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ABSTRACT. Second order lower bounds for the entropy function expressed in terms of the index
of coincidence are derived. Equivalently, these bounds involve entropy and Rényi entropy of
order 2. The constants found either explicitly or implicitly are best possible in a natural sense.
The inequalities developed originated with certain problems in universal prediction and coding
which are briefly discussed.
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1. BACKGROUND , I NTRODUCTION

We study probability distributions over the natural numbers. The set of all such distributions
is denotedM1

+(N) and the set ofP ∈ M1
+(N) which are supported by{1, 2, . . . , n} is denoted

M1
+(n).
We useUk to denote a generic uniform distribution over ak-element set, and if alsoUk+1,

Uk+2, . . . are considered, it is assumed that the supports are increasing. ByH and byIC we
denote, respectivelyentropyandindex of coincidence, i.e.

H(P ) = −
∞∑

k=1

pk ln pk ,

IC(P ) =
∞∑

k=1

p2
k .
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2 FLEMMING TOPSØE

Results involving index of coincidence may be reformulated in terms ofRényi entropy of
order 2 (H2) as

H2(P ) = − ln IC(P ).

In Harremoës and Topsøe [5] the exact range of the mapP y (IC(P ), H(P )) with P vary-
ing over eitherM1

+(n) orM1
+(N) was determined. Earlier related work includes Kovalevskij [7],

Tebbe and Dwyer [9], Ben-Bassat [1], Vajda and Vašek [13], Golic [4] and Feder and Merhav
[2]. The ranges in question, termedIC/H-diagrams, were denoted∆, respectively∆n:

∆ = {(IC(P ), H(P )) | P ∈M1
+(N)} ,

∆n = {(IC(P ), H(P )) | P ∈M1
+(n)} .

By Jensen’s inequality we find thatH(P ) ≥ − ln IC(P ), thus the logarithmic curvet y
(t,− ln t); 0 < t ≤ 1 is a lower bounding curve for theIC/H-diagrams. The pointsQk =(

1
k
, ln k

)
; k ≥ 1 all lie on this curve. They correspond to the uniform distributions:(IC(Uk),

H(Uk)) = ( 1
k
, ln k). No other points in the diagram∆ lie on the logarithmic curve, in fact,Qk;

k ≥ 1 are extremal points of∆ in the sense that the convex hull they determine contains∆. No
smaller set has this property.

1
n

1
k+1

1
k

10

ln n

ln(k + 1)

ln k

0 IC

H
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Q1

Qk
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Qn

Figure 1.1: The restrictedIC/H-diagram∆n, (n = 5).

Figure 1.1, adapted from [5], illustrates the situation for the restricted diagrams∆n. The
key result of [5] states that∆n is the bounded region determinated by a certain Jordan curve
determined byn smooth arcs, viz. the “upper arc” connectingQ1 andQn and thenn−1 “lower
arcs” connectingQn with Qn−1,Qn−1 with Qn−2 etc. untilQ2 which is connected withQ1.

In [5], see also [11], the main result was used to develop concrete upper bounds for the
entropy function. Our concern here will be lower bounds. The study depends crucially on the
nature of the lower arcs. In [5] these arcs were identified. Indeed, the arc connectingQk+1 with
Qk is the curve which may be parametrized as follows:

s y ~ϕ((1− s)Uk+1 + sUk)
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ENTROPY LOWER BOUNDS 3

with s running through the unit interval and with~ϕ denoting theIC/H-mapgiven by~ϕ(P ) =
(IC(P ), H(P )); P ∈M1

+(N).
The distributions inM1

+(N) fall in IC-complexity classes. The kth class consists of all
P ∈ M1

+(N) for which IC(Uk+1) < IC(P ) ≤ IC(Uk) or, equivalently, for which 1
k+1

<

IC(P ) ≤ 1
k
. In order to determine good lower bounds for the entropy of a distributionP , one

first determines theIC-complexity classk of P . One then determines that value ofs ∈]0, 1]
for which IC(Ps) = IC(P ) with Ps = (1 − s)Uk+1 + sUk. ThenH(P ) ≥ H(Ps) is the
theoretically best lower bound ofH(P ) in terms ofIC(P ).

In order to write the sought lower bounds forH(P ) in a convenient form, we introduce the
kth relative measure of roughnessby

(1.1) MRk(P ) =
IC(P )− IC(Uk+1)

IC(Uk)− IC(Uk+1)
= k(k + 1)

(
IC(P )− 1

k + 1

)
.

This definition applies to anyP ∈M1
+(N) but really, only distributions ofIC-complexity class

k will be of relevance to us. Clearly,MRk(Uk+1) = 0, MRk(Uk) = 1 and for any distribution
of IC-complexity classk, 0 ≤ MRk(P ) ≤ 1. For a distribution on the lower arc connecting
Qk+1 with Qk one finds that

(1.2) MRk((1− s)Uk+1 + sUk) = s2 .

In view of the above, it follows that for any distributionP of IC-complexity classk, the
theoretically best lower bound forH(P ) in terms ofIC(P ) is given by the inequality

(1.3) H(P ) ≥ H
(
(1− x)Uk+1 + xUk

)
,

wherex is determined so thatP and(1 − x)Uk+1 + xUk have the same index of coincidence,
i.e.

(1.4) x2 = MRk(P ) .

By writing out the right-hand-side of (1.3) we then obtain the best lower bound of the type
discussed. Doing so one obtains a quantity of mixed type, involving logarithmic and rational
functions. It is desirable to search for structurally simpler bounds, getting rid of logarithmic
terms. The simplest and possibly most useful bound of this type is the linear bound

(1.5) H(P ) ≥ H(Uk)MRk(P ) +H(Uk+1)(1−MRk(P )),

which expresses the fact mentioned above regarding the extremal position of the pointsQk

in relation to the set∆. Note that (1.5) is the best linear lower bound as equality holds for
P = Uk+1 as well as forP = Uk. Another comment is that though (1.5) was developed with a
view to distributions ofIC-complexity classk, the inequality holds for allP ∈ M1

+(N) (but is
weaker than the trivial boundH ≥ − ln IC for distributions of otherIC-complexity classes).

Writing (1.5) directly in terms ofIC(P ) we obtain the inequalities

(1.6) H(P ) ≥ αk − βk IC(P ); k ≥ 1

with αk andβk given via the constants

(1.7) uk = ln

(
1 +

1

k

)k

= k ln

(
1 +

1

k

)
by

αk = ln(k + 1) + uk ,

βk = (k + 1)uk .
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4 FLEMMING TOPSØE

Note that theuk ↑ 1.1

In the present paper we shall develop sharper inequalities than those above by adding a second
order term. More precisely, fork ≥ 1, we denote byγk the largest constant such that the
inequality

(1.8) H ≥ ln k MRk + ln(k + 1) (1−MRk) +
γk

2k
MRk(1−MRk)

holds for allP ∈ M1
+(N). Here,H = H(P ) andMRk = MRk(P ). Expressed directly in

terms ofIC = IC(P ), (1.8) states that

(1.9) H ≥ αk − βk IC +
γk

2
k(k + 1)2

(
IC − 1

k + 1

) (
1

k
− IC

)
for P ∈M1

+(N).
The basic results of our paper may be summarized as follows:The constants(γk)k≥1 increase

with γ1 = ln 4− 1 ≈ 0.3863 and with limit valueγ ≈ 0.9640.
More substance will be given to this result by developing rather narrow bounds for theγk’s

in terms ofγ and by other means.
The refined second order inequalities are here presented in their own right. However, we shall

indicate in the next section how the author was led to consider inequalities of this type. This
is related to problems of universal coding and prediction. The reader who is not interested in
these problems can pass directly to Section 3.

2. A PROBLEM OF UNIVERSAL CODING AND PREDICTION

Let A = {a1, . . . , an} be a finitealphabet. The models we shall consider are defined in terms
of a subsetP of M1

+(A) and a decompositionθ = {A1, . . . , Ak} of A representingpartial
information.

A predictor (θ-predictor) is a mapP ∗ : A → [0, 1] such that, for eachi ≤ k, the restriction
P ∗|Ai

is a distribution inM1
+(Ai). The predictorP ∗ is induced byP0 ∈ M1

+(A), and we write
P0  P ∗, if, for all x ∈ A, P ∗|Ai

= (P0)|Ai
, the conditional probability ofP0 givenAi.

When we think of a predictorP ∗ in relation to the modelP, we say thatP ∗ is a universal
predictor(since the model may contain many distributions) and we measure its performance by
theguaranteed expected redundancy givenθ:

(2.1) R(P ∗) = sup
P∈P

Dθ(P‖P ∗) .

Here,expected redundancy (or divergence) givenθ is defined by

(2.2) Dθ(P‖P ∗) =
∑
i≤k

P (Ai)D(P|Ai
‖P ∗|Ai

)

with D(·‖·) denoting standard Kullback-Leibler divergence. ByRmin we denote the quantity

(2.3) Rmin = inf
P ∗
R(P ∗)

and we say thatP ∗ is theoptimal universal predictor forP givenθ (or just theoptimal predictor)
if R(P ∗) = Rmin andP ∗ is the only predictor with this property.

1Concrete algebraic bounds for theuk, which, via (1.6), may be used to obtain concrete lower bounds forH(P ),
are given by 2k

2k+1 ≤ uk ≤ 2k+1
2k+2 . This follows directly from (1.6) of [12] (asuk = λ( 1

k ) in the notation of that
manuscript).
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ENTROPY LOWER BOUNDS 5

In parallel to predictors we consider quantities related to coding. Aθ-coding strategyis a
mapκ∗ : A → [0,∞] such that, for eachi ≤ k, Kraft’s equality

(2.4)
∑
x∈Ai

exp(−κ∗(x)) = 1

holds. Note that there is a natural one-to-one correspondence, notationally writtenP ∗ ↔ κ∗,
between predictors and coding strategies which is given by the relations

(2.5) κ∗ = − lnP ∗ and P ∗ = exp(−κ∗) .
WhenP ∗ ↔ κ∗, we may apply thelinking identity

(2.6) Dθ(P‖P ∗) = 〈κ∗, P 〉 −Hθ(P )

which is often useful for practical calculations. Here,Hθ(P ) =
∑

i P (Ai)H(P|Ai
) is standard

conditional entropy and〈·, P 〉 denotes expectation w.r.t.P .
From Harremoës and Topsøe [6] we borrow the following result:

Theorem 2.1 (Kuhn-Tucker criterion). Assume thatA1, . . . , Am are distributions inP, that
P0 =

∑
ν≤m ανAν is a convex combination of theAν ’s with positive weights which induces the

predictorP ∗, that, for some finite constantR,Dθ(Aν‖P ∗) = R for all ν ≤ m and, finally, that
R(P ∗) ≤ R.

ThenP ∗ is the optimal predictor andRmin = R. Furthermore, the convex setP given by

(2.7) P = {P ∈M1
+(A)|Dθ(P‖P ∗) ≤ R}

can be characterized as the largest model withP ∗ as optimal predictor andRmin = R.

This result is applicable in a great variety of cases. For indications of the proof, see [6] and
Section 4.3 of [10]1. The distributionsAν of the result are referred to asanchorsand the model
P as themaximal model.

The concrete instances of Theorem 2.1 which we shall now discuss have a certain philosophi-
cal flavour which is related to the following general and loosely formulated question: If we think
of “Nature” or “God” as deciding which distributionP ∈ P to choose as the “true” distribution,
and if we assume that the model we consider is really basic and does not lend itself to further
fragmentation, one may ask if any other choice than a uniform distribution is really feasible. In
other words, one may maintain the view that “God only knows the uniform distribution”.

Whether or not the above view can be formulated more precisely and meaningfully, say
within physics, is not that clear. Anyhow, motivated by this kind of thinking, we shall look at
some models involving only uniform distributions. For models based on large alphabets, the
technicalities become quite involved and highly combinatorial. Here we present models with
A0 = {0, 1} consisting of the two binary digits as thesource alphabet. The three uniform
distributions pertaining toA0 are denotedU0 andU1 for the two deterministic distributions
andU01 for the uniform distribution overA0. For an integert ≥ 2 consider the modelP =
{U t

0, U
t
1, U

t
01} with exponentiation indicating product measures. We are interested inuniversal

codingor, equivalently,universal predictionof Bernoulli trialsxt
1 = x1x2 · · ·xt ∈ At

0 from this
model, assuming that partial information corresponding to observation ofxs

1 = x1 · · ·xs for a
fixed s is available. This model is of interest for any integerss andt with 0 ≤ s < t. However,
in order to further simplify, we assume thats = t − 1. The model we arrive at is then closely
related to the classical “problem of succession” going back to Laplace, cf. Feller [3]. For a
modern treatment, see Krichevsky [8].

1The former source is just a short proceedings contribution. For various reasons, documentation in the form of
comprehensive publications is not yet available. However, the second source which reveals the character of the
simple proof, may be helpful.
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6 FLEMMING TOPSØE

Common sense has it that the optimal coding strategy and the optimal predictor, respectively
κ∗ andP ∗, are given by expressions of the form

(2.8) κ∗(xt
1) =


κ1 if xt

1 = 0 · · · 00 or 1 · · · 11

κ2 if xt
1 = 0 · · · 01 or 1 · · · 10

ln 2 otherwise

and

(2.9) P ∗(xt
1) =


p1 if xt

1 = 0 · · · 00 or 1 · · · 11

p2 if xt
1 = 0 · · · 01 or 1 · · · 10

1
2

otherwise

with p1 = exp(−κ1) andp2 = exp(−κ2). Note thatpi is the weightP ∗ assigns to the occurrence
of i binary digits inxt

1 in case only one binary digit occurs inxs
1. Clearly, if both binary digits

occur inxs
1, it is sensible to predict the following binary digit to be a0 or a1 with equal weights

as also shown in (2.9).
With t|s as superscript to indicate partial information we find from (2.6) that

Dt|s(U t
0‖P ∗) = Dt|s(U t

1‖P ∗) = κ1 ,

Dt|s(U t
01‖P ∗) = 2−s(κ1 + κ2 − ln 4) .

With an eye to Theorem 2.1 we equate these numbers and find that

(2.10) (2s − 1)κ1 = κ2 − ln 4 .

Expressed in terms ofp1 andp2, we havep1 = 1− p2 and

(2.11) 4p2 = (1− p2)
2s−1 .

Note that (2.11) determinesp2 ∈ [0, 1] uniquely for anys.
It is a simple matter to check that the conditions of Theorem 2.1 are fulfilled (withU t

0, U
t
1 and

U t
01 as anchors). With reference to the discussion above, we have then obtained the following

result:

Theorem 2.2.The optimal predictor for prediction ofxt with t = s+1, givenxs
1 = x1 · · ·xs for

the Bernoulli modelP = {U t
0, U

t
1, U

t
01} is given by(2.9)with p1 = 1− p2 andp2 determined by

(2.11). Furthermore, for this model,Rmin = − ln p1 = κ1 and the maximal model,P, consists
of all Q ∈M+

1 (At
0) for whichDt|s(Q‖P ∗) ≤ κ1.

It is natural to ask about the type of distributions included in the maximal modelP of Theo-
rem 2.2. In particular, we ask, sticking to the framework of a Bernoulli model, which product
distributions are included? Applying (2.6), this is in principle easy to answer. We shall only
comment on the three casess = 1, 2, 3.

For s = 1 or s = 2 one finds that the inequalityDt|s(P t‖P ∗) ≤ Rmin is equivalent to the
inequalityH ≥ ln 4(1 − IC) which, by (1.6) fork = 1, is known to hold for any distribution.
Accordingly, in these cases,P contains every product distribution.

For the cases = 3 the situation is different. Then, as the reader can easily check, the
crucial inequalityDt|s(P t‖P ∗) ≤ Rmin is equivalent to the following inequality (withH =
H(P ), IC = IC(P )):

(2.12) H ≥ (1− IC)

(
ln 4 + (ln 2 + 3κ1)

(
IC − 1

2

))
.

This is a second order lower bound of the entropy function of the type discussed in Section
1. In fact this is the way we were led to consider such inequalities. As stated in Section 1
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Figure 2.1: A plot ofRmin −D4|3(P t‖P ∗) as function ofp with P = (p, q).

and proved rigorously in Lemma 3.5 of Section 3, the largest constant which can be inserted
in place of the constantln 2 + κ1 ≈ 1.0438 in (2.12), if we want the inequality to hold for all
P ∈ M1

+(A0), is 2γ1 = 2(ln 4 − 1) ≈ 0.7726. Thus (2.12) doesnot hold for allP ∈ M1
+(A0).

In fact, considering the difference between the left hand and the right hand side of (2.12), shown
in Figure 2.1, we realize that whens = 3, P 4 with P = (p, q) belongs to the maximal model
if and only if eitherP = U01 or else one of the probabilitiesp or q is smaller than or equal to
some constant (≈ 0.1734).

3. BASIC RESULTS

The key to our results is the inequality (1.3) withx determined by (1.4)1 . This leads to the
following analytical expression forγk:

Lemma 3.1. For k ≥ 1 definefk : [0, 1] → [0,∞] by

fk(x) =
2k

x2(1− x2)

[
−k + x

k + 1
ln

(
1 +

x

k

)
− 1− x

k + 1
ln(1− x) + x2 ln

(
1 +

1

k

)]
.

Thenγk = inf{fk(x) | 0 < x < 1}.

1For the benefit of the reader we point out that this inequality can be derived rather directly from thelemma
of replacementdeveloped in [5]. The relevant part of that lemma is the following result: Iff : [0, 1] → R
is concave/convex (i.e. concave on[0, ξ], convex on[ξ, 1] for someξ ∈ [0, 1]), then, for anyP ∈ M1

+(N),
there existsk ≥ 1 and a convex combinationP0 of Uk+1 andUk such thatF (P0) ≤ F (P ) with F defined by
F (Q) =

∑∞
1 f(qn); Q ∈ M1

+(N).
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8 FLEMMING TOPSØE

Proof. By the defining relation (1.8) and by (1.3) withx given by (1.4), recalling also the
relation (1.2), we realize thatγk is the infimum overx ∈]0, 1[ of

2k

x2(1− x2)

[
H ((1− x)Uk+1 + xUk)− ln k · x2 − ln(k + 1) · (1− x2)

]
.

Writing out the entropy of(1−x)Uk+1+xUk we find that the function defined by this expression
is, indeed, the functionfk. �

It is understood thatfk(x) is defined by continuity forx = 0 andx = 1. An application of
l’Hôspitals rule shows that

(3.1) fk(0) = 2uk − 1 , fk(1) = ∞ .

Then we investigate the limiting behaviour of(fk)k≥1 for k →∞.

Lemma 3.2. The pointwise limitf = limk→∞ fk exists in[0, 1] and is given by

(3.2) f(x) =
2 (−x− ln(1− x))

x2(1 + x)
; 0 < x < 1

with f(0) = 1 andf(1) = ∞. Alternatively,

(3.3) f(x) =
2

1 + x

∞∑
n=0

xn

n+ 2
; 0 ≤ x ≤ 1.1

The simple proof, based directly on Lemma 3.1, is left to the reader. We then investigate
some of the properties off :

Lemma 3.3. The functionf is convex,f(0) = 1, f(1) = ∞ andf ′(0) = −1
3
. The real number

x0 = argminf is uniquely determined by one of the following equivalent conditions:

(i) f ′(x0) = 0,

(ii) − ln(1− x0) =
2x0(1+x0−x2

0)

(3x0+2)(1−x0)
,

(iii)
∑∞

n=1

(
n+1
n+3

+ n−1
n+2

)
xn

0 = 1
6

One hasx0 ≈ 0.2204 andγ ≈ 0.9640 with γ = f(x0) = min f .

Proof. By standard differentiation, say based on (3.2), one can evaluatef andf ′. One also finds
that (i) and (ii) are equivalent. The equivalence with (iii) is based on the expansion

f ′(x) =
2

(1 + x)2

∞∑
n=0

(
n+ 1

n+ 3
+
n− 1

n+ 2

)
xn

which follows readily from (4).
The convexity, even strict, off follows asf can be written in the form

f(x) =

(
2

3
+

1

3
· 1

1 + x

)
+

∞∑
n=2

2

n+ 2
· xn

1 + x
,

easily recognizable as a sum of two convex functions.
The approximate values ofx0 andγ were obtained numerically, based on the expression in

(ii). �

The convergence offk to f is in fact increasing:

Lemma 3.4. For everyk ≥ 1, fk ≤ fk+1.

1 or, as a power series inx, f(x) = 2
∑∞

0 (−1)n(1− ln+2)xn with ln = −
∑n

1 (−1)k 1
k .
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Proof. As a more general result will be proved as part (i) of Theorem 4.1, we only indicate that
a direct proof involving three times differentiation of the function

∆k(x) =
1

2
x2(1− x2)(fk+1(x)− fk(x))

is rather straightforward. �

Lemma 3.5. γ1 = ln 4− 1 ≈ 0.3863.

Proof. We wish to find the best (largest) constantc such that

(3.4) H(P ) ≥ ln 4 · (1− IC(P )) + 2c

(
IC(P )− 1

2

)
(1− IC(P ))

holds for allP ∈ M1
+(N), cf. (1.9), and know that we only need to worry about distributions

P ∈ M1
+(2). Let P = (p, q) be such a distribution, i.e.0 ≤ p ≤ 1, q = 1 − p. Takep as an

independent variable and define the auxiliary functionh = h(p) by

h = H − ln 4 · (1− IC)− 2c

(
IC − 1

2

)
(1− IC) .

Here,H = −p ln p− q ln q andIC = p2 + q2. Then:

h′ = ln
q

p
+ 2(p− q) ln 4− 2c(p− q)(3− 4IC) ,

h′′ = − 1

pq
+ 4 ln 4− 2c(−10 + 48pq) .

Thush(0) = h(1
2
) = h(1) = 0, h′(0) = ∞, h′(1

2
) = 0 andh′(1) = −∞. Further,h′′(1

2
) =

−4+4 ln 4−4c, henceh assumes negative values ifc > ln 4−1. Assume now thatc < ln 4−1.
Thenh′′(1

2
) > 0. As h has (at most) two inflection points (follows from the formula forh′′) we

must conclude thath ≥ 0 (otherwiseh would have at least six inflection points!).
Thush ≥ 0 if c < ln 4− 1. Thenh ≥ 0 also holds ifc = ln 4− 1. �

The lemma is an improvement over an inequality established in [11] as we shall comment
more on in Section 4.

With relatively little extra effort we can find reasonable bounds for each of theγk’s in terms
of γ. What we need is the following lemma:

Lemma 3.6. For k ≥ 1 and0 ≤ x < 1,

(3.5) fk(x) =
2k

(k + 1)(1− x2)

∞∑
n=0

1

2n+ 2

×
[
1− x2n+1

2n+ 3

(
1− 1

k2n+2

)
+

1− x2n

2n+ 1

(
1 +

1

k2n+1

)]
and

(3.6) f(x) =
2

1− x2

∞∑
n=0

1

2n+ 2

(
1− x2n+1

2n+ 3
+

1− x2n

2n+ 1

)
.

Proof. Based on the expansions

−x− ln(1− x) = x2

∞∑
n=0

xn

n+ 2
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and

(k + x) ln
(
1 +

x

k

)
= x+ x2

∞∑
n=0

(−1)nxn

(n+ 2)(n+ 1)kn+1

(which is also used fork = 1 with x replaced by−x), one readily finds that

− (k + x) ln
(
1 +

x

k

)
− (1− x) ln(1− x) + (k + 1)x2 ln

(
1 +

1

k

)
= x2

[
1 +

∞∑
n=0

(−1)n

(n+ 2)(n+ 1)
· 1

kn+1

−
∞∑

n=0

xn

(n+ 2)(n+ 1)

(
(−1)n

kn+1
+ 1

)]
.

Upon writing1 in the form

1 =
∞∑

n=0

1

2n+ 2

(
1

2n+ 1
+

1

2n+ 3

)
and collecting terms two-by-two, and subsequent division by1 − x2 and multiplication by2k,
(3.5) emerges. Clearly, (3.6) follows from (3.5) by taking the limit ask converges to infinity. �

Putting things together, we can now prove the following result:

Theorem 3.7.We haveγ1 ≤ γ2 ≤ · · · , γ1 = ln 4− 1 ≈ 0.3863 andγk → γ whereγ ≈ 0.9640
can be defined as

γ = min
0<x<1

{
2

x2(1 + x)

(
ln

1

1− x
− x

)}
.

Furthermore, for eachk ≥ 1,

(3.7)

(
1− 1

k

)
γ ≤ γk ≤

(
1− 1

k
+

1

k2

)
γ .

Proof. The first parts follow directly from Lemmas 3.1 – 3.5. To prove the last statement, note
that, forn ≥ 0,

1− 1

k2n+2
≥ 1− 1

k2
.

It then follows from Lemma 3.6 that(1 + 1
k
)fk ≥

(
1− 1

k2

)
f , hencefk ≥ (1 − 1

k
)f and

γk ≥ (1− 1
k
)γ follows.

Similarly, note that1+k−(2n+1) ≤ 1+k−3 for n ≥ 1 (and that, forn = 0, the second term in
the summation in (3.5) vanishes). Then use Lemma 3.6 to conclude that(1+ 1

k
)fk ≤ (1+ 1

k3 )f .
The inequalityγk ≤ (1− 1

k
+ 1

k2 )γ follows. �

The discussion contains more results, especially, the bounds in (3.7) are sharpened.

4. DISCUSSION AND FURTHER RESULTS

Justification:

The justification for the study undertaken here is two-fold: As a study of certain aspects of
the relationship between entropy and index of coincidence – which is part of the wider theme
of comparing one Rényi entropy with another, cf. [5] and [14] – and as a preparation for certain
results of exact prediction in Bernoulli trials. Both types of justification were carefully dealt
with in Sections 1 and 2.
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Lower bounds for distributions over two elements:

Regarding Lemma 3.5, the key result proved is really the following inequality for a two-
element probability distributionP = (p, q):

(4.1) 4pq

(
ln 2 +

(
ln 2− 1

2

)
(1− 4pq)

)
≤ H(p, q) .

Let us compare this with the lower bounds contained in the following inequalities proved in
[11]:

ln p ln q ≤H(p, q) ≤ ln p ln q

ln 2
,(4.2)

ln 2 · 4pq ≤H(p, q) ≤ ln 2(4pq)1/ ln 4 .(4.3)

Clearly, (4.1) is sharper than the lower bound in (4.3). Numerical evidence shows that “nor-
mally” (4.1) is also sharper than the lower bound in (4.2) but, for distributions close to a deter-
ministic distribution, (4.2) is in fact the sharper of the two.

More on the convergence offk to f :

Although Theorem 3.7 ought to satisfy most readers, we shall continue and derive sharper
bounds than those in (3.7). This will be achieved by a closer study of the functionsfk and
their convergence tof ask → ∞. By looking at previous results, notably perhaps Lemma
3.1 and the proof of Theorem 3.7, one gets the suspicion that it is the sequence of functions
(1+ 1

k
)fk rather than the sequence offk’s that are well behaved. This is supported by the results

assembled in the theorem below, which, at least for parts (ii) and (iii), are the most cumbersome
ones to derive of the present research:

Theorem 4.1.

(i) (1 + 1
k
)fk ↑ f , i.e. 2f1 ≤ 3

2
f2 ≤ 4

3
f3 ≤ · · · → f .

(ii) For eachk ≥ 1, the functionf − (1 + 1
k
)fk is decreasing in[0, 1] .

(iii) For eachk ≥ 1, the function(1 + 1
k
)fk/f is increasing in[0, 1].

The technique of proof will be elementary, mainly via torturous differentiations (which may
be replaced by MAPLE look-ups, though) and will rely also on certain inequalities for the
logarithmic function in terms of rational functions. A sketch of the proof is relegated to the
appendix.

An analogous result appears to hold for convergence from above tof . Indeed, experiments
on MAPLE indicate that(1+ 1

k
+ 1

k2 )fk ↓ f and that natural analogs of (ii) and (iii) of Theorem
4.1 hold. However, this will not lead to improved bounds over those derived below in Theorem
4.2.

Refined bounds forγk in terms ofγ:

Such bounds follow easily from (ii) and (iii) of Theorem 4.1:

Theorem 4.2.For eachk ≥ 1, the following inequalities hold:

(4.4) (2uk − 1)γ ≤ γk ≤
k

k + 1
γ +

2k

k + 1
− 2k + 1

k + 1
uk .

Proof. Define constantsak andbk by

ak = inf
0≤x≤1

(
f(x)−

(
1 +

1

k

)
fk(x)

)
,

bk = inf
0≤x≤1

(
1 + 1

k

)
fk(x)

f(x)
.
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Then

bkγ ≤
(

1 +
1

k

)
γk ≤ γ − ak .

Now, by (ii) and (iii) of Theorem 4.1 and by an application of l’Hôpitals rule, we find that

ak =

(
2 +

1

k

)
uk − 2 ,

bk =

(
1 +

1

k

)
(2uk − 1) .

The inequalities of (4.4) follow. �

Note that another set of inequalities can be obtained by working withsup instead ofinf in
the definitions ofak andbk. However, inspection shows that the inequalities obtained that way
are weaker than those given by (4.4).

The inequalities (4.4) are sharper than (3.7) of Theorem 3.7 but less transparent. Simpler
bounds can be obtained by exploiting lower bounds foruk (obtained from lower bounds for
ln(1 + x), cf. [12]). One such lower bound is given in footnote [1] and leads to the inequalities

(4.5)
2k − 1

2k + 1
γ ≤ γk ≤

k

k + 1
γ .

Of course, the upper bound here is also a consequence of the relatively simple property (i) of
Theorem 4.1. Applying sharper bounds of the logarithmic function leads to the bounds

(4.6)
2k − 1

2k + 1
γ ≤ γk ≤

k

k + 1

(
γ − 1

6k2 + 6k + 1

)
.

APPENDIX

We shall here give an outline of the proof of Theorem 4.1. We need some auxiliary bounds
for the logarithmic function which are available from [12]. In particular, for the functionλ
defined by

λ(x) =
ln(1 + x)

x
,

one has

(4.7) (2− x)λ(y)− 1− x

1 + y
≤ λ(xy) ≤ xλ(y) + (1− x) ,

valid for 0 ≤ x ≤ 1 and0 ≤ y <∞, cf. (16) of [12].

Proof of (i) of Theorem 4.1.Fix 0 ≤ x ≤ 1 and introduce the parametery = 1
k
. Put

ψ(y) =

(
1 +

1

k

)
x2(1− x2)

2
fk(x) + (1− x) ln(1− x)

(with k = 1
y
). Then, simple differentiation and an application of the right hand inequality of

(4.7) shows thatψ is a decreasing function ofy in ]0, 1]. This implies the desired result. �

Proof of (ii) of Theorem 4.1.Fix k ≥ 1 and putϕ = f −
(
1 + 1

k

)
fk. Thenϕ′ can be written in

the form

ϕ′(x) =
2kx

x4(1− x2)2
ψ(x) .

We have to prove thatψ ≤ 0 in [0, 1]. After differentiations, one finds thatψ(0) = ψ(1) =
ψ′(0) = ψ′(1) = ψ′′(0) = 0.
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Furthermore, we claim thatψ′′(1) < 0. This amounts to the inequality

(4.8) ln(1 + y) >
y(8 + 7y)

(1 + y)(8 + 3y)
with y =

1

k
.

This is valid fory > 0, as may be proved directly or deduced from a known stronger inequality
(related to the functionφ2 listed in Table 1 of [12]).

Further differentiation shows thatψ′′′(0) = −y3 < 0. With two more differentiations we find
that

ψ(5)(x) = − 18y3

(1 + xy)2
− 20y3

(1 + xy)3
− 6y3(1− y2)

(1 + xy)4
+

24y3(1− y2)

(1 + xy)5
.

Now, if ψ assumes positive values in[0, 1], ψ′′(x) = 0 would have at least 4 solutions in]0, 1[,
henceψ(5) would have at least one solution in]0, 1[. In order to arrive at a contradiction, we put
X = 1 + xy and note thatψ(5)(x) = 0 is equivalent to the equality

−9X3 − 10X2 − 3(1− y2)X + 12(1− y2) = 0 .

However, it is easy to show that the left hand side here is upper bounded by a negative number.
Hence we have arrived at the desired contradiction, and conclude thatψ ≤ 0 in [0, 1]. �

Proof of (iii) of Theorem 4.1.Again, fix k and put

ψ(x) = 1−
(1 + 1

k
)fk(x)

f(x)
.

Then, once more withy = 1
k
,

ψ(x) =
(1 + xy) ln(1 + xy)− x2(1 + y) ln(1 + y)− xy(1− x)

y(1− x)(−x− ln(1− x))
.

We will show thatψ′ ≤ 0. Writeψ′ in the form

ψ′ =
y

denominator2
ξ ,

where “denominator” refers to the denominator in the expression forψ. Thenξ(0) = ξ(1) = 0.
Regarding the continuity ofξ at1 with ξ(1) = 0, the key fact needed is the limit relation

lim
x−1−

ln(1− x) · ln 1 + xy

1 + y
= 0 .

Differentiation shows thatξ′(0) = −2y < 0 and thatξ′(1) = ∞. Further differentiation and
exploitation of the left hand inequality of (4.7) gives:

ξ′′(x) ≥ y

(
−10x− 2xy − 1

1 + xy
+ 6 +

1

1− x

)
≥ y

(
−12x− 1

1 + x
+

1

1− x
+ 6

)
,

and this quantity is≥ 0 in [0, 1[. We conclude thatξ ≤ 0 in [0, 1[. The desired result follows.
All parts of Theorem 4.1 are hereby proved. �
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