inequalities and their applications given here can be extended
very easily to functions involving many independent variables.
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