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1. I NTRODUCTION

Let (H; 〈·, ·〉) be an inner product space over the real or complex number fieldK. One of the
most important inequalities in inner product spaces with numerous applications, is the Schwarz
inequality

(1.1) |〈x, y〉|2 ≤ ‖x‖2 ‖y‖2 , x, y ∈ H

with equality iff x andy are linearly dependent.
In 1966, S. Kurepa [1] established the following refinement of the Schwarz inequality in inner

product spaces that generalises de Bruijn’s result for sequences of real and complex numbers
[2].

Theorem 1.1. Let H be a real Hilbert space andHC the complexification ofH. Then for any
pair of vectorsa ∈ H, z ∈ HC

(1.2) |〈z, a〉|2 ≤ 1

2
‖a‖2 (‖z‖2 + |〈z, z̄〉|

)
≤ ‖a‖2 ‖z‖2 .

In 1985, S.S. Dragomir [3, Theorem 2] obtained a different refinement of (1.1), namely:
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2 S.S. DRAGOMIR

Theorem 1.2. Let (H; 〈·, ·〉) be a real or complex inner product space andx, y, e ∈ H with
‖e‖ = 1. Then we have the inequality

(1.3) ‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉|+ |〈x, e〉 〈e, y〉| ≥ |〈x, y〉| .

In the same paper [3, Theorem 3], a further generalisation for orthonormal families has been
given (see also [4, Theorem 3]).

Theorem 1.3. Let {ei}i∈H be an orthonormal family in the Hilbert spaceH. Then for any
x, y ∈ H

‖x‖ ‖y‖ ≥

∣∣∣∣∣〈x, y〉 −
∑
i∈I

〈x, ei〉 〈ei, y〉

∣∣∣∣∣+∑
i∈I

|〈x, ei〉 〈ei, y〉|(1.4)

≥

∣∣∣∣∣〈x, y〉 −
∑
i∈I

〈x, ei〉 〈ei, y〉

∣∣∣∣∣+
∣∣∣∣∣∑

i∈I

〈x, ei〉 〈ei, y〉

∣∣∣∣∣
≥ |〈x, y〉| .

The inequality (1.3) has also been obtained in [4] as a particular case of the following result.

Theorem 1.4.Letx, y, a, b ∈ H be such that

‖a‖2 ≤ 2 Re 〈x, a〉 , ‖b‖2 ≤ 2 Re 〈y, b〉 .
Then we have:

(1.5) ‖x‖ ‖y‖ ≥
(
2 Re 〈x, a〉 − ‖a‖2) 1

2
(
2 Re 〈y, b〉 − ‖b‖2) 1

2

+ |〈x, y〉 − 〈x, b〉 − 〈a, y〉+ 〈a, b〉| .

Another refinement of the Schwarz inequality for orthornormal vectors in inner product
spaces has been obtained by S.S. Dragomir and J. Sándor in [5, Theorem 5].

Theorem 1.5. Let {ei}i∈{1,...,n} be orthornormal vectors in the inner product space(H; 〈·, ·〉).
Then

(1.6) ‖x‖ ‖y‖ − |〈x, y〉| ≥

(
n∑

i=1

|〈x, ei〉|2
n∑

i=1

|〈y, ei〉|2
) 1

2

−

∣∣∣∣∣
n∑

i=1

〈x, ei〉 〈ei, y〉

∣∣∣∣∣ ≥ 0

and

(1.7) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥

(
n∑

i=1

|〈x, ei〉|2
n∑

i=1

|〈y, ei〉|2
) 1

2

−
n∑

i=1

Re [〈x, ei〉 〈ei, y〉] ≥ 0.

For some properties of superadditivity, monotonicity, strong superadditivity and strong mono-
tonicity of Schwarz’s inequality, see [6]. Here we note only the following refinements of the
Schwarz inequality in its different variants for linear operators [6]:

a) Let H be a Hilbert space andA, B : H → H two selfadjoint linear operators with
A ≥ B ≥ 0, then we have the inequalities

(1.8) 〈Ax, x〉
1
2 〈Ay, y〉

1
2 − |〈Ax, y〉| ≥ 〈Bx, x〉

1
2 〈By, y〉

1
2 − |〈Bx, y〉| ≥ 0

and

(1.9) 〈Ax, x〉 〈Ay, y〉 − |〈Ax, y〉|2 ≥ 〈Bx, x〉 〈By, y〉 − |〈Bx, y〉|2 ≥ 0

for anyx, y ∈ H.
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SCHWARZ AND HEISENBERGINEQUALITIES IN HILBERT SPACES 3

b) LetA : H → H be a bounded linear operator onH and let‖A‖ = sup {‖Ax‖ , ‖x‖ = 1}
the norm ofA. Then one has the inequalities

(1.10) ‖A‖2 (‖x‖ ‖y‖ − |〈x, y〉|) ≥ ‖Ax‖ ‖Ay‖ − |〈Ax, Ay〉| ≥ 0

and

(1.11) ‖A‖4 (‖x‖2 ‖y‖2 − |〈x, y〉|2
)
≥ ‖Ax‖2 ‖Ay‖2 − |〈Ax, Ay〉|2 ≥ 0.

c) Let B : H → H be a linear operator with the property that there exists a constant
m > 0 such that‖Bx‖ ≥ m ‖x‖ for anyx ∈ H. Then we have the inequalities

(1.12) ‖Bx‖ ‖By‖ − |〈Bx,By〉| ≥ m2 (‖x‖ ‖y‖ − |〈x, y〉|) ≥ 0

and

(1.13) ‖Bx‖2 ‖By‖2 − |〈Bx,By〉|2 ≥ m4
(
‖x‖2 ‖y‖2 − |〈x, y〉|2

)
≥ 0.

For other results related to Schwarz’s inequality in inner product spaces, see Chapter XX of
[8] and the references therein.

Motivated by the results outlined above, it is the aim of this paper to explore other avenues
in obtaining new refinements of the celebrated Schwarz inequality. Applications for vector-
valued sequences and integrals in Hilbert spaces are mentioned. Refinements of the Heisenberg
inequality for vector-valued functions in Hilbert spaces are also given.

2. SOME NEW REFINEMENTS

The following result holds.

Theorem 2.1. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K andr1, r2 > 0. If x, y ∈ H satisfy the property

(2.1) ‖x− y‖ ≥ r2 ≥ r1 ≥ |‖x‖ − ‖y‖| ,
then we have the following refinement of Schwarz’s inequality

(2.2) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
r2
2 − r2

1

)
(≥ 0) .

The constant1
2

is best possible in the sense that it cannot be replaced by any larger quantity.

Proof. From the first inequality in (2.1) we have

(2.3) ‖x‖2 + ‖y‖2 ≥ r2
2 + 2 Re 〈x, y〉 .

Subtracting in (2.3) the quantity2 ‖x‖ ‖y‖ , we get

(2.4) (‖x‖ − ‖y‖)2 ≥ r2
2 − 2 (‖x‖ ‖y‖ − Re 〈x, y〉) .

Since, by the second inequality in (2.1) we have

(2.5) r2
1 ≥ (‖x‖ − ‖y‖)2 ,

hence from (2.4) and (2.5) we deduce the desired inequality (2.2).
To prove the sharpness of the constant1

2
in (2.2), let us assume that there is a constantC > 0

such that

(2.6) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ C
(
r2
2 − r2

1

)
,

provided thatx andy satisfy (2.1).
Let e ∈ H with ‖e‖ = 1 and forr2 > r1 > 0, define

(2.7) x =
r2 + r1

2
· e and y =

r1 − r2

2
· e.
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4 S.S. DRAGOMIR

Then
‖x− y‖ = r2 and |‖x‖ − ‖y‖| = r1,

showing that the condition (2.1) is fulfilled with equality.
If we replacex andy as defined in (2.7) into the inequality (2.6), then we get

r2
2 − r2

1

2
≥ C

(
r2
2 − r2

1

)
,

which implies thatC ≤ 1
2
, and the theorem is completely proved. �

The following corollary holds.

Corollary 2.2. With the assumptions of Theorem 2.1, we have the inequality:

(2.8) ‖x‖+ ‖y‖ −
√

2

2
‖x + y‖ ≥

√
2

2

√
r2
2 − r2

1.

Proof. We have, by (2.2), that

(‖x‖+ ‖y‖)2 − ‖x + y‖2 = 2 (‖x‖ ‖y‖ − Re 〈x, y〉) ≥ r2
2 − r2

1 ≥ 0

which gives

(2.9) (‖x‖+ ‖y‖)2 ≥ ‖x + y‖2 +

(√
r2
2 − r2

1

)2

.

By making use of the elementary inequality

2
(
α2 + β2

)
≥ (α + β)2 , α, β ≥ 0;

we get

(2.10) ‖x + y‖2 +

(√
r2
2 − r2

1

)2

≥ 1

2

(
‖x + y‖+

√
r2
2 − r2

1

)2

.

Utilising (2.9) and (2.10), we deduce the desired inequality (2.8). �

If (H; 〈·, ·〉) is a Hilbert space and{ei}i∈I is an orthornormal family inH, i.e., we recall
that 〈ei, ej〉 = δij for any i, j ∈ I, whereδij is Kronecker’s delta, then we have the following
inequality which is well known in the literature asBessel’s inequality

(2.11)
∑
i∈I

|〈x, ei〉|2 ≤ ‖x‖2 for each x ∈ H.

Here, the meaning of the sum is∑
i∈I

|〈x, ei〉|2 = sup
F⊂I

{∑
i∈F

|〈x, ei〉|2 , F is a finite part ofI

}
.

The following result providing a refinement of the Bessel inequality (2.11) holds.

Theorem 2.3. Let (H; 〈·, ·〉) be a Hilbert space and{ei}i∈I an orthornormal family inH. If
x ∈ H, x 6= 0, andr2, r1 > 0 are such that:

(2.12)

∥∥∥∥∥x−∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥ ≥ r2 ≥ r1 ≥ ‖x‖ −

(∑
i∈I

|〈x, ei〉|2
) 1

2

(≥ 0) ,

then we have the inequality

(2.13) ‖x‖ −

(∑
i∈I

|〈x, ei〉|2
) 1

2

≥ 1

2
· r2

2 − r2
1(∑

i∈I |〈x, ei〉|2
) 1

2

(≥ 0) .
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SCHWARZ AND HEISENBERGINEQUALITIES IN HILBERT SPACES 5

The constant1
2

is best possible.

Proof. Considery :=
∑

i∈I 〈x, ei〉 ei. Obviously, sinceH is a Hilbert space,y ∈ H. We also
note that

‖y‖ =

∥∥∥∥∥∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥ =

√√√√∥∥∥∥∥∑
i∈I

〈x, ei〉 ei

∥∥∥∥∥
2

=

√∑
i∈I

|〈x, ei〉|2,

and thus (2.12) is in fact (2.1) of Theorem 2.1.
Since

‖x‖ ‖y‖ − Re 〈x, y〉 = ‖x‖

(∑
i∈I

|〈x, ei〉|2
) 1

2

− Re

〈
x,
∑
i∈I

〈x, ei〉 ei

〉

=

(∑
i∈I

|〈x, ei〉|2
) 1

2

‖x‖ −(∑
i∈I

|〈x, ei〉|2
) 1

2

 ,

hence, by (2.2), we deduce the desired result (2.13).
We will prove the sharpness of the constant for the case of one element, i.e.,I = {1} ,

e1 = e ∈ H, ‖e‖ = 1. For this, assume that there exists a constantD > 0 such that

(2.14) ‖x‖ − |〈x, e〉| ≥ D · r2
2 − r2

1

|〈x, e〉|
providedx ∈ H\ {0} satisfies the condition

(2.15) ‖x− 〈x, e〉 e‖ ≥ r2 ≥ r1 ≥ ‖x‖ − |〈x, e〉| .
Assume thatx = λe + µf with e, f ∈ H, ‖e‖ = ‖f‖ = 1 ande ⊥ f. We wish to see if there
exists positive numbersλ, µ such that

(2.16) ‖x− 〈x, e〉 e‖ = r2 > r1 = ‖x‖ − |〈x, e〉| .
Since (forλ, µ > 0)

‖x− 〈x, e〉 e‖ = µ

and
‖x‖ − |〈x, e〉| =

√
λ2 + µ2 − λ

hence, by (2.16), we getµ = r2 and √
λ2 + r2

2 − λ = r1

giving
λ2 + r2

2 = λ2 + 2λr1 + r2
1

from where we get

λ =
r2
2 − r2

1

2r1

> 0.

With these values forλ andµ, we have

‖x‖ − |〈x, e〉| = r1, |〈x, e〉| = r2
2 − r2

1

2r1

and thus, from (2.14), we deduce

r1 ≥ D · r2
2 − r2

1

r2
2−r2

1

2r1

,

giving D ≤ 1
2
. This proves the theorem. �
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6 S.S. DRAGOMIR

The following corollary is obvious.

Corollary 2.4. Letx, y ∈ H with 〈x, y〉 6= 0 andr2 ≥ r1 > 0 such that∥∥∥∥‖y‖x− 〈x, y〉
‖y‖

· y
∥∥∥∥ ≥ r2 ‖y‖ ≥ r1 ‖y‖(2.17)

≥ ‖x‖ ‖y‖ − |〈x, y〉| (≥ 0) .

Then we have the following refinement of the Schwarz’s inequality:

(2.18) ‖x‖ ‖y‖ − |〈x, y〉| ≥ 1

2

(
r2
2 − r2

1

) ‖y‖2

|〈x, y〉|
(≥ 0) .

The constant1
2

is best possible.

The following lemma holds.

Lemma 2.5. Let (H; 〈·, ·〉) be an inner product space andR ≥ 1. For x, y ∈ H, the subsequent
statements are equivalent:

(i) The following refinement of the triangle inequality holds:

(2.19) ‖x‖+ ‖y‖ ≥ R ‖x + y‖ ;

(ii) The following refinement of the Schwarz inequality holds:

(2.20) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
R2 − 1

)
‖x + y‖2 .

Proof. Taking the square in (2.19), we have

(2.21) 2 ‖x‖ ‖y‖ ≥
(
R2 − 1

)
‖x‖2 + 2R2 Re 〈x, y〉+

(
R2 − 1

)
‖y‖2 .

Subtracting from both sides of (2.21) the quantity2 Re 〈x, y〉 , we obtain

2 (‖x‖ ‖y‖ − Re 〈x, y〉) ≥
(
R2 − 1

) [
‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2]

=
(
R2 − 1

)
‖x + y‖2 ,

which is clearly equivalent to (2.20). �

By the use of the above lemma, we may now state the following theorem concerning another
refinement of the Schwarz inequality.

Theorem 2.6. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
andR ≥ 1, r ≥ 0. If x, y ∈ H are such that

(2.22)
1

R
(‖x‖+ ‖y‖) ≥ ‖x + y‖ ≥ r,

then we have the following refinement of the Schwarz inequality

(2.23) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
R2 − 1

)
r2.

The constant1
2

is best possible in the sense that it cannot be replaced by a larger quantity.

Proof. The inequality (2.23) follows easily from Lemma 2.5. We need only prove that1
2

is the
best possible constant in (2.23).

Assume that there exists aC > 0 such that

(2.24) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ C
(
R2 − 1

)
r2

providedx, y, R andr satisfy (2.22).
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Considerr = 1, R > 1 and choosex = 1−R
2

e, y = 1+R
2

e with e ∈ H, ‖e‖ = 1. Then

x + y = e,
‖x‖+ ‖y‖

R
= 1

and thus (2.22) holds with equality on both sides.
From (2.24), for the above choices, we have1

2
(R2 − 1) ≥ C (R2 − 1) , which shows that

C ≤ 1
2
. �

Finally, the following result also holds.

Theorem 2.7. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K andr ∈ (0, 1]. For x, y ∈ H, the following statements are equivalent:

(i) We have the inequality

(2.25) |‖x‖ − ‖y‖| ≤ r ‖x− y‖ ;

(ii) We have the following refinement of the Schwarz inequality

(2.26) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
1− r2

)
‖x− y‖2 .

The constant1
2

in (2.26) is best possible.

Proof. Taking the square in (2.25), we have

‖x‖2 − 2 ‖x‖ ‖y‖+ ‖y‖2 ≤ r2
(
‖x‖2 − 2 Re 〈x, y〉+ ‖y‖2)

which is clearly equivalent to(
1− r2

) [
‖x‖2 − 2 Re 〈x, y〉+ ‖y‖2] ≤ 2 (‖x‖ ‖y‖ − Re 〈x, y〉)

or with (2.26).
Now, assume that (2.26) holds with a constantE > 0, i.e.,

(2.27) ‖x‖ ‖y‖ − Re 〈x, y〉 ≥ E
(
1− r2

)
‖x− y‖2 ,

provided (2.25) holds.
Definex = r+1

2
e, y = r−1

2
e with e ∈ H, ‖e‖ = 1. Then

|‖x‖ − ‖y‖| = r, ‖x− y‖ = 1

showing that (2.25) holds with equality.
If we replacex andy in (2.27), then we getE (1− r2) ≤ 1

2
(1− r2) , implying thatE ≤

1
2
. �

3. DISCRETE I NEQUALITIES

Assume that(K; (·, ·)) is a Hilbert space over the real or complex number field. Assume also
thatpi ≥ 0, i ∈ H with

∑∞
i=1 pi = 1 and define

`2
p (K) :=

{
x := (xi)i∈N

∣∣ xi ∈ K, i ∈ N and
∞∑
i=1

pi ‖xi‖2 < ∞

}
.

It is well known that̀ 2
p (K) endowed with the inner product〈·, ·〉p defined by

〈x,y〉p :=
∞∑
i=1

pi (xi, yi)
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8 S.S. DRAGOMIR

and generating the norm

‖x‖p :=

(
∞∑
i=1

pi ‖xi‖2

) 1
2

is a Hilbert space overK.
We may state the following discrete inequality improving the Cauchy-Bunyakovsky-Schwarz

classical result.

Proposition 3.1. Let (K; (·, ·)) be a Hilbert space andpi ≥ 0 (i ∈ N) with
∑∞

i=1 pi = 1.
Assume thatx,y ∈ `2

p (K) andr1, r2 > 0 satisfy the condition

(3.1) ‖xi − yi‖ ≥ r2 ≥ r1 ≥ |‖xi‖ − ‖yi‖|

for eachi ∈ N. Then we have the following refinement of the Cauchy-Bunyakovsky-Schwarz
inequality

(3.2)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi) ≥
1

2

(
r2
2 − r2

1

)
≥ 0.

The constant1
2

is best possible.

Proof. From the condition (3.1) we simply deduce
∞∑
i=1

pi ‖xi − yi‖2 ≥ r2
2 ≥ r2

1 ≥
∞∑
i=1

pi (‖xi‖ − ‖yi‖)2(3.3)

≥

( ∞∑
i=1

pi ‖xi‖2

) 1
2

−

(
∞∑
i=1

pi ‖yi‖2

) 1
2

2

.

In terms of the norm‖·‖p , the inequality (3.3) may be written as

(3.4) ‖x− y‖p ≥ r2 ≥ r1 ≥
∣∣∣‖x‖p − ‖y‖p

∣∣∣ .
Utilising Theorem 2.1 for the Hilbert space

(
`2
p (K) , 〈·, ·〉p

)
, we deduce the desired inequality

(3.2).
For n = 1 (p1 = 1) , the inequality (3.2) reduces to (2.2) for which we have shown that1

2
is

the best possible constant. �

By the use of Corollary 2.2, we may state the following result as well.

Corollary 3.2. With the assumptions of Proposition 3.1, we have the inequality

(3.5)

(
∞∑
i=1

pi ‖xi‖2

) 1
2

+

(
∞∑
i=1

pi ‖yi‖2

) 1
2

−
√

2

2

(
∞∑
i=1

pi ‖xi + yi‖2

) 1
2

≥
√

2

2

√
r2
2 − r2

1.

The following proposition also holds.

Proposition 3.3. Let (K; (·, ·)) be a Hilbert space andpi ≥ 0 (i ∈ N) with
∑∞

i=1 pi = 1.
Assume thatx,y ∈ `2

p (K) andR ≥ 1, r ≥ 0 satisfy the condition

(3.6)
1

R
(‖xi‖+ ‖yi‖) ≥ ‖xi + yi‖ ≥ r
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SCHWARZ AND HEISENBERGINEQUALITIES IN HILBERT SPACES 9

for eachi ∈ N. Then we have the following refinement of the Schwarz inequality

(3.7)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi) ≥
1

2

(
R2 − 1

)
r2.

The constant1
2

is best possible in the sense that it cannot be replaced by a larger quantity.

Proof. By (3.6) we deduce

(3.8)
1

R

[
∞∑
i=1

pi (‖xi‖+ ‖yi‖)2

] 1
2

≥

(
∞∑
i=1

pi ‖xi + yi‖2

) 1
2

≥ r.

By the classical Minkowsky inequality for nonnegative numbers, we have

(3.9)

(
∞∑
i=1

pi ‖xi‖2

) 1
2

+

(
∞∑
i=1

pi ‖yi‖2

) 1
2

≥

[
∞∑
i=1

pi (‖xi‖+ ‖yi‖)2

] 1
2

,

and thus, by utilising (3.8) and (3.9), we may state in terms of‖·‖p the following inequality

(3.10)
1

R

(
‖x‖p + ‖y‖p

)
≥ ‖x + y‖p ≥ r.

Employing Theorem 2.6 for the Hilbert space`2
p (K) and the inequality (3.10), we deduce the

desired result (3.7).
Since, forp = 1, n = 1, (3.7) is reduced to (2.23) for which we have shown that1

2
is the best

constant, we conclude that1
2

is the best constant in (3.7) as well. �

Finally, we may state and prove the following result incorporated in

Proposition 3.4. Let (K; (·, ·)) be a Hilbert space andpi ≥ 0 (i ∈ N) with
∑∞

i=1 pi = 1.
Assume thatx,y ∈ `2

p (K) andr ∈ (0, 1] such that

(3.11) |‖xi‖ − ‖yi‖| ≤ r ‖xi − yi‖ for eachi ∈ N,

holds true. Then we have the following refinement of the Schwarz inequality

(3.12)

(
∞∑
i=1

pi ‖xi‖2
∞∑
i=1

pi ‖yi‖2

) 1
2

−
∞∑
i=1

pi Re (xi, yi) ≥
1

2

(
1− r2

) ∞∑
i=1

pi ‖xi − yi‖2 .

The constant1
2

is best possible in (3.12).

Proof. From (3.11) we have[
∞∑
i=1

pi (‖xi‖ − ‖yi‖)2

] 1
2

≤ r

[
∞∑
i=1

pi ‖xi − yi‖2

] 1
2

.

Utilising the following elementary result∣∣∣∣∣∣
(

∞∑
i=1

pi ‖xi‖2

) 1
2

−

(
∞∑
i=1

pi ‖yi‖2

) 1
2

∣∣∣∣∣∣ ≤
(

∞∑
i=1

pi (‖xi‖ − ‖yi‖)2

) 1
2

,

we may state that ∣∣∣‖x‖p − ‖y‖p

∣∣∣ ≤ r ‖x− y‖p .

Now, by making use of Theorem 2.7, we deduce the desired inequality (3.12) and the fact that
1
2

is the best possible constant. We omit the details. �
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4. I NTEGRAL I NEQUALITIES

Assume that(K; (·, ·)) is a Hilbert space over the real or complex number fieldK. If ρ :

[a, b] ⊂ R → [0,∞) is a Lebesgue integrable function with
∫ b

a
ρ (t) dt = 1, then we may

consider the spaceL2
ρ ([a, b] ; K) of all functionsf : [a, b] → K, that are Bochner measurable

and
∫ b

a
ρ (t) ‖f (t)‖2 dt < ∞. It is known thatL2

ρ ([a, b] ; K) endowed with the inner product
〈·, ·〉ρ defined by

〈f, g〉ρ :=

∫ b

a

ρ (t) (f (t) , g (t)) dt

and generating the norm

‖f‖ρ :=

(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

is a Hilbert space overK.
Now we may state and prove the first refinement of the Cauchy-Bunyakovsky-Schwarz inte-

gral inequality.

Proposition 4.1. Assume thatf, g ∈ L2
ρ ([a, b] ; K) andr2, r1 > 0 satisfy the condition

(4.1) ‖f (t)− g (t)‖ ≥ r2 ≥ r1 ≥ |‖f (t)‖ − ‖g (t)‖|
for a.e.t ∈ [a, b] . Then we have the inequality

(4.2)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt ≥ 1

2

(
r2
2 − r2

1

)
(≥ 0) .

The constant1
2

is best possible in (4.2).

Proof. Integrating (4.1), we get

(4.3)

(∫ b

a

ρ (t) (‖f (t)− g (t)‖)2 dt

) 1
2

≥ r2 ≥ r1 ≥
(∫ b

a

ρ (t) (‖f (t)‖ − ‖g (t)‖)2 dt

) 1
2

.

Utilising the obvious fact

(4.4)

[∫ b

a

ρ (t) (‖f (t)‖ − ‖g (t)‖)2 dt

] 1
2

≥

∣∣∣∣∣
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

−
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

∣∣∣∣∣ ,
we can state the following inequality in terms of the‖·‖ρ norm:

(4.5) ‖f − g‖ρ ≥ r2 ≥ r1 ≥
∣∣∣‖f‖ρ − ‖g‖ρ

∣∣∣ .
Employing Theorem 2.1 for the Hilbert spaceL2

ρ ([a, b] ; K) , we deduce the desired inequality
(4.2).
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To prove the sharpness of1
2

in (4.2), we choosea = 0, b = 1, f (t) = 1, t ∈ [0, 1] and
f (t) = x, g (t) = y, t ∈ [a, b] , x, y ∈ K. Then (4.2) becomes

‖x‖ ‖y‖ − Re 〈x, y〉 ≥ 1

2

(
r2
2 − r2

1

)
provided

‖x− y‖ ≥ r2 ≥ r1 ≥ |‖x‖ − ‖y‖| ,
which, by Theorem 2.1 has the quantity1

2
as the best possible constant. �

The following corollary holds.

Corollary 4.2. With the assumptions of Proposition 4.1, we have the inequality

(4.6)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

+

(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
√

2

2

(∫ b

a

ρ (t) ‖f (t) + g (t)‖2 dt

) 1
2

≥
√

2

2

√
r2
2 − r2

1.

The following two refinements of the Cauchy-Bunyakovsky-Schwarz (CBS) integral inequal-
ity also hold.

Proposition 4.3. If f, g ∈ L2
ρ ([a, b] ; K) andR ≥ 1, r ≥ 0 satisfy the condition

(4.7)
1

R
(‖f (t)‖+ ‖g (t)‖) ≥ ‖f (t) + g (t)‖ ≥ r

for a.e.t ∈ [a, b] , then we have the inequality

(4.8)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt ≥ 1

2

(
R2 − 1

)
r2.

The constant1
2

is best possible in (4.8).

The proof follows by Theorem 2.6 and we omit the details.

Proposition 4.4. If f, g ∈ L2
ρ ([a, b] ; K) andζ ∈ (0, 1] satisfy the condition

(4.9) |‖f (t)‖ − ‖g (t)‖| ≤ ζ ‖f (t)− g (t)‖

for a.e.t ∈ [a, b] , then we have the inequality

(4.10)

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−
∫ b

a

ρ (t) Re (f (t) , g (t)) dt ≥ 1

2

(
1− ζ2

) ∫ b

a

ρ (t) ‖f (t)− g (t)‖2 dt.

The constant1
2

is best possible in (4.10).

The proof follows by Theorem 2.7 and we omit the details.
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5. REFINEMENTS OF HEISENBERG I NEQUALITY

It is well known that if(H; 〈·, ·〉) is a real or complex Hilbert space andf : [a, b] ⊂ R →H
is anabsolutely continuous vector-valuedfunction, thenf is differentiable almost everywhere
on [a, b] , the derivativef ′ : [a, b] → H is Bochner integrable on[a, b] and

(5.1) f (t) =

∫ t

a

f ′ (s) ds for any t ∈ [a, b] .

The following theorem provides a version of the Heisenberg inequalities in the general setting
of Hilbert spaces.

Theorem 5.1. Let ϕ : [a, b] → H be an absolutely continuous function with the property that
b ‖ϕ (b)‖2 = a ‖ϕ (a)‖2 . Then we have the inequality:

(5.2)

(∫ b

a

‖ϕ (t)‖2 dt

)2

≤ 4

∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt.

The constant4 is best possible in the sense that it cannot be replaced by any smaller constant.

Proof. Integrating by parts, we have successively∫ b

a

‖ϕ (t)‖2 dt = t ‖ϕ (t)‖2

∣∣∣∣b
a

−
∫ b

a

t
d

dt

(
‖ϕ (t)‖2) dt(5.3)

= b ‖ϕ (b)‖2 − a ‖ϕ (a)‖2 −
∫ b

a

t
d

dt
〈ϕ (t) , ϕ (t)〉 dt

= −
∫ b

a

t [〈ϕ′ (t) , ϕ (t)〉+ 〈ϕ (t) , ϕ′ (t)〉] dt

= −2

∫ b

a

t Re 〈ϕ′ (t) , ϕ (t)〉 dt

= 2

∫ b

a

Re 〈ϕ′ (t) , (−t) ϕ (t)〉 dt.

If we apply the Cauchy-Bunyakovsky-Schwarz integral inequality∫ b

a

Re 〈g (t) , h (t)〉 dt ≤
(∫ b

a

‖g (t)‖2 dt

∫ b

a

‖h (t)‖2 dt

) 1
2

for g (t) = ϕ′ (t) , h (t) = −tϕ (t) , t ∈ [a, b] , then we deduce the desired inequality (4.5).
The fact that4 is the best constant in (4.5) follows from the fact that in the (CBS) inequality,

the case of equality holds iffg (t) = λh (t) for a.e.t ∈ [a, b] andλ a given scalar inK. We omit
the details. �

For details on the classical Heisenberg inequality, see, for instance, [7].
Utilising Proposition 4.1, we can state the following refinement of the Heisenberg inequality

obtained above in (5.2):

Proposition 5.2.Assume thatϕ : [a, b] → H is as in the hypothesis of Theorem 5.1. In addition,
if there existr2, r1 > 0 so that

‖ϕ′ (t) + tϕ (t)‖ ≥ r2 ≥ r1 ≥ |‖ϕ′ (t)‖ − |t| ‖ϕ (t)‖|
for a.e.t ∈ [a, b] , then we have the inequality(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt ≥ 1

2
(b− a)

(
r2
2 − r2

1

)
(≥ 0) .
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The proof follows by Proposition 4.1 on choosingf (t) = ϕ′ (t) , g (t) = −tϕ (t) andρ (t) =
1

b−a
, t ∈ [a, b] .

On utilising Proposition 4.3 for the same choices off, g andρ, we may state the following
results as well:

Proposition 5.3.Assume thatϕ : [a, b] → H is as in the hypothesis of Theorem 5.1. In addition,
if there existR ≥ 1 andr > 0 so that

1

R
(‖ϕ′ (t)‖+ |t| ‖ϕ (t)‖) ≥ ‖ϕ′ (t)− tϕ (t)‖ ≥ r

for a.e.t ∈ [a, b] , then we have the inequality(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt

≥ 1

2
(b− a)

(
R2 − 1

)
r2 (≥ 0) .

Finally, we can state

Proposition 5.4. Letϕ : [a, b] → H be as in the hypothesis of Theorem 5.1. In addition, if there
existsζ ∈ (0, 1] so that

|‖ϕ′ (t)‖ − |t| ‖ϕ (t)‖| ≤ ζ ‖ϕ′ (t) + tϕ (t)‖
for a.e.t ∈ [a, b] , then we have the inequality(∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt

) 1
2

− 1

2

∫ b

a

‖ϕ (t)‖2 dt

≥ 1

2

(
1− ζ2

) ∫ b

a

‖ϕ′ (t) + tϕ (t)‖2
dt (≥ 0) .

This follows by Proposition 4.4 and we omit the details.
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