Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 1, Article 32, 2006

POWERS OF CLASS $w F(p, r, q)$ OPERATORS
 JIANGTAO YUAN AND CHANGSEN YANG
 LMIB and Department of Mathematics
 Beihang University
 Beijing 100083, China
 yuanjiangtao02@yahoo.com.cn
 College of Mathematics and Information Science
 Henan Normal University
 XinXiang 453007, China
 yangchangsen117@yahoo.com.cn

Received 16 May, 2005; accepted 26 November, 2005
Communicated by S.S. Dragomir

Abstract. This paper is to discuss powers of class $w F(p, r, q)$ operators for $1 \geq p>0$, $1 \geq r>0$ and $q \geq 1$; and an example is given on powers of class $w F(p, r, q)$ operators.

Key words and phrases: Class $w F(p, r, q)$, Furuta inequality.
2000 Mathematics Subject Classification 47B20, 47A63.

1. Introduction

Let H be a complex Hilbert space and $B(H)$ be the algebra of all bounded linear operators in H, and a capital letter (such as T) denote an element of $B(H)$. An operator T is said to be k-hyponormal for $k>0$ if $\left(T^{*} T\right)^{k} \geq\left(T T^{*}\right)^{k}$, where T^{*} is the adjoint operator of T. A k-hyponormal operator T is called hyponormal if $k=1$; semi-hyponormal if $k=1 / 2$. Hyponormal and semi-hyponormal operators have been studied by many authors, such as [1, 11, 16, 20, 21]. It is clear that every k-hyponormal operator is q-hyponormal for $0<q \leq k$ by the Löwner-Heinz theorem ($A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $1 \geq \alpha \geq 0$). An invertible operator T is said to be \log-hyponormal if $\log T^{*} T \geq \log T T^{*}$, see [18, 19]. Every invertible k hyponormal operator for $k>0$ is \log-hyponormal since $\log t$ is an operator monotone function. \log-hyponormality is sometimes regarded as 0 -hyponormal since $\left(X^{k}-1\right) / k \rightarrow \log X$ as $k \rightarrow 0$ for $X>0$.

As generalizations of k-hyponormal and log-hyponormal operators, many authors introduced many classes of operators, see the following.

[^0]
Definition A ([5, 6]).

(1) For $p>0$ and $r>0$, an operator T belongs to class $A(p, r)$ if

$$
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r}{p+r}} \geq\left|T^{*}\right|^{2 r}
$$

(2) For $p>0, r \geq 0$ and $q \geq 1$, an operator T belongs to class $F(p, r, q)$ if

$$
\left(\left|T^{*}\right| r|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} \geq\left|T^{*}\right|^{\frac{2(p+r)}{q}} .
$$

For each $p>0$ and $r>0$, class $A(p, r)$ contains all p-hyponormal and log-hyponormal operators. An operator T is a class $A(k)$ operator ([9]) if and only if T is a class $A(k, 1)$ operator, T is a class $A(1)$ operator if and only if T is a class A operator ([9]), and T is a class $A(p, r)$ operator if and only if T is a class $F\left(p, r, \frac{p+r}{r}\right)$ operator.

Aluthge-Wang [3] introduced w-hyponormal operators defined by $|\tilde{T}| \geq|T| \geq\left|\tilde{T}^{*}\right|$ where the polar decomposition of T is $T=U|T|$ and $\tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ is called the Aluthge transformation of T. As a generalization of w-hyponormality, Ito [12] and Yang-Yuan [25, 26] introduced the classes $w A(p, r)$ and $w F(p, r, q)$ respectively.
Definition B.
(1) For $p>0, r>0$, an operator T belongs to class $w A(p, r)$ if

$$
\left(\left|T^{*}\right| r^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r}{p+r}} \geq\left|T^{*}\right|^{2 r} \quad \text { and } \quad|T|^{2 p} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{\frac{p}{p+r}} .
$$

(2) For $p>0, r \geq 0$, and $q \geq 1$, an operator T belongs to class $w F(p, r, q)$ if

$$
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} \geq\left|T^{*}\right|^{\frac{2(p+r)}{q}} \quad \text { and } \quad|T|^{2(p+r)\left(1-\frac{1}{q}\right)} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{1-\frac{1}{q}},
$$

denoting $\left(1-q^{-1}\right)^{-1}$ by $q^{*}($ when $q>1)$ because q and $\left(1-q^{-1}\right)^{-1}$ are a couple of conjugate exponents.
An operator T is a w-hyponormal operator if and only if T is a class $w A\left(\frac{1}{2}, \frac{1}{2}\right)$ operator, T is a class $w A(p, r)$ operator if and only if T is a class $w F\left(p, r, \frac{p+r}{r}\right)$ operator.

Ito [15] showed that the class $A(p, r)$ coincides with the class $w A(p, r)$ for each $p>0$ and $r>0$, class A coincides with class $w A(1,1)$. For each $p>0, r \geq 0$ and $q \geq 1$ such that $r q \leq p+r,[25]$ showed that class $w F(p, r, q)$ coincides with class $F(p, r, q)$.

Halmos ([11, Problem 209]) gave an example of a hyponormal operator T whose square T^{2} is not hyponormal. This problem has been studied by many authors, see [2, 10, 14, 22, 27]. Aluthge-Wang [2] showed that the operator T^{n} is (k / n)-hyponormal for any positive integer n if T is k-hyponormal.

In this paper, we firstly discuss powers of class $w F(p, r, q)$ operators for $1 \geq p>0,1 \geq r>$ 0 and $q \geq 1$. Secondly, we shall give an example on powers of class $w F(p, r, q)$ operators.

2. Result and Proof

The following assertions are well-known.
Theorem A ([15]). Let $1 \geq p>0,1 \geq r>0$. Then T^{n} is a class $w A\left(\frac{p}{n}, \frac{r}{n}\right)$ operator.
Theorem B ([13]). Let $1 \geq p>0,1 \geq r \geq 0, q \geq 1$ and $r q \leq p+r$. If T is an invertible class $F(p, r, q)$ operator, then T^{n} is a $F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.
Theorem C ([25]). Let $1 \geq p>0,1 \geq r \geq 0 ; q \geq 1$ when $r=0$ and $\frac{p+r}{r} \geq q \geq 1$ when $r>0$. If T is a class $w F(p, r, q)$ operator, then T^{n} is a class $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.

Here we generalize them to the following.

Theorem 2.1. Let $1 \geq p>0,1 \geq r>0 ; q>\frac{p+r}{r}$. If T is a class $w F(p, r, q)$ operator such that $N(T) \subset N\left(T^{*}\right)$, then T^{n} is a class $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.

In order to prove the theorem, we require the following assertions.
Lemma A ([8]). Let $\alpha \in \mathbb{R}$ and X be invertible. Then $\left(X^{*} X\right)^{\alpha}=X^{*}\left(X X^{*}\right)^{\alpha-1} X$ holds, especially in the case $\alpha \geq 1$, Lemma A holds without invertibility of X.
Theorem D ([15]). Let $A, B \geq 0$. Then for each $p, r \geq 0$, the following assertions hold:
(1) $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r} \Rightarrow\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}} \leq A^{p}$.
(2) $\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}} \leq A^{p}$ and $N(A) \subset N(B) \Rightarrow\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$.

Theorem E ([24]). Let T be a class $w A$ operator. Then $\left|T^{n}\right|^{\frac{2}{n}} \geq \cdots \geq\left|T^{2}\right| \geq|T|^{2}$ and $\left|T^{*}\right|^{2} \geq\left|\left(T^{2}\right)^{*}\right| \geq \cdots \geq\left|\left(T^{n}\right)^{*}\right|^{\frac{2}{n}}$ hold.
Theorem $\mathbf{F}([25])$. Let T be a class $w F\left(p_{0}, r_{0}, q_{0}\right)$ operator for $p_{0}>0, r_{0} \geq 0$ and $q_{0} \geq 1$. Then the following assertions hold.
(1) If $q \geq q_{0}$ and $r_{0} q \leq p_{0}+r_{0}$, then T is a class $w F\left(p_{0}, r_{0}, q\right)$ operator.
(2) If $q^{*} \geq q_{0}^{*}, p_{0} q^{*} \leq p_{0}+r_{0}$ and $N(T) \subset N\left(T^{*}\right)$, then T is a class $w F\left(p_{0}, r_{0}, q\right)$ operator.
(3) If $r q \leq p+r$, then class $w F(p, r, q)$ coincides with class $F(p, r, q)$.

Theorem G ([25]). Let T be a class $w F\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta_{0}+r_{0}}\right)$ operator for $p_{0}>0, r_{0} \geq 0$ and $-r_{0}<$ $\delta_{0} \leq p_{0}$. Then T is a class $w F\left(p, r, \frac{p+r}{\delta_{0}+r}\right)$ operator for $p \geq p_{0}$ and $r \geq r_{0}$.
Proposition A ([25]). Let $A, B \geq 0 ; 1 \geq p>0,1 \geq r>0 ; \frac{p+r}{r} \geq q \geq 1$. Then the following assertions hold.
(1) If $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}}$ and $B \geq C$, then $\left(C^{\frac{r}{2}} A^{p} C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq C^{\frac{p+r}{q}}$.
(2) If $B^{\frac{p+r}{q}} \geq\left(B^{\frac{r}{2}} C^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}, A \geq B$ and the condition

$$
\begin{equation*}
\text { if } \lim _{n \rightarrow \infty} B^{\frac{1}{2}} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} A^{\frac{1}{2}} x_{n} \text { exists, then } \lim _{n \rightarrow \infty} A^{\frac{1}{2}} x_{n}=0 \tag{*}
\end{equation*}
$$

holds for any sequence of vectors $\left\{x_{n}\right\}$, then $A^{\frac{p+r}{q}} \geq\left(A^{\frac{r}{2}} C^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$.
Proof of Theorem [2.1] Put $\delta=\frac{p+r}{q}-r$, then $-r<\delta<0$ by the hypothesis. Moreover, if

$$
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r+\delta}{p+r}} \geq\left|T^{*}\right|^{2(r+\delta)} \quad \text { and } \quad|T|^{2(p-\delta)} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{\frac{p-\delta}{p+r}}
$$

then T is a class $w A$ operator by Theorem G and Theorem D , so that the following hold by taking $A_{n}=\left|T^{n}\right|^{\frac{2}{n}}$ and $B_{n}=\left|\left(T^{n}\right)^{*}\right|^{\frac{2}{n}}$ in Theorem E

$$
\begin{equation*}
A_{n} \geq \cdots \geq A_{2} \geq A_{1} \quad \text { and } \quad B_{1} \geq B_{2} \geq \cdots \geq B_{n} \tag{2.1}
\end{equation*}
$$

Meanwhile, A_{n} and A_{1} satisfy the following for any sequence of vectors $\left\{x_{m}\right\}$ (see [24])

$$
\text { if } \lim _{m \rightarrow \infty} A_{1}^{\frac{1}{2}} x_{m}=0 \text { and } \lim _{m \rightarrow \infty} A_{n}^{\frac{1}{2}} x_{m} \text { exists, then } \lim _{m \rightarrow \infty} A_{n}^{\frac{1}{2}} x_{m}=0
$$

Then the following holds by Proposition A

$$
\left(A_{n}\right)^{\frac{p+r}{q^{*}}} \geq\left(\left(A_{n}\right)^{\frac{p}{2}}\left(B_{1}\right)^{r}\left(A_{n}\right)^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}} \geq\left(\left(A_{n}\right)^{\frac{p}{2}}\left(B_{n}\right)^{r}\left(A_{n}\right)^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}}
$$

and it follows that

$$
\left|T^{n}\right|^{\frac{2(p+r)}{n q^{*}}} \geq\left(\left|T^{n}\right|^{\frac{p}{n}}\left|\left(T^{n}\right)^{*}\right|^{\frac{2 r}{n}}\left|T^{n}\right|^{\frac{p}{n}}\right)^{\frac{1}{q^{*}}}
$$

We assert that $N(T) \subset N\left(T^{*}\right)$ implies $N\left(T^{n}\right) \subset N\left(\left(T^{n}\right)^{*}\right)$.

In fact,

$$
\begin{aligned}
x \in N\left(T^{n}\right) & \Rightarrow T^{n-1} x \in N(T) \subseteq N\left(T^{*}\right) \\
& \Rightarrow T^{n-2} x \in N\left(T^{*} T\right)=N(T) \subseteq N\left(T^{*}\right) \\
& \cdots \\
& \Rightarrow x \in N(T) \subseteq N\left(T^{*}\right) \\
& \Rightarrow x \in N\left(T^{*}\right) \subseteq N\left(\left(T^{n}\right)^{*}\right)
\end{aligned}
$$

thus

$$
\left(\left|\left(T^{n}\right)^{*}\right|^{\frac{r}{n}}\left|T^{n}\right|^{\frac{2 p}{n}}\left|\left(T^{n}\right)^{*}\right|^{\frac{r}{n}}\right)^{\frac{1}{q}} \geq\left|\left(T^{n}\right)^{*}\right|^{\frac{2(p+r)}{n q}}
$$

holds by Theorem D and the Löwner-Heinz theorem, so that T^{n} is a class $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.

3. An EXAMPLE

In this section we give an example on powers of class $w F(p, r, q)$ operators.
Theorem 3.1. Let A and B be positive operators on H, U and D be operators on $\bigoplus_{k=-\infty}^{\infty} H_{k}$, where $H_{k} \cong H$, as follows

$$
\begin{gathered}
U=\left(\begin{array}{cccccccc}
\ddots & & & & & & & \\
\ddots & 0 & & & & & \\
& 1 & 0 & & & & \\
& & 1 & (0) & & & \\
& & & 1 & 0 & & & \\
& & & & 1 & 0 & \\
& & & & & \ddots & \ddots
\end{array}\right) \\
D=\left(\begin{array}{llllllll}
\ddots & & & & & & & \\
& B^{\frac{1}{2}} & & & & & & \\
& & B^{\frac{1}{2}} & & & & & \\
& & & & \left(A^{\frac{1}{2}}\right) & & & \\
& & & & & A^{\frac{1}{2}} & & \\
& & & & & & A^{\frac{1}{2}} & \\
& & & & & & \ddots
\end{array}\right)
\end{gathered}
$$

where (\cdot) shows the place of the $(0,0)$ matrix element, and $T=U D$. Then the following assertions hold.
(1) If T is a class $w F(p, r, q)$ operator for $1 \geq p>0,1 \geq r \geq 0, q \geq 1$ and $r q \leq p+r$, then T^{n} is a $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.
(2) If T is a class $w F(p, r, q)$ operator such that $N(T) \subset N\left(T^{*}\right), 1 \geq p>0,1 \geq r \geq 0$, $q \geq 1$ and $r q>p+r$, then T^{n} is a $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.
Remark 3.2. Noting that Theorem 3.1 holds without the invertibility of A and B, this example is a modification of ([4], Theorem 2) and ([23], Lemma 1).

We need the following well-known result to give the proof.

Theorem H (Furuta inequality [7], in brief FI). If $A \geq B \geq 0$, then for each $r \geq 0$,
(i)

$$
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

and
(ii)

$$
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}
$$

hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.

Theorem H yields the Löwner-Heinz inequality by putting $r=0$ in (ii) or (iii) of FI. It was shown by Tanahashi [17] that the domain drawn for p, q and r in the Figure is the best possible for Theorem H

Proof of Theorem 3.1. By simple calculations, we have

$$
\begin{aligned}
& |T|^{2}=\left(\begin{array}{lllllll}
\ddots & & & & & & \\
& B & & & & & \\
& & B & (A) & & & \\
& & & & A & & \\
& & & & & A & \\
& & & & & & \ddots
\end{array}\right), \\
& \left|T^{*}\right|^{2}
\end{aligned}=\left(\begin{array}{llllll}
\ddots & & & & & \\
& B & & & & \\
& & B & & & \\
& & & (B) & & \\
& & & & A & \\
& & & & & A \\
& & & & & \\
& & \ddots
\end{array}\right),
$$

therefore

$$
\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}=\left(\begin{array}{lllllll}
\ddots & & & & & & \\
& B^{p+r} & & & & \\
& & B^{p+r} & & & \\
& & & \left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right) & & & \\
& & & & A^{p+r} & & \\
& & & & & A^{p+r} & \\
& & & & & & \ddots
\end{array}\right)
$$

and

$$
|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}=\left(\begin{array}{lllllll}
\ddots & & & & & & \\
& B^{p+r} & & & & \\
& & B^{p+r} & & & \\
& & & \left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right) & & & \\
& & & & A^{p+r} & & \\
& & & & & A^{p+r} & \\
& & & & & & \ddots
\end{array}\right)
$$

thus the following hold for $n \geq 2$

and

Proof of (1). T is a class $w F(p, r, q)$ operator is equivalent to the following

$$
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}} \quad \text { and } \quad A^{\frac{p+r}{q^{*}}} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{1}{q^{r}}}
$$

T^{n} belongs to class $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ is equivalent to the following (3.1) and (3.2).

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(B^{\frac{r}{2}}\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{p}{n}} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}} \\
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}} \\
\left(\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{2 n}} A^{p}\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{2 n}}\right)_{\text {where }}^{\frac{1}{q}} \geq\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{p+r}{n q}}
\end{array}\right. \tag{3.1}\\
& \left\{\begin{array}{l}
\left(\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{p}{2 n}} B^{r}\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)\right)^{\frac{1}{q^{*}}} \geq\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{p+r}{q^{*}}} \\
A^{\frac{p+r}{q^{*}}} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}} \\
A^{\frac{p+r}{q^{*}}} \geq\left(A^{\frac{p}{2}}\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{n}} A^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}} \\
\text { where } j=1,2, \ldots, n-1 .
\end{array}\right.
\end{align*}
$$

We only prove (3.1) because of Theorem D.
Step 1. To show

$$
\left(B^{\frac{r}{2}}\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{p}{n}} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}}
$$

for $j=1,2, \ldots, n-1$.
In fact, T is a class $w F(p, r, q)$ operator for $1 \geq p>0,1 \geq r \geq 0, q \geq 1$ and $r q \leq p+r$ implies T belongs to class $w F\left(j, n-j, \frac{n}{\delta+j}\right)$, where $\delta=\frac{p+r}{q}-r$ by Theorem G and Theorem D. thus

$$
\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{\delta+j}{n}} \geq B^{\delta+j} \quad \text { and } \quad A^{n-j-\delta} \geq\left(A^{\frac{n-j}{2}} B^{j} A^{\frac{n-j}{2}}\right)^{\frac{n-j-\delta}{n}}
$$

Therefore the assertion holds by applying ij_{i} of Theorem H to $\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{\delta+j}{n}}$ and $B^{\delta+j}$ for $\left(1+\frac{r}{\delta+j}\right) q \geq \frac{p}{\delta+j}+\frac{r}{\delta+j}$.
Step 2. To show

$$
\left(\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{2 n}} A^{p}\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{2 n}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{p+r}{n q}}
$$

for $j=1,2, \ldots, n-1$.
In fact, similar to Step 1, the following hold

$$
\left(B^{\frac{n-j}{2}} A^{j} B^{\frac{n-j}{2}}\right)^{\frac{\delta+n-j}{n}} \geq B^{\delta+n-j} \quad \text { and } \quad A^{j-\delta} \geq\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{j-\delta}{n}}
$$

this implies that $A^{j} \geq\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{j}{n}}$ by Theorem \square. Therefore the assertion holds by applying dij of Theorem \square to A^{j} and $\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{j}{n}}$ for $\left(1+\frac{r}{j}\right) q \geq \frac{p}{j}+\frac{r}{j}$.

Proof of (2). This part is similar to Proof of (1), so we omit it here.

We are indebted to Professor K. Tanahashi for a fruitful correspondence and the referee for his valuable advice and suggestions, especially for the improvement of Theorem 2.1.

References

[1] A. ALUTHGE, On p-hyponormal operators, Integr. Equat. Oper. Th., 13 (1990), 307-315.
[2] A. ALUTHGE AND D. WANG, Powers of p-hyponormal operators, J. Inequal. Appl., 3 (1999), 279-284.
[3] A. ALUTHGE AND D. WANG, w-hyponormal operators, Integr. Equat. Oper. Th., 36 (2000), 1-10.
[4] M. CHŌ AND T. HURUYA, Square of the w-hyponormal operators, Integr. Equat. Oper. Th., 39 (2001), 413-420.
[5] M. FUJII, D. JUNG, S.H. LEE, M.Y. LEE AND R. NAKAMOTO, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japan., 51 (2000), 395-402.
[6] M. FUJII AND R. NAKAMOTO, Some classes of operators derived from Furuta inequality, Sci. Math., 3 (2000), 87-94.
[7] T. FURUTA, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{\frac{p+2 r}{q}}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq$ $p+2 r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
[8] T. FURUTA, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl., 219 (1995), 139-155.
[9] T. FURUTA, M. ITO And T. YAMAZAKI, A subclass of paranormal operators including class of log-hyponormal and several classes, Sci. Math., 1 (1998), 389-403.
[10] T. FURUTA AND M. YANAGIDA, On powers of p-hyponormal and log-hyponormal operators, J. Inequal. Appl., 5 (2000), 367-380.
[11] P.R. HALMOS, A Hilbert Space Problem Book, 2nd ed., Springer-Verlag, New York, 1982.
[12] M. ITO, Some classes of operators associated with generalized Aluthge transformation, SUT J. Math., 35 (1999), 149-165.
[13] M. ITO, On some classes of operators by Fujii and Nakamoto related to p-hyponormal and paranormal operators, Sci. Math., 3 (2000), 319-334.
[14] M. ITO, Generalizations of the results on powers of p-hyponormal operators, J. Inequal. Appl., $\mathbf{6}$ (2000), 1-15.
[15] M. ITO AND T. YAMAZAKI, Relations between two inequalities $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$ and $\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}} \leq A^{p}$ and its applications, Integr. Equat. Oper. Th., 44 (2002), 442-450.
[16] J.G. STAMPFLI, Hyponormal operators, Pacific J. Math., 12 (1962), 1453-1458.
[17] K. TANAHASHI, Best possibility of Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 141146.
[18] K. TANAHASHI, On log-hyponormal operators, Integr. Equat. Oper. Th., 34 (1999), 364-372.
[19] K. TANAHASHI, Putnam inequality for log-hyponormal operators, Integr. Equat. Oper. Th., 48 (2004), 103-114.
[20] D. XIA, On the nonnormal operators-semihyponormal operators, Sci. Sininca, 23 (1980), 700-713.
[21] D. XIA, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Boston, 1983.
[22] T. YAMAZAKI, Extensions of the results on p-hyponormal and log-hyponormal operators by Aluthge and Wang, SUT J. Math., 35 (1999), 139-148.
[23] M. YANAGIDA, Some applications of Tanahashi's result on the best possibility of Furuta inequality, Math. Inequal. Appl., 2 (1999), 297-305.
[24] M. YANAGIDA, Powers of class $w A(s, t)$ operators associated with generalized Aluthge transformation, J. Inequal. Appl., 7(2) (2002), 143-168.
[25] C. YANG and J. YUAN, On class $w F(p, r, q)$ operators (Chinese), Acta Math. Sci., to appear.
[26] C. YANG AND J. YUAN, Spectrum of class $w F(p, r, q)$ operators for $p+r \leq 1$ and $q \geq 1$, Acta Sci. Math. (Szeged), to appear.
[27] C. YANG AND J. YUAN, Extensions of the results on powers of p-hyponormal and log-hyponormal operators, J. Inequal. Appl., to appear.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 Supported in part by NSF of China(10271011) and Education Foundation of Henan Province(2003110006).
 152-05

