ON THE RATE OF CONVERGENCE OF SOME ORTHOGONAL POLYNOMIAL EXPANSIONS

MAŁGORZATA POWIERSKA

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
Umultowska 87, 61-614 Poznań, Poland
EMail: mpowier@amu.edu.pl

20 May, 2006
Accepted:
07 May, 2007
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract.
S.S. Dragomir

41A25.
Orthogonal polynomial expansion, Rate of pointwise and uniform convergence, Modulus of variation, Generalized variation.

In this paper we estimate the rate of pointwise convergence of certain orthogonal expansions for measurable and bounded functions.

Orthogonal Polynomial Expansions Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

$\langle 4$	
\checkmark	
Page 1 of 18	
Go Back	

Full Screen

Close

journal of inequalities

 in pure and applied mathematicsissn: 1443-575b

Contents

1 Introduction 3
2 Lemmas 6
3 Results $\mathbf{1 2}$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

Page 2 of 18

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

Let H_{n} be the class of all polynomials of degree not exceeding n and let w be a weight function defined on $I=[-1,1]$, i.e. $w(t) \geq 0$ for all $t \in I$ and

$$
\int_{-1}^{1}|t|^{k} w(t) d t<\infty \quad \text { for } \quad k=0,1,2, \ldots
$$

Then there is a unique system $\left\{p_{n}\right\}$ of polynomials such that $p_{n} \in H_{n}, p_{n} \equiv$ $p_{n}(w ; x)=\gamma_{n} x^{n}+$ lower degree terms, where $\gamma_{n}>0$ and

$$
\int_{-1}^{1} p_{n}(t) p_{m}(t) w(t) d t=\delta_{n, m}
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page

Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 3 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 1.1. Let w be a weight function and suppose that for all $x \in(-1,1)$ and $n=1,2, \ldots$.

$$
\begin{align*}
& 0<w(x) \leq K\left(1-x^{2}\right)^{-A} \tag{1.2}\\
& \left|p_{n}(x)\right| \leq K\left(1-x^{2}\right)^{-B} \tag{1.3}\\
& \left|\int_{-1}^{x} w(t) p_{n}(t) d t\right| \leq \frac{C}{n} \tag{1.4}
\end{align*}
$$

where A, B, C, K are some non-negative constants. If f is a function of bounded variation in the Jordan sense on I, then

$$
\begin{aligned}
\left|S_{n}[f](w ; x)-\frac{1}{2}(f(x+)+f(x-))\right| \leq & \frac{\varphi(x)}{n} \sum_{k=1}^{n} V\left(g_{x} ; x-\frac{1+x}{k}, x+\frac{1-x}{k}\right) \\
& +\frac{1}{2}|f(x-)-f(x+)|\left|S_{n}\left[\psi_{x}\right](w ; x)\right|
\end{aligned}
$$

where $f(x+), f(x-)$ denote the one-sided limits of f at the point x, the function g_{x} is given by

$$
g_{x}(t):= \begin{cases}f(t)-f(x-) & \text { if }-1 \leq t<x \tag{1.5}\\ 0 & \text { if } t=x \\ f(t)-f(x+) & \text { if } x<t \leq 1\end{cases}
$$

and

$$
\psi_{x}(t):=\operatorname{sgn}_{x}(t)= \begin{cases}1 & \text { if } t>x \tag{1.6}\\ 0 & \text { if } t=x \\ -1 & \text { if } t<x\end{cases}
$$

Page 4 of 18
Go Back
Full Screen
Close
Orthogonal Polynomial Expansions
Małgorzata Powierska vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Moreover, $\varphi(x)>0$ for $x \in(-1,1)$ and $V\left(g_{x} ; a, b\right)$ is the total variation of g_{x} on $[a, b]$.

In this paper, we extend this Bojanic result to the case of measurable and bounded functions f on I (in symbols $f \in M(I)$). We will estimate the rate of convergence of $S_{n}[f](w ; x)$ at those points $x \in I$ at which f possesses finite one-sided limits $f(x+), f(x-)$. In our main estimate we use the modulus of variation $v_{n}\left(g_{x} ; a, b\right)$ of the function g_{x} on some intervals $[a, b] \subset I$. For positive integers n, the modulus of variation of a function g on $[a, b]$ is defined by

$$
\nu_{n}(g ; a, b):=\sup _{\pi_{n}} \sum_{k=0}^{n-1}\left|g\left(x_{2 k+1}\right)-g\left(x_{2 k}\right)\right|,
$$

where the supremum is taken over all systems π_{n} of n non-overlapping open intervals $\left(x_{2 k}, x_{2 k+1}\right) \subset(a, b), k=0,1, \ldots, n-1$ (see [2]). In particular, we obtain estimates for the deviation $\left|S_{n}[f](w ; x)-\frac{1}{2}(f(x+)+f(x-))\right|$ for functions $f \in B V_{\Phi}(I)$. We will say that a function f, defined on the interval I belongs to the class $B V_{\Phi}(I)$, if

$$
V_{\Phi}(f ; I):=\sup _{\pi} \sum_{k} \Phi\left(\left|f\left(x_{k}\right)-f\left(t_{k}\right)\right|\right)<\infty,
$$

where the supremum is taken over all finite systems π of non-overlapping intervals $\left(x_{k}, t_{k}\right) \subset I$. It will be assumed that Φ is a continuous, convex and strictly increasing function on the interval $[0, \infty)$, such that $\Phi(0)=0$. The symbol $V_{\Phi}(f ; a, b)$ will denote the total Φ-variation of f on the interval $[a, b] \subset I$. In the special case, if $\Phi(u)=u^{p}$ for $u \geq 0(p \geq 1)$, we will write $B V_{p}(I)$ instead of $B V_{\Phi}(I)$, and $V_{p}(f ; a, b)$ instead of $V_{\Phi}(f ; a, b)$.
J

Orthogonal Polynomial Expansions

Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

Page 5 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Lemmas

In this section we first mention some results which are necessary for proving the main theorem.

Lemma 2.1. Under the assumptions (1.2), (1.3) and (1.4), we have for $n \geq 2$

$$
\begin{align*}
& \left|\int_{-1}^{s} K_{n}(x, t) w(t) d t\right| \leq \frac{4 C K}{n-1} \frac{\left(1-x^{2}\right)^{-B}}{x-s} \quad(-1 \leq s<x<1) \tag{2.1}\\
& \left|\int_{s}^{1} K_{n}(x, t) w(t) d t\right| \leq \frac{4 C K}{n-1} \frac{\left(1-x^{2}\right)^{-B}}{s-x} \quad(-1<x<s \leq 1) \tag{2.2}\\
& \int_{x-\frac{1+x}{n}}^{x}\left|K_{n}(x, t) w(t)\right| d t \leq 2^{A+B} K^{3} \frac{1+x}{\left(1-x^{2}\right)^{A+2 B}} \quad(-1<x<1) \tag{2.3}
\end{align*}
$$

$$
\begin{equation*}
\int_{x}^{x+\frac{1-x}{n}}\left|K_{n}(x, t) w(t)\right| d t \leq 2^{A+B} K^{3} \frac{1-x}{\left(1-x^{2}\right)^{A+2 B}} \quad(-1<x<1) \tag{2.4}
\end{equation*}
$$

$$
\begin{align*}
\left|K_{n}(x, t) w(t)\right| \leq \frac{2 K^{3}}{|x-t|} \frac{1}{\left(1-x^{2}\right)^{B}\left(1-t^{2}\right)^{B+A}} \tag{2.5}\\
\quad \text { if } \quad x \neq t,-1<x<1,-1<t<1 .
\end{align*}
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

Page 6 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Using the mean-value theorem and (1.3), we get for $-1 \leq s<x<1$,

$$
\begin{aligned}
& \left|\int_{-1}^{s} K_{n}(x, t) w(t) d t\right| \\
& \quad \leq \frac{\gamma_{n-1}}{\gamma_{n}} \cdot \frac{K\left(1-x^{2}\right)^{-B}}{x-s}\left\{\left|\int_{\varepsilon}^{s} p_{n-1}(t) w(t) d t\right|+\left|\int_{\eta}^{s} p_{n}(t) w(t) d r\right|\right\}
\end{aligned}
$$

where $\varepsilon, \eta \in[-1, s]$. From the inequality $\frac{\gamma_{n-1}}{\gamma_{n}} \leq 1$ (see [6, p. 488]) and from the assumption (1.4) our estimate (2.1) follows immediately.

The proof of (2.2) is similar.
In view of (1.1) and the assumptions (1.2), (1.3), we have

$$
\begin{aligned}
\int_{x-\frac{1+x}{n}}^{x}\left|K_{n}(x, t) w(t)\right| d t & \leq \frac{n K^{3}}{\left(1-x^{2}\right)^{B}} \int_{x-\frac{1+x}{n}}^{x} \frac{d t}{\left(1-t^{2}\right)^{A+B}} \\
& \leq 2^{A+B} K^{3} \frac{1+x}{\left(1-x^{2}\right)^{A+2 B}}
\end{aligned}
$$

In the same way, we get (2.4).
Applying identity (2.6), assumptions (1.2) and (1.3), we can easily prove (2.5).

Lemma 2.2. Suppose that $g \in M(I)$ is equal to zero at a fixed point $x \in(-1,1)$ and that assumptions (1.2), (1.3), (1.4) are satisfied with A, B such that $A+B<1$. Then for $n \geq 3$

$$
\begin{equation*}
\left|\int_{x}^{1} g(t) K_{n}(x, t) w(t) d t\right| \leq \frac{c_{1}}{\left(1-x^{2}\right)^{A+2 B} n^{1-(A+B)}} \sum_{j=1}^{n-1} \frac{\nu_{j}\left(g ; t_{n-j}, 1\right)}{j^{1+A+B}} \tag{2.7}
\end{equation*}
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page

Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 7 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
+\frac{c_{2}}{\left(1-x^{2}\right)^{1+B}}\left\{\sum_{j=1}^{n-1} \frac{\nu_{j}\left(g ; x, t_{j}\right)}{j^{2}}+\frac{\nu_{n-1}(g ; x, 1)}{n-1}\right\}
$$

where $t_{j}=x+j(1-x) / n(j=1,2, \ldots, n), c_{1}=8 K^{3} /(1-A-B), c_{2}=$ $8 K\left(3 K^{2}+2 C\right)$.

Proof. Observe that

$$
\begin{align*}
& \int_{x}^{1} g(t) K_{n}(x, t) w(t) d t \tag{2.8}\\
& =\int_{x}^{t_{1}} g(t) K_{n}(x, t) w(t) d t+\sum_{j=1}^{n-1} g\left(t_{j}\right) \int_{t_{j}}^{t_{j+1}} K_{n}(x, t) w(t) d t \\
& +\int_{t_{n-1}}^{1}\left(g(t)-g\left(t_{n-1}\right)\right) K_{n}(x, t) w(t) d t \\
& +\sum_{j=1}^{n-2} \int_{t_{j}}^{t_{j+1}}\left(g(t)-g\left(t_{j}\right)\right) K_{n}(x, t) w(t) d t \\
& =I_{1}+I_{2}+I_{3}+I_{4}, \quad \text { say } .
\end{align*}
$$

In view of (2.4),

$$
\begin{equation*}
\left|I_{1}\right| \leq \int_{x}^{t_{1}}|g(t)-g(x)|\left|K_{n}(x, t) w(t)\right| d t \leq \frac{2 K^{3}(1-x)}{\left(1-x^{2}\right)^{A+2 B}} \nu_{1}\left(g ; x, t_{1}\right) \tag{2.9}
\end{equation*}
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

Page 8 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Applying the Abel transformation we get

$$
\begin{aligned}
I_{2} & =g\left(t_{1}\right) \sum_{k=1}^{n-1} \int_{t_{k}}^{t_{k+1}} K_{n}(x, t) w(t) d t+\sum_{j=1}^{n-2}\left(g\left(t_{j+1}\right)-g\left(t_{j}\right)\right) \sum_{k=j+1}^{n-1} \int_{t_{k}}^{t_{k+1}} K_{n}(x, t) w(t) d t \\
& =\left(g\left(t_{1}\right)-g(x)\right) \int_{t_{1}}^{1} K_{n}(x, t) w(t) d t+\sum_{j=1}^{n-2}\left(g\left(t_{j+1}\right)-g\left(t_{j}\right)\right) \int_{t_{j+1}}^{1} K_{n}(x, t) w(t) d t .
\end{aligned}
$$

Next, using the inequality (2.2) and once more the Abel transformation we obtain

$$
\begin{aligned}
& \left|I_{2}\right| \leq \frac{4 C K}{(n-1)\left(1-x^{2}\right)^{B}}\left(\frac{\left|g\left(t_{1}\right)-g(x)\right|}{t_{1}-x}+\sum_{j=1}^{n-2}\left|g\left(t_{j+1}\right)-g\left(t_{j}\right)\right| \frac{1}{\left(t_{j+1}-x\right)}\right) \\
& \leq \frac{4 C K n}{(n-1)\left(1-x^{2}\right)^{B}(1-x)}\left\{\left.\left|g\left(t_{1}\right)-g(x)\right|+\sum_{j=1}^{n-2} \frac{1}{(j+1)(j+2)} \sum_{k=1}^{j} \right\rvert\, g\left(t_{k+1}-g\left(t_{k}\right) \mid\right.\right. \\
& \left.\quad+\frac{1}{n-1} \sum_{k=1}^{n-3}\left|g\left(t_{k+1}\right)-g\left(t_{k}\right)\right|\right\} .
\end{aligned}
$$

Hence, in view of the definition of the modulus of variation and its elementary properties,

$$
\begin{equation*}
\left|I_{2}\right| \leq \frac{8 C K}{(1-x)\left(1-x^{2}\right)^{B}}\left(\sum_{k=1}^{n-1} \frac{\nu_{k}\left(g ; x, t_{k}\right)}{k^{2}}+\frac{\nu_{n-1}(g ; x, 1)}{n-1}\right) \tag{2.10}
\end{equation*}
$$

(see the proof of Lemma 1 in [8]).

Orthogonal Polynomial Expansions
Małgorzata Powierska vol. 8, iss. 3, art. 11, 2007

Title Page
Contents
44

Page 9 of 18
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Next, by inequality (2.5),

$$
\begin{align*}
\left|I_{3}\right| & \leq \frac{2 K^{3}}{\left(1-x^{2}\right)^{B}} \nu_{1}\left(g ; t_{n-1}, 1\right) \int_{t_{n-1}}^{1} \frac{d t}{(t-x)\left(1-t^{2}\right)^{A+B}} \tag{2.11}\\
& \leq \frac{4 K^{3} \nu_{1}\left(g ; t_{n-1}, 1\right)}{\left(1-x^{2}\right)^{B}(1-x)(1+x)^{A+B}} \int_{t_{n-1}}^{1} \frac{d t}{(1-t)^{A+B}} \\
& =\frac{4 K^{3} \nu_{1}\left(g ; t_{n-1}, 1\right)}{\left(1-x^{2}\right)^{A+2 B} n^{1-(A+B)}(1-(A+B))}
\end{align*}
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007
and

$$
\begin{aligned}
\left|I_{4}\right| & \leq \frac{2 K^{3}}{\left(1-x^{2}\right)^{B}} \sum_{j=1}^{n-2} \int_{t_{j}}^{t_{j+1}} \frac{\left|g(t)-g\left(t_{j}\right)\right|}{\left(t_{j}-x\right)\left(1-t_{j+1}\right)^{A+B}\left(1+t_{j}\right)^{A+B}} d t \\
& \leq \frac{2 K^{3} n^{1+A+B}}{\left(1-x^{2}\right)^{A+2 B}(1-x)} \sum_{j=1}^{n-2} \int_{t_{j}}^{t_{j+1}} \frac{\left|g(t)-g\left(t_{j}\right)\right|}{j(n-j-1)^{A+B}} d t \\
& =\frac{2 K^{3} n^{1+A+B}}{\left(1-x^{2}\right)^{A+2 B}(1-x)} \sum_{j=1}^{n-2} \int_{0}^{h} \frac{\left|g\left(s+t_{j}\right)-g\left(t_{j}\right)\right|}{j(n-j-1)^{A+B}} d t \\
& =\frac{2 K^{3} n^{1+A+B}}{\left(1-x^{2}\right)^{A+2 B}(1-x)} \int_{0}^{h}\left\{\sum_{j=1}^{m} \frac{\left|g\left(s+t_{j}\right)-g\left(t_{j}\right)\right|}{j(n-j-1)^{A+B}}+\sum_{j=m+1}^{n-2} \frac{\left|g\left(s+t_{j}\right)-g\left(t_{j}\right)\right|}{j(n-j-1)^{A+B}}\right\} d s,
\end{aligned}
$$

where $h=(1-x) / n$ and $m=[n / 2]$. Next, arguing similarly to the proof of the

Title Page
Contents

Page 10 of 18
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
J.
lemma in [7] (the estimate of I_{4}) we obtain
(2.12) $\left|I_{4}\right| \leq \frac{2 K^{3}}{\left(1-x^{2}\right)^{A+2 B}}\left\{2 \cdot 6^{A+B} \sum_{j=2}^{n-1} \frac{\nu_{j}\left(g ; x, t_{j}\right)}{j^{2}}+\frac{6^{A+B} \nu_{n-1}(g ; x, 1)}{n-1}\right.$

$$
\left.+\frac{4}{n^{1-(A+B)}} \sum_{j=2}^{n-1} \frac{\nu_{j}\left(g ; t_{n-j}, 1\right)}{j^{1+A+B}}+2 \frac{\nu_{n-1}(g ; x, 1)}{n^{1-(A+B)}(n-1)^{A+B}}\right\} .
$$

In view of (2.8), (2.9), (2.10), (2.11) and (2.12) we get the desired estimation.
By symmetry, the analogous estimate for the integral $\int_{-1}^{x} g(t) K_{n}(x, t) w(t) d t$ can be deduced as well. Namely, we have

$$
\begin{array}{r}
\left|\int_{-1}^{x} g(t) K_{n}(x, t) w(t) d t\right| \leq \frac{c_{1}}{\left(1-x^{2}\right)^{A+2 B} n^{1-(A+B)}} \sum_{j=1}^{n-1} \frac{\nu_{j}\left(g ;-1, s_{n-j}\right)}{j^{1+A+B}} \tag{2.13}\\
+\frac{c_{2}}{\left(1-x^{2}\right)^{1+B}}\left\{\sum_{j=1}^{n-1} \frac{\nu_{j}\left(g ; s_{j}, x\right)}{j^{2}}+\frac{\nu_{n-1}(g ;-1, x)}{n-1}\right\}
\end{array}
$$

where $s_{j}=x-j(1+x) / n(j=1,2, \ldots, n), c_{1}, c_{2}$ are the same as in Lemma 2.2.

Orthogonal Polynomial Expansions
Małgorzata Powierska vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

Page 11 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Results

Suppose that $f \in M(I)$ and that at a fixed point $x \in(-1,1)$ the one-sided limits $f(x+), f(x-)$ exist. As is easily seen

$$
\begin{align*}
S_{n}[f](w ; x)-\frac{1}{2}(f(x+)+f(x-))= & \int_{-1}^{1} g_{x}(t) K_{n}(x, t) w(t) d t \tag{3.1}\\
& +\frac{1}{2}(f(x+)-f(x-)) S_{n}\left[\psi_{x}\right](w ; x),
\end{align*}
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007
where g_{x} and ψ_{x} are defined by (1.5) and (1.6), respectively.
The first term on the right-hand side of identity (3.1) can be estimated via (2.7) and (2.13). Consequently, we get:

Theorem 3.1. Let w be a weight function and let assumptions (1.2), (1.3), (1.4) be satisfied with $A+B<1$. If $f \in M(I)$ and if the limits $f(x+), f(x-)$ at a fixed $x \in(-1,1)$ exist, then for $n \geq 3$ we have

$$
\begin{align*}
& \left|S_{n}[f](w ; x)-\frac{1}{2}(f(x+)+f(x-))\right| \tag{3.2}\\
& \leq \frac{c_{1}}{\left(1-x^{2}\right)^{A+2 B} n^{1-(A+B)}} \sum_{j=1}^{n-1} \frac{\nu_{j}\left(g_{x} ; t_{n-j}, 1\right)+\nu_{j}\left(g_{x} ;-1, s_{n-j}\right)}{j^{1+A+B}} \\
& +\frac{c_{2}}{\left(1-x^{2}\right)^{1+B}}\left\{\sum_{j=1}^{n-1} \frac{\nu_{j}\left(g ; x, t_{j}\right)+\nu_{j}\left(g_{x} ; s_{j}, x\right)}{j^{2}}\right. \\
& \left.+\frac{\nu_{n-1}\left(g_{x} ;-1, x\right)+\nu_{n-1}\left(g_{x} ; x, 1\right)}{n-1}\right\}+\frac{1}{2}(f(x+)-f(x-)) S_{n}\left[\psi_{x}\right](w ; x),
\end{align*}
$$

where $t_{j}, s_{j}, c_{1}, c_{2}$ are defined above (in Section 2).

Title Page
Contents

Page 12 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
J

Theorem 3.2. Let $f \in B V_{\Phi}(I)$ and let assumptions (1.2), (1.3), (1.4) be satisfied with $A+B<1$. Then for every $x \in(-1,1)$, and all $n \geq 3$,

$$
\begin{equation*}
\left.\left.\mid S_{n}[f]\right) w ; x\right) \left.-\frac{1}{2}(f(x+)+f(x-)) \right\rvert\, \tag{3.3}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \frac{c_{3}}{\left(1-x^{2}\right)^{1+B}} \sum_{k=1}^{n-1} \frac{1}{k} \Phi^{-1}\left(\frac{k}{n} V_{\Phi}\left(g_{x} ; x, x+\frac{1-x}{k}\right)+\frac{k}{n} V_{\Phi}\left(g_{x} ; x-\frac{1+x}{k}, x\right)\right) \\
& +\frac{c_{4}(x)}{\left(1-x^{2}\right)^{A+2 B} n^{1-(A+B)}} \sum_{k=1}^{n-1} \frac{1}{k^{A+B}} \Phi^{-1}\left(\frac{1}{k}\right)+\frac{1}{2}|f(x+)-f(x-)|\left|S_{n}\left[\psi_{x}\right](w ; x)\right|
\end{aligned}
$$

where $c_{3}=10 c_{2}, c_{4}(x)=c_{1}\left(\max \left\{1, V_{\Phi}\left(g_{x} ; x, 1\right)\right\}+\max \left\{1, V_{\Phi}\left(g_{x} ;-1, x\right)\right\}\right)$ and Φ^{-1} denotes the inverse function of Φ.

Proof. It is known that, for every positive integer j and for every subinterval $[a, b]$ of $[-1, x]$ (or $[x, 1]$),

$$
\nu_{j}\left(g_{x} ; a, b\right) \leq j \Phi^{-1}\left(\frac{1}{j} V_{\Phi}\left(g_{x} ; a, b\right)\right)
$$

(see [2, p. 537]). Consequently,

$$
\frac{1}{n^{1-(A+B)}} \sum_{j=1}^{n-1} \frac{\nu_{j}\left(g_{x}, t_{n-j}, 1\right)}{j^{1+A+B}} \leq \frac{\max \left\{V_{\Phi}\left(g_{x} ; x, 1\right), 1\right\}}{n^{1-(A+B)}} \sum_{j=1}^{n-1} \frac{1}{j^{A+B}} \Phi^{-1}\left(\frac{1}{j}\right)
$$

Moreover

$$
\sum_{j=1}^{n-1} \frac{\nu_{j}\left(g_{x} ; x, t_{j}\right)}{j^{2}} \leq 8 \sum_{j=1}^{n-1} \frac{1}{k} \Phi^{-1}\left(\frac{k}{n} V_{\Phi}\left(g_{x} ; x, x+\frac{1-x}{k}\right)\right)
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska

Title Page
Contents

Page 13 of 18
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
(see [7, Section 3]). Similarly,
$\frac{\nu_{n-1}\left(g_{x} ; x, 1\right)}{n-1} \leq 2 \Phi^{-1}\left(\frac{V_{\Phi}\left(g_{x} ; x, 1\right)}{n}\right) \leq 2 \sum_{k=1}^{n-1} \frac{1}{k} \Phi^{-1}\left(\frac{k}{n} V_{\Phi}\left(g_{x} ; x, x+\frac{1-x}{k}\right)\right)$.
Analogous estimates for the other terms in the inequality (3.2), corresponding to the interval $[-1, x]$, can be obtained as well. Theorem 3.1 and the above estimates give
the desired result.

Remark 1. Since the function g_{x} is continuous at the point x, we have $\lim _{t \rightarrow 0} V_{\Phi}\left(g_{x} ; x, x+\right.$ $t)=0$. Consequently, under the additional assumption,

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k} \Phi^{-1}\left(\frac{1}{k}\right)<\infty \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{n}\left[\psi_{x}\right](w ; x)=0 \tag{3.5}
\end{equation*}
$$

the right-hand side of inequality (3.3) converges to zero as $n \rightarrow \infty$.
In particular, if $f \in B V_{p}(I)$ with $p \geq 1$, i.e. if $\Phi(u)=u^{p}$ for $u \geq 0$, then (3.4) holds true. Moreover, the function λ defined as $\lambda(t)=f(\cos t)$ is 2π-periodic and of bounded p-th power variation on $[-\pi, \pi]$. Hence, in view of the theorem of Marcinkiewicz ([5, p. 38]), its L^{p}-integral modulus of continuity

$$
\omega(\lambda ; \delta)_{p}:=\sup _{|h| \leq \delta}\left(\int_{-\pi}^{\pi}|\lambda(x+h)-\lambda(x)|^{p} d x\right)^{1 / p}
$$

satisfies the inequality

$$
\omega(\lambda ; \delta)_{p} \leq \delta^{1 / p} V_{p}(\lambda ; 0,3 \pi) \quad \text { for } \quad 0 \leq \delta \leq \pi
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents
\qquad

Page 14 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Consequently, if $1 \leq p \leq 2$, then

$$
\omega(\lambda ; \delta)_{2} \leq \delta^{1 / 2} V_{2}(\lambda ; 0,3 \pi) \leq \delta^{1 / 2}\left(V_{p}(\lambda ; 0,3 \pi)\right)^{2 / p}
$$

which means that $\lambda \in \operatorname{Lip}\left(\frac{1}{2}, 2\right)$. Applying now the Freud theorem ([3, V. Theorem 7.5]) we can easily state that in the case of $f \in B V_{p}(I)$ with $1 \leq p \leq 2$, condition (3.5) holds. So, from Theorem 3.2 we get:

Corollary 3.3. Let w be a weight function satisfying $0<w(x) \leq M\left(1-x^{2}\right)^{-1 / 2}$ for $x \in(-1,1)$ ($M=$ const.) and let (1.3), (1.4) be satisfied with $0<B<1 / 2$. If $f \in B V_{p}(I)$, where $1 \leq p \leq 2$, then $S_{n}[f](w ; x)$ converges to $\frac{1}{2}(f(x+)+f(x-))$ at every $x \in(-1,1)$, where w is continuous.

From our theorems we can also obtain some results concerning the rate of uniform convergence of $S_{n}[f](w ; x)$. Namely, we have:
Corollary 3.4. Let conditions (1.2), (1.3), (1.4) be satisfied with $A+B<1$. If f is continuous on the interval I and if $-1<a<b<1$, then for all $x \in[a, b]$ and all integers $n \geq 3$

$$
\left|S_{n}[f](w ; x)-f(x)\right| \leq c(a, b, A, B)\left\{\omega\left(f ; \frac{1}{n}\right) \sum_{k=1}^{m} \frac{1}{k}+\sum_{k=m+1}^{n} \frac{\nu_{k}(f ;-1,1)}{k^{2}}\right\}
$$

where $\omega(f ; \delta)$ denotes the modulus of continuity of f on $I, c(a, b, A, B)$ is a positive constant depending only on a, b, A, B and m is an arbitrary integer, such that $m<$ n.

Proof. It is known ([2, 8]) that, for every interval $[a, b] \subset[-1,1]$ and for every positive integer j,

$$
\nu_{j}(f ; a, b) \leq 2 j \omega\left(f ; \frac{b-a}{j}\right)
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

<4	$>$
$\mathbf{4}$	$>$

Page 15 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Therefore,

$$
\nu_{j}\left(g_{x} ; s_{j}, x\right) \leq 4 j \omega\left(f ; \frac{1}{n}\right), \quad \nu_{j}\left(g_{x} ; x, t_{j}\right) \leq 4 j \omega\left(f ; \frac{1}{n}\right)
$$

and

$$
\frac{1}{n^{1-(A+B)}} \sum_{j=1}^{n-1} \frac{\nu_{j}\left(g_{x}, t_{n-j}, 1\right)+\nu_{j}\left(g_{x} ;-1, s_{n-j}\right)}{j^{1+A+B}} \leq \frac{8}{1-(A+B)} \omega\left(f ; \frac{1}{n}\right) .
$$

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

Page 16 of 18
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
(see e.g. [4, inequality (12)]). Moreover, it was stated by R. Bojanic that in the case of the Jacobi polynomials condition (3.5) is satisfied (see [6, estimate (12)]).

In particular, our general estimations given in Theorems 3.1, 3.2 and in Corollary 3.3 remain valid for the Legendre polynomials (see [7]). The rate of pointwise convergence of the Legendre polynomial expansions for functions f of bounded variation in the Jordan sense on I (i.e. for $f \in B V_{1}(I)$ was first obtained in [1].

Orthogonal Polynomial Expansions
Małgorzata Powierska
vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

Page 17 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] R. BOJANIC AND M. VUILLEUMIER, On the rate of confergence of FourierLegendre series of functions of bounded variation, J. Approx. Theory, 31 (1981), 67-79.
[2] Z.A. CHANTURIYA, On the uniform convergence of Fourier series, Matem. Sbornik, 100 (1976), 534-554, (in Russian).
[3] G. FREUD, Orthogonal Polynomials, Budapest 1971.
[4] G. KVERNADZE, Uniform convergence of Fourier-Jacobi series, J. Approx. Theory, 117 (2002), 207-228.
[5] J. MARCINKIEWICZ, Collected Papers, Warsaw 1964.
[6] H.N. MHASKAR, A quantitative Dirichlet-Jordan type theorem for orthogonal polynomial expansions, SIAM J. Math. Anal., 19(2) (1988), 484-492.
[7] P. PYCH-TABERSKA, On the rate of convergence of Fourier-Legendre series, Bull. Pol. Acad. of Sci. Math., 33(5-6) (1985), 267-275.
[8] P. PYCH-TABERSKA, Pointwise approximation by partial sums of Fourier series and conjugate series, Functiones et Approximatio, XV (1986), 231-243.
[9] G. SZEGÖ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23 (1939).
J

Orthogonal Polynomial Expansions

Małgorzata Powierska vol. 8, iss. 3, art. 11, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 18 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

