Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 6, Issue 2, Article 36, 2005

## ON A F. QI INTEGRAL INEQUALITY

ALFRED WITKOWSKI
Mielczarskiego 4/29
85-796 Bydgoszcz, Poland
alfred.witkowski@atosorigin.com
Received 16 August, 2004; accepted 06 February, 2005
Communicated by F. Qi

Abstract. Necessary and sufficient conditions under which the Qi integral inequality

$$
\int_{a}^{b} f^{t}(x) \mathrm{d} x \geq\left(\int_{a}^{b} f(x) \mathrm{d} x\right)^{t-1}
$$

or its reverse hold for all $t \geq 1$ are given.

Key words and phrases: Convexity, Qi type integral inequality.
2000 Mathematics Subject Classification. 26D15.

## 1. Introduction

In [5] Feng Qi formulated the following problem: Characterize a positive function $f$ such that the inequality

$$
\begin{equation*}
\int_{a}^{b} f^{t}(x) \mathrm{d} x \geq\left(\int_{a}^{b} f(x) \mathrm{d} x\right)^{t-1} \tag{1.1}
\end{equation*}
$$

holds for $t>1$.
In [1, 2, 3, 4] and the references therein, several sufficient conditions and generalizations are given. In all the cited papers the authors look for the solution of the Qi inequality with restricted $t$. This paper is another contribution to this subject. We shall try to establish conditions under which the inequality holds for all $t>1$.

Let $(X, \mu)$ be a finite measure space and $f$ be a positive measurable function. Define for $t \in \mathbb{R}$

$$
\begin{equation*}
H(t)=H(t, f)=\ln \int f^{t} \mathrm{~d} \mu-(t-1) \ln \left(\int f \mathrm{~d} \mu\right) \tag{1.2}
\end{equation*}
$$

It is clear that inequality (1.1) is equivalent to $H(t) \geq 0$ for $t>1$. We will say that for the function $f$ the Qi Inequality (QI) holds if $H(t, f)$ is nonnegative for all $t \geq 1$. We will also say

```
ISSN (electronic): 1443-5756
(C)2005 Victoria University. All rights reserved.
152-04
```

that for the function $f$ the Reverse Qi Inequality (RQI) holds if $H(t, f)$ is non-positive for all $t \geq 1$.

By the Cauchy-Schwarz integral inequality, we have for $p, q \in \mathbb{R}$

$$
\begin{equation*}
\left(\int f^{\frac{p+q}{2}} \mathrm{~d} \mu\right)^{2} \leq \int f^{p} \mathrm{~d} \mu \int f^{q} \mathrm{~d} \mu \tag{1.3}
\end{equation*}
$$

which means that the function $H(t)$ is convex, that is

$$
\begin{equation*}
H\left(\frac{t_{1}+t_{2}}{2}\right) \leq \frac{H\left(t_{1}\right)+H\left(t_{2}\right)}{2} \tag{1.4}
\end{equation*}
$$

holds for $t_{1}, t_{2} \in \mathbb{R}$, so its derivative

$$
\begin{equation*}
H^{\prime}(t)=\frac{\int f^{t} \ln f \mathrm{~d} \mu}{\int f^{t} \mathrm{~d} \mu}-\ln \left(\int f \mathrm{~d} \mu\right) \tag{1.5}
\end{equation*}
$$

is increasing in $t \in \mathbb{R}$.
Let

$$
M=\operatorname{ess} \sup _{x \in X} f(x) \quad \text { and } \quad \mu_{M}=\mu(\{x: f(x)=M\})
$$

The following lemmas will be useful.
Note that from now on we will use the convention that $\ln \infty=\infty$ and $\ln 0=-\infty$.
Lemma 1.1. The following formula holds:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{H(t)}{t}=\ln \frac{M}{\int f \mathrm{~d} \mu} \tag{1.6}
\end{equation*}
$$

Proof. For $\varepsilon>0$ let $m_{\varepsilon}=\mu(x: f(x)>M-\varepsilon)$. Then

$$
(M-\varepsilon)^{t} m_{\varepsilon} \leq \int f^{t} \mathrm{~d} \mu \leq M^{t} \mu(X)
$$

so

$$
\begin{align*}
t \ln (M-\varepsilon) & +\ln m_{\varepsilon} \\
& \leq H(t)+(t-1) \ln \left(\int f \mathrm{~d} \mu\right)  \tag{1.7}\\
& \leq t \ln M+\ln \mu(X) .
\end{align*}
$$

Dividing by $t$ on both sides of (1.7) yields

$$
\ln \frac{M-\varepsilon}{\int f \mathrm{~d} \mu} \leq \liminf _{t \rightarrow \infty} \frac{H(t)}{t} \leq \limsup _{t \rightarrow \infty} \frac{H(t)}{t} \leq \ln \frac{M}{\int f \mathrm{~d} \mu} .
$$

In case $M=\infty, M-\varepsilon$ stands for an arbitrary large number. This completes the proof.
Lemma 1.2. If $M<\infty$ then

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(H(t)-t \ln \frac{M}{\int f \mathrm{~d} \mu}\right)=\ln \left(\mu_{M} \int f \mathrm{~d} \mu\right) \tag{1.8}
\end{equation*}
$$

Proof. Direct computation yields

$$
\begin{align*}
\lim _{t \rightarrow \infty} & \left(H(t)-t \ln \frac{M}{\int f \mathrm{~d} \mu}\right) \\
& =\lim _{t \rightarrow \infty} \ln \int\left(\frac{f}{M}\right)^{t} \mathrm{~d} \mu+\ln \int f \mathrm{~d} \mu  \tag{1.9}\\
& =\ln \left(\mu_{M} \int f \mathrm{~d} \mu\right)
\end{align*}
$$

as $(f / M)^{t}$ tends monotonically to the characteristic function of $\{x: f(x)=M\}$.

## 2. Feng Qi Integral Inequality

In this section we consider the problem: Characterize positive functions $f$ that satisfy (QI).
Theorem 2.1. A constant function $M$ satisfies (QI) if and only if $\mu(X) \leq 1$ and $M \geq 1 / \mu(X)$. Proof. $H(t) \geq 0$ is equivalent to $M \geq \mu(X)^{t-2}$. This can be valid for all $t>1$ only if the conditions of the theorem are fulfilled.
From now on we assume that $f$ is not constant, in which case the function $H$ is strictly convex.

It is clear that the necessary condition for (QI) is $H(1) \geq 0$ or equivalently $\int f \mathrm{~d} \mu \geq 1$.
Theorem 2.2. (a) If $H(1)=0$ then (QI) holds if and only if $H^{\prime}(1) \geq 0$.
(b) If $H(1)>0$ then
(b1) if $H^{\prime}(1) \geq 0$ then (QI) holds;
(b2) if $H^{\prime}(1)<0$ and $M<\int f \mathrm{~d} \mu$ then (QI) fails for large $t$;
(b3) if $H^{\prime}(1)<0$ and $M=\int f \mathrm{~d} \mu$ then (QI) holds if and only if $\mu_{M} M \geq 1$;
(b4) if $H^{\prime}(1)<0$ and $M>\int f \mathrm{~d} \mu$ then there exists an unique point $t_{0}$ such that $H^{\prime}\left(t_{0}\right)=0$ and $(Q I)$ holds if and only if $H\left(t_{0}\right) \geq 0$.

Proof. (a) and (b1) follow immediately from convexity of $H$.
From Lemma 1.1 we see that $H$ becomes negative for large $t$, which proves (b2).
(b3) follows from Lemma 1.2 and from the fact that being convex the graph of $H$ lies above its horizontal asymptote.

Finally (b4) follows from the fact that $H^{\prime}$ is strictly increasing and $H^{\prime}\left(t_{0}\right)=0$ for some $t_{0}$, then $H$ attains its minimum at $t_{0}$. Observe that in this case $H$ may be infinite for some finite $t_{\infty}$ and consequently for all $t>t_{\infty}$.

From the above theorem we obtain the following, surprising
Corollary 2.3. If $\mu(X)<1$ then (QI) holds if and only if $H(1) \geq 0$.
Proof. We will show that if $\mu(X)<1$ then $H^{\prime}(1) \geq 0$ for all $f$, so the condition (b1) is satisfied. Applying the integral Jensen Inequality to the convex function $x \ln x$ we obtain

$$
\begin{aligned}
\frac{1}{\mu(X)} \int f \ln f \mathrm{~d} \mu & \geq\left(\frac{1}{\mu(X)} \int f \mathrm{~d} \mu\right) \ln \left(\frac{1}{\mu(X)} \int f \mathrm{~d} \mu\right) \\
& \geq \frac{1}{\mu(X)}\left(\int f \mathrm{~d} \mu\right) \ln \left(\int f \mathrm{~d} \mu\right)
\end{aligned}
$$

which is equivalent to $H^{\prime}(1) \geq 0$.
In the case (b4), solving the equation $H^{\prime}(t)=0$ may not be an easy task, but the following corollaries may be helpful:

Corollary 2.4. Let

$$
t_{L}=\frac{\int f \ln f \mathrm{~d} \mu-\int f \mathrm{~d} \mu \ln \int f \mathrm{~d} \mu}{\int f \ln f \mathrm{~d} \mu} .
$$

If $H^{\prime}\left(t_{L}\right) \geq 0$ then (QI) holds.
Proof. $t_{L}$ is the point where the supporting line drawn at $t=1$ meets the OX-axis. The graph of $H$ lies above it. In particular $H\left(t_{L}\right) \geq 0$. As $H^{\prime}(t)$ is nonnegative for $t \geq t_{L}$ the proof is completed.

Corollary 2.5. If $0<\mu_{M}, M<\infty$ let

$$
t_{R}=-\frac{\ln \left(\mu_{M} \int f \mathrm{~d} \mu\right)}{\ln \left(M / \int f \mathrm{~d} \mu\right)}
$$

If $H^{\prime}\left(t_{R}\right) \leq 0$ or $t_{R} \leq t_{L}$ then (QI) holds.
Proof. $t_{R}$ is the point where the supporting line drawn at $\infty$ (it exists by Lemma 1.2) meets the OX -axis. If $t_{R} \leq t_{L}$ the two supporting lines meet above the OX-axis.
If $H^{\prime}\left(t_{R}\right) \leq 0$ we use an argument similar to that in the proof of the previous corollary.

## 3. Reversed Feng Qi Inequality

In this section we give sufficient and necessary conditions for the reversed problem: Characterize positive functions $f$ that satisfy (RQI).

Theorem 3.1. A constant function satisfies (RQI) if and only if $\mu(X) \geq 1$ and $M \leq 1 / \mu(X)$.
The proof is similar to that of Theorem 2.1 .
Theorem 3.2. For a non constant function $f$ (RQI) holds if and only if $H(1) \leq 0$ and $M \leq$ $\int f \mathrm{~d} \mu$.

Proof. As $\mu_{M} M<\int f \mathrm{~d} \mu=\exp (H(1)) \leq 1$ it follows from Lemma 1.1 and 1.2 that $H$ is negative for large $t$. Being convex and non-positive at $t=1$, it must be decreasing.
On the other hand if $M>\int f \mathrm{~d} \mu$ then $H$ is positive for large $t$ by Lemma 1.1 .

## 4. Final remark

Finally we prove the following
Theorem 4.1. For every positive function $f$ there exists a constant $c>0$ such that $c f$ satisfies (QI) or (RQI).

Proof. One can easily see that

$$
H(t, c f)=\ln c+H(t, f),
$$

so $c f$ satisfies (QI) for certain $c$ if and only if $H(t, f)$ is bounded from below. Similarly $c f$ satisfies (RQI) only if $H(t, f)$ is bounded from above.
It follows immediately from Lemma 1.1 and Lemma 1.2 that the function $H(t)$ is bounded from below if and only if $M>\int f \mathrm{~d} \mu$ or $M=\int f \mathrm{~d} \mu$ and $\mu_{M}>0$ and is bounded from above if and only if $M \leq \int f \mathrm{~d} \mu$.
This completes the proof of our theorem.
Note that in case $M=\int f \mathrm{~d} \mu$ and $\mu_{M}>0$ we can find constants $c_{1}$ and $c_{2}$ such that (QI) holds for $c_{1} f$ and (RQI) holds for $c_{2} f$.

## References

[1] L. BOUGOFFA, Notes on Qi type integral inequalities, J. Inequal. Pure Appl. Math., 4(4) (2003), Art. 77. [ONLINE: http://jipam.vu.edu.au/article.php?sid=318].
[2] S. MAZOUZI and F. QI, On an open problem regarding an integral inequality, J. Inequal. Pure Appl. Math., 4(2) (2003), Art. 31. [ONLINE: http://jipam.vu.edu.au/article.php? sid=269].
[3] J. PECARIĆ AND T. PEJKOVIĆ, Note on Feng Qi's integral inequality, J. Inequal. Pure Appl. Math., 5(3) (2004), Art. 51. [ONLINE:http://jipam.vu.edu.au/article.php?sid=418].
[4] T.K. POGANY, On an open problem of F. Qi, J. Inequal. Pure Appl. Math., 3(4) (2002), Art. 54. [ONLINE: http://jipam.vu.edu.au/article.php?sid=206].
[5] F. QI, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2) (2000), Art. 19. [ONLINE: http://jipam.vu.edu.au/article.php?sid=113]. RGMIA Res. Rep. Coll., 2(7) (1999), Art. 9, 1039-1042. [ONLINE: http://rgmia.vu.edu.au/v2n7.html].

