

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 1, Article 32, 2006

POWERS OF CLASS wF(p, r, q) **OPERATORS**

JIANGTAO YUAN AND CHANGSEN YANG

LMIB AND DEPARTMENT OF MATHEMATICS BEIHANG UNIVERSITY BEIJING 100083, CHINA yuanjiangtao02@yahoo.com.cn

College of Mathematics and Information Science Henan Normal University Xinxiang 453007, China yangchangsen117@yahoo.com.cn

Received 16 May, 2005; accepted 26 November, 2005 Communicated by S.S. Dragomir

ABSTRACT. This paper is to discuss powers of class wF(p, r, q) operators for $1 \ge p > 0$, $1 \ge r > 0$ and $q \ge 1$; and an example is given on powers of class wF(p, r, q) operators.

Key words and phrases: Class wF(p, r, q), Furuta inequality.

2000 Mathematics Subject Classification. 47B20, 47A63.

1. INTRODUCTION

Let H be a complex Hilbert space and B(H) be the algebra of all bounded linear operators in H, and a capital letter (such as T) denote an element of B(H). An operator T is said to be k-hyponormal for k > 0 if $(T^*T)^k \ge (TT^*)^k$, where T^* is the adjoint operator of T. A k-hyponormal operator T is called hyponormal if k = 1; semi-hyponormal if k = 1/2. Hyponormal and semi-hyponormal operators have been studied by many authors, such as [1, 11, 16, 20, 21]. It is clear that every k-hyponormal operator is q-hyponormal for $0 < q \le k$ by the Löwner-Heinz theorem ($A \ge B \ge 0$ ensures $A^{\alpha} \ge B^{\alpha}$ for any $1 \ge \alpha \ge 0$). An invertible operator T is said to be log-hyponormal if $\log T^*T \ge \log TT^*$, see [18, 19]. Every invertible khyponormal operator for k > 0 is log-hyponormal since $\log t$ is an operator monotone function. log-hyponormality is sometimes regarded as 0-hyponormal since $(X^k-1)/k \to \log X$ as $k \to 0$ for X > 0.

As generalizations of k-hyponormal and log-hyponormal operators, many authors introduced many classes of operators, see the following.

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

Supported in part by NSF of China(10271011) and Education Foundation of Henan Province(2003110006).

¹⁵²⁻⁰⁵

Definition A ([5, 6]).

(1) For p > 0 and r > 0, an operator T belongs to class A(p, r) if

$$(|T^*|^r |T|^{2p} |T^*|^r)^{\frac{r}{p+r}} \ge |T^*|^{2r}.$$

(2) For $p > 0, r \ge 0$ and $q \ge 1$, an operator T belongs to class F(p, r, q) if

 $(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{1}{q}} \ge |T^*|^{\frac{2(p+r)}{q}}.$

For each p > 0 and r > 0, class A(p, r) contains all p-hyponormal and log-hyponormal operators. An operator T is a class A(k) operator ([9]) if and only if T is a class A(k, 1) operator, T is a class A(1) operator if and only if T is a class A operator ([9]), and T is a class A(p, r) operator if and only if T is a class $F(p, r, \frac{p+r}{r})$ operator.

Aluthge-Wang [3] introduced w-hyponormal operators defined by $\left| \widetilde{T} \right| \ge |T| \ge \left| \widetilde{T}^* \right|$ where the polar decomposition of T is T = U|T| and $\widetilde{T} = |T|^{1/2}U|T|^{1/2}$ is called the Aluthge trans-

formation of T. As a generalization of w-hyponormality, Ito [12] and Yang-Yuan [25, 26] introduced the classes wA(p,r) and wF(p,r,q) respectively.

Definition B.

(1) For p > 0, r > 0, an operator T belongs to class wA(p, r) if
 (|T*|^r|T|^{2p}|T*|^r)^{r/p+r} ≥ |T*|^{2r} and |T|^{2p} ≥ (|T|^p|T*|^{2r}|T|^p)^{p/p+r}.
(2) For p > 0, r ≥ 0, and q ≥ 1, an operator T belongs to class wF(p, r, q) if
 (|T*|^r|T|^{2p}|T*|^r)^{1/q} ≥ |T*|^{2p/q+r/q} and |T|^{2(p+r)(1-1/q)} ≥ (|T|^p|T*|^{2r}|T|^p)^{1-1/q},
 denoting (1 - q⁻¹)⁻¹ by q* (when q > 1) because q and (1 - q⁻¹)⁻¹ are a couple of
 conjugate exponents.

An operator T is a w-hyponormal operator if and only if T is a class $wA(\frac{1}{2}, \frac{1}{2})$ operator, T is a class wA(p, r) operator if and only if T is a class $wF(p, r, \frac{p+r}{r})$ operator.

Ito [15] showed that the class A(p,r) coincides with the class wA(p,r) for each p > 0 and r > 0, class A coincides with class wA(1,1). For each p > 0, $r \ge 0$ and $q \ge 1$ such that $rq \le p+r$, [25] showed that class wF(p,r,q) coincides with class F(p,r,q).

Halmos ([11, Problem 209]) gave an example of a hyponormal operator T whose square T^2 is not hyponormal. This problem has been studied by many authors, see [2, 10, 14, 22, 27]. Aluthge-Wang [2] showed that the operator T^n is (k/n)-hyponormal for any positive integer n if T is k-hyponormal.

In this paper, we firstly discuss powers of class wF(p, r, q) operators for $1 \ge p > 0$, $1 \ge r > 0$ and $q \ge 1$. Secondly, we shall give an example on powers of class wF(p, r, q) operators.

2. **RESULT AND PROOF**

The following assertions are well-known.

Theorem A ([15]). Let $1 \ge p > 0$, $1 \ge r > 0$. Then T^n is a class $wA(\frac{p}{n}, \frac{r}{n})$ operator.

Theorem B ([13]). Let $1 \ge p > 0, 1 \ge r \ge 0, q \ge 1$ and $rq \le p + r$. If T is an invertible class F(p, r, q) operator, then T^n is a $F(\frac{p}{n}, \frac{r}{n}, q)$ operator.

Theorem C ([25]). Let $1 \ge p > 0, 1 \ge r \ge 0$; $q \ge 1$ when r = 0 and $\frac{p+r}{r} \ge q \ge 1$ when r > 0. If T is a class wF(p, r, q) operator, then T^n is a class $wF(\frac{p}{n}, \frac{r}{n}, q)$ operator.

Here we generalize them to the following.

Theorem 2.1. Let $1 \ge p > 0$, $1 \ge r > 0$; $q > \frac{p+r}{r}$. If T is a class wF(p, r, q) operator such that $N(T) \subset N(T^*)$, then T^n is a class $wF(\frac{p}{n}, \frac{r}{n}, q)$ operator.

In order to prove the theorem, we require the following assertions.

Lemma A ([8]). Let $\alpha \in \mathbb{R}$ and X be invertible. Then $(X^*X)^{\alpha} = X^*(XX^*)^{\alpha-1}X$ holds, especially in the case $\alpha \ge 1$, Lemma A holds without invertibility of X.

Theorem D ([15]). Let $A, B \ge 0$. Then for each $p, r \ge 0$, the following assertions hold:

(1) $\left(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \ge B^{r} \Rightarrow \left(A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}}\right)^{\frac{p}{p+r}} \le A^{p}.$ (2) $\left(A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}}\right)^{\frac{p}{p+r}} < A^{p} \text{ and } N(A) \subset N(B) \Rightarrow \left(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} > B^{r}.$

Theorem E ([24]). Let *T* be a class *wA* operator. Then $|T^n|^{\frac{2}{n}} \ge \cdots \ge |T^2| \ge |T|^2$ and $|T^*|^2 \ge |(T^2)^*| \ge \cdots \ge |(T^n)^*|^{\frac{2}{n}}$ hold.

Theorem F ([25]). Let T be a class $wF(p_0, r_0, q_0)$ operator for $p_0 > 0, r_0 \ge 0$ and $q_0 \ge 1$. Then the following assertions hold.

- (1) If $q \ge q_0$ and $r_0q \le p_0 + r_0$, then T is a class $wF(p_0, r_0, q)$ operator.
- (2) If $q^* \ge q_0^*$, $p_0 q^* \le p_0 + r_0$ and $N(T) \subset N(T^*)$, then T is a class $wF(p_0, r_0, q)$ operator.
- (3) If $rq \le p + r$, then class wF(p, r, q) coincides with class F(p, r, q).

Theorem G ([25]). Let T be a class $wF\left(p_0, r_0, \frac{p_0+r_0}{\delta_0+r_0}\right)$ operator for $p_0 > 0$, $r_0 \ge 0$ and $-r_0 < \delta_0 \le p_0$. Then T is a class $wF\left(p, r, \frac{p+r}{\delta_0+r}\right)$ operator for $p \ge p_0$ and $r \ge r_0$.

Proposition A ([25]). Let $A, B \ge 0$; $1 \ge p > 0$, $1 \ge r > 0$; $\frac{p+r}{r} \ge q \ge 1$. Then the following assertions hold.

- (1) If $\left(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}}\right)^{\frac{1}{q}} \ge B^{\frac{p+r}{q}}$ and $B \ge C$, then $\left(C^{\frac{r}{2}}A^{p}C^{\frac{r}{2}}\right)^{\frac{1}{q}} \ge C^{\frac{p+r}{q}}$.
- (2) If $B^{\frac{p+r}{q}} \ge \left(B^{\frac{r}{2}}C^{p}B^{\frac{r}{2}}\right)^{\frac{1}{q}}$, $A \ge B$ and the condition

(*) if
$$\lim_{n \to \infty} B^{\frac{1}{2}} x_n = 0$$
 and $\lim_{n \to \infty} A^{\frac{1}{2}} x_n$ exists, then $\lim_{n \to \infty} A^{\frac{1}{2}} x_n = 0$

holds for any sequence of vectors $\{x_n\}$, then $A^{\frac{p+r}{q}} \ge \left(A^{\frac{r}{2}}C^p A^{\frac{r}{2}}\right)^{\frac{1}{q}}$.

Proof of Theorem 2.1. Put $\delta = \frac{p+r}{q} - r$, then $-r < \delta < 0$ by the hypothesis. Moreover, if $(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{r+\delta}{p+r}} > |T^*|^{2(r+\delta)}$ and $|T|^{2(p-\delta)} > (|T|^p|T^*|^{2r}|T|^p)^{\frac{p-\delta}{p+r}}$,

then T is a class wA operator by Theorem G and Theorem D, so that the following hold by taking $A_n = |T^n|^{\frac{2}{n}}$ and $B_n = |(T^n)^*|^{\frac{2}{n}}$ in Theorem E

(2.1)
$$A_n \ge \cdots \ge A_2 \ge A_1 \text{ and } B_1 \ge B_2 \ge \cdots \ge B_n$$

Meanwhile, A_n and A_1 satisfy the following for any sequence of vectors $\{x_m\}$ (see [24])

if
$$\lim_{m \to \infty} A_1^{\frac{1}{2}} x_m = 0$$
 and $\lim_{m \to \infty} A_n^{\frac{1}{2}} x_m$ exists, then $\lim_{m \to \infty} A_n^{\frac{1}{2}} x_m = 0$.

Then the following holds by Proposition A

$$(A_n)^{\frac{p+r}{q^*}} \ge \left((A_n)^{\frac{p}{2}} (B_1)^r (A_n)^{\frac{p}{2}} \right)^{\frac{1}{q^*}} \ge \left((A_n)^{\frac{p}{2}} (B_n)^r (A_n)^{\frac{p}{2}} \right)^{\frac{1}{q^*}},$$

and it follows that

$$|T^{n}|^{\frac{2(p+r)}{nq^{*}}} \ge \left(|T^{n}|^{\frac{p}{n}}|(T^{n})^{*}|^{\frac{2r}{n}}|T^{n}|^{\frac{p}{n}} \right)^{\frac{1}{q^{*}}}.$$

We assert that $N(T) \subset N(T^*)$ implies $N(T^n) \subset N((T^n)^*)$.

In fact,

$$\begin{aligned} x \in N(T^n) \Rightarrow T^{n-1}x \in N(T) &\subseteq N(T^*) \\ \Rightarrow T^{n-2}x \in N(T^*T) = N(T) \subseteq N(T^*) \\ &\cdots \\ \Rightarrow x \in N(T) \subseteq N(T^*) \\ \Rightarrow x \in N(T^*) \subseteq N((T^n)^*), \end{aligned}$$

thus

$$\left(|(T^n)^*|^{\frac{r}{n}} |T^n|^{\frac{2p}{n}} |(T^n)^*|^{\frac{r}{n}} \right)^{\frac{1}{q}} \ge |(T^n)^*|^{\frac{2(p+r)}{nq}}$$

holds by Theorem D and the Löwner-Heinz theorem, so that T^n is a class $wF(\frac{p}{n}, \frac{r}{n}, q)$ operator.

3. AN EXAMPLE

In this section we give an example on powers of class wF(p, r, q) operators.

Theorem 3.1. Let A and B be positive operators on H, U and D be operators on $\bigoplus_{k=-\infty}^{\infty} H_k$, where $H_k \cong H$, as follows

$$U = \begin{pmatrix} \ddots & & & & & \\ \ddots & 0 & & & & \\ & 1 & 0 & & & \\ & & 1 & 0 & & \\ & & & 1 & 0 & \\ & & & & \ddots & \ddots \end{pmatrix},$$
$$D = \begin{pmatrix} \ddots & & & & & \\ & B^{\frac{1}{2}} & & & & \\ & & B^{\frac{1}{2}} & & & \\ & & & A^{\frac{1}{2}} & & \\ & & & & A^{\frac{1}{2}} & \\ & & & & A^{\frac{1}{2}} & \\ & & & & & & \ddots \end{pmatrix},$$

where (\cdot) shows the place of the (0,0) matrix element, and T = UD. Then the following assertions hold.

- (1) If T is a class wF(p,r,q) operator for $1 \ge p > 0, 1 \ge r \ge 0, q \ge 1$ and $rq \le p + r$,
- (1) If T is a class wT(p, r, q) operator for $T \ge p + r, q = p$

Remark 3.2. Noting that Theorem 3.1 holds without the invertibility of A and B, this example is a modification of ([4], Theorem 2) and ([23], Lemma 1).

We need the following well-known result to give the proof.

Theorem H (Furuta inequality [7], in brief FI). If $A \ge B \ge 0$, then for each $r \ge 0$,

(i)
$$(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{1}{q}} \ge (B^{\frac{r}{2}}B^{p}B^{\frac{r}{2}})^{\frac{1}{q}}$$

and

(ii)
$$(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}})^{\frac{1}{q}} \ge (A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}}$$

hold for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

Theorem H yields the Löwner-Heinz inequality by putting r = 0 in (i) or (ii) of FI. It was shown by Tanahashi [17] that the domain drawn for p, q and r in the Figure is the best possible for Theorem H.

Proof of Theorem 3.1. By simple calculations, we have

Ί

J. Inequal. Pure and Appl. Math., 7(1) Art. 32, 2006

$$|T^*|^r|T|^{2p}|T^*|^r = \begin{pmatrix} \ddots & & & & & \\ & B^{p+r} & & & \\ & & & B^{p+r} & & \\ & & & & & & A^{p+r} & \\ & & & & & & & A^{p+r} & \\ & & & & & & & & A^{p+r} & \\ & & & & & & & & & \ddots \end{pmatrix}$$

and

and

thus the following hold for $n\geq 2$

$$T^{n^{*}}T^{n} = \begin{pmatrix} \ddots & & & & & \\ & B^{n} & & & \\ & & B^{\frac{n-1}{2}}AB^{\frac{n-1}{2}} & & & \\ & & & \ddots & & \\ & & & B^{\frac{j}{2}}A^{n-j}B^{\frac{j}{2}} & & & \\ & & & & & \ddots & \\ & & & & B^{\frac{1}{2}}A^{n-1}B^{\frac{1}{2}} & & & \\ & & & & & & A^{n} & \\ & & & & & & & \ddots \end{pmatrix}$$

therefore

Proof of (1). T is a class wF(p, r, q) operator is equivalent to the following

$$(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{1}{q}} \ge B^{\frac{p+r}{q}}$$
 and $A^{\frac{p+r}{q^{*}}} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{1}{q^{*}}},$

 T^n belongs to class $wF(\frac{p}{n}, \frac{r}{n}, q)$ is equivalent to the following (3.1) and (3.2).

$$(3.1) \begin{cases} \left(B^{\frac{r}{2}}(B^{\frac{j}{2}}A^{n-j}B^{\frac{j}{2}})^{\frac{p}{n}}B^{\frac{r}{2}})^{\frac{1}{q}} \ge B^{\frac{p+r}{q}} \\ \left(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}}\right)^{\frac{1}{q}} \ge B^{\frac{p+r}{q}} \\ \left(\left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{r}{2n}}A^{p}\left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{r}{2n}}\right)^{\frac{1}{q}} \ge \left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{p+r}{nq}} \\ \text{where } j = 1, 2, ..., n - 1. \end{cases} \\ \begin{cases} \left(\left(B^{\frac{j}{2}}A^{n-j}B^{\frac{j}{2}}\right)^{\frac{p}{2n}}B^{r}\left(B^{\frac{j}{2}}A^{n-j}B^{\frac{j}{2}}\right)\right)^{\frac{1}{q^{*}}} \ge \left(B^{\frac{j}{2}}A^{n-j}B^{\frac{j}{2}}\right)^{\frac{p+r}{nq^{*}}} \\ A^{\frac{p+r}{q^{*}}} \ge \left(A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}} \\ A^{\frac{p+r}{q^{*}}} \ge \left(A^{\frac{p}{2}}\left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{r}{n}}A^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}} \\ \text{where } j = 1, 2, ..., n - 1. \end{cases} \end{cases}$$

We only prove (3.1) because of Theorem D. Step 1. To show

$$\left(B^{\frac{r}{2}}\left(B^{\frac{j}{2}}A^{n-j}B^{\frac{j}{2}}\right)^{\frac{p}{n}}B^{\frac{r}{2}}\right)^{\frac{1}{q}} \ge B^{\frac{p+r}{q}}$$

for j = 1, 2, ..., n - 1.

In fact, T is a class wF(p,r,q) operator for $1 \ge p > 0, 1 \ge r \ge 0, q \ge 1$ and $rq \le p + r$ implies T belongs to class $wF\left(j, n-j, \frac{n}{\delta+j}\right)$, where $\delta = \frac{p+r}{q} - r$ by Theorem G and Theorem D, thus -δ

$$\left(B^{\frac{j}{2}}A^{n-j}B^{\frac{j}{2}}\right)^{\frac{\delta+j}{n}} \ge B^{\delta+j} \quad \text{and} \quad A^{n-j-\delta} \ge \left(A^{\frac{n-j}{2}}B^{j}A^{\frac{n-j}{2}}\right)^{\frac{n-j-j}{n}}$$

Therefore the assertion holds by applying (i) of Theorem H to $\left(B^{\frac{j}{2}}A^{n-j}B^{\frac{j}{2}}\right)^{\frac{\alpha+j}{n}}$ and $B^{\delta+j}$ for $\left(1+\frac{r}{\delta+j}\right)q \ge \frac{p}{\delta+j}+\frac{r}{\delta+j}.$ **Step 2.** To show

$$\left(\left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{r}{2n}}A^{p}\left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{r}{2n}}\right)^{\frac{1}{q}} \ge \left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{p+i}{nq}}$$

for j = 1, 2, ..., n - 1.

In fact, similar to Step 1, the following hold

$$\left(B^{\frac{n-j}{2}}A^{j}B^{\frac{n-j}{2}}\right)^{\frac{\delta+n-j}{n}} \ge B^{\delta+n-j} \quad \text{and} \quad A^{j-\delta} \ge \left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{j-\delta}{n}}$$

this implies that $A^j \ge \left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{j}{n}}$ by Theorem D. Therefore the assertion holds by applying (i) of Theorem H to A^j and $\left(A^{\frac{j}{2}}B^{n-j}A^{\frac{j}{2}}\right)^{\frac{j}{n}}$ for $(1+\frac{r}{j})q \ge \frac{p}{j} + \frac{r}{j}$.

Proof of (2). This part is similar to Proof of (1), so we omit it here.

We are indebted to Professor K. Tanahashi for a fruitful correspondence and the referee for his valuable advice and suggestions, especially for the improvement of Theorem 2.1.

REFERENCES

- [1] A. ALUTHGE, On p-hyponormal operators, Integr. Equat. Oper. Th., 13 (1990), 307–315.
- [2] A. ALUTHGE AND D. WANG, Powers of *p*-hyponormal operators, *J. Inequal. Appl.*, **3** (1999), 279–284.
- [3] A. ALUTHGE AND D. WANG, w-hyponormal operators, Integr. Equat. Oper. Th., 36 (2000), 1–10.
- [4] M. CHŌ AND T. HURUYA, Square of the *w*-hyponormal operators, *Integr. Equat. Oper. Th.*, **39** (2001), 413–420.
- [5] M. FUJII, D. JUNG, S.H. LEE, M.Y. LEE AND R. NAKAMOTO, Some classes of operators related to paranormal and log-hyponormal operators, *Math. Japan.*, 51 (2000), 395–402.
- [6] M. FUJII AND R. NAKAMOTO, Some classes of operators derived from Furuta inequality, Sci. Math., 3 (2000), 87–94.
- [7] T. FURUTA, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{\frac{p+2r}{q}}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, *Proc. Amer. Math. Soc.*, **101** (1987), 85–88.
- [8] T. FURUTA, Extension of the Furuta inequality and Ando-Hiai log-majorization, *Linear Algebra Appl.*, **219** (1995), 139–155.
- [9] T. FURUTA, M. ITO AND T. YAMAZAKI, A subclass of paranormal operators including class of log-hyponormal and several classes, *Sci. Math.*, **1** (1998), 389–403.
- [10] T. FURUTA AND M. YANAGIDA, On powers of *p*-hyponormal and log-hyponormal operators, *J. Inequal. Appl.*, 5 (2000), 367–380.
- [11] P.R. HALMOS, A Hilbert Space Problem Book, 2nd ed., Springer-Verlag, New York, 1982.
- [12] M. ITO, Some classes of operators associated with generalized Aluthge transformation, SUT J. Math., 35 (1999), 149–165.
- [13] M. ITO, On some classes of operators by Fujii and Nakamoto related to *p*-hyponormal and paranormal operators, *Sci. Math.*, **3** (2000), 319–334.
- [14] M. ITO, Generalizations of the results on powers of *p*-hyponormal operators, J. Inequal. Appl., 6 (2000), 1–15.
- [15] M. ITO AND T. YAMAZAKI, Relations between two inequalities $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$ and $(A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}} \le A^{p}$ and its applications, *Integr. Equat. Oper. Th.*, **44** (2002), 442–450.
- [16] J.G. STAMPFLI, Hyponormal operators, Pacific J. Math., 12 (1962), 1453–1458.
- [17] K. TANAHASHI, Best possibility of Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 141– 146.
- [18] K. TANAHASHI, On log-hyponormal operators, Integr. Equat. Oper. Th., 34 (1999), 364–372.
- [19] K. TANAHASHI, Putnam inequality for log-hyponormal operators, *Integr. Equat. Oper. Th.*, **48** (2004), 103–114.
- [20] D. XIA, On the nonnormal operators-semihyponormal operators, Sci. Sininca, 23 (1980), 700–713.
- [21] D. XIA, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Boston, 1983.
- [22] T. YAMAZAKI, Extensions of the results on *p*-hyponormal and log-hyponormal operators by Aluthge and Wang, *SUT J. Math.*, **35** (1999), 139–148.

- [23] M. YANAGIDA, Some applications of Tanahashi's result on the best possibility of Furuta inequality, *Math. Inequal. Appl.*, **2** (1999), 297–305.
- [24] M. YANAGIDA, Powers of class wA(s,t) operators associated with generalized Aluthge transformation, *J. Inequal. Appl.*, **7**(2) (2002), 143–168.
- [25] C. YANG AND J. YUAN, On class wF(p, r, q) operators (Chinese), Acta Math. Sci., to appear.
- [26] C. YANG AND J. YUAN, Spectrum of class wF(p, r, q) operators for $p + r \le 1$ and $q \ge 1$, Acta Sci. Math. (Szeged), to appear.
- [27] C. YANG AND J. YUAN, Extensions of the results on powers of *p*-hyponormal and log-hyponormal operators, *J. Inequal. Appl.*, to appear.