Journal of Inequalities in Pure and Applied Mathematics

SUBORDINATION RESULTS FOR THE FAMILY OF UNIFORMLY CONVEX $p-{\sf VALENT}$ FUNCTIONS

H.A. AL-KHARSANI AND S.S. AL-HAJIRY

Department of Mathematics Faculty of Science Girls College, Dammam Saudi Arabia. *EMail*: ssmh1@hotmail.com J I M P A

volume 7, issue 1, article 20, 2006.

Received 16 May, 2005; accepted 02 October, 2005. Communicated by: G. Kohr

©2000 Victoria University ISSN (electronic): 1443-5756 151-05

Abstract

The object of the present paper is to introduce a class of p-valent uniformly functions UCV_p . We deduce a criteria for functions to lie in the class UCV_p and derive several interesting properties such as distortion inequalities and coefficients estimates. We confirm our results using the Mathematica program by drawing diagrams of extremal functions of this class.

2000 Mathematics Subject Classification: 30C45. Key words: *p*-valent, Uniformly convex functions, Subordination.

We express our thanks to Dr.M.K.Aouf for his helpful comments.

Contents

1	Introduction	3
2	The Class PAR_p	4
3	Characterization of UCV_p	6
4	Subordination Theorem and Consequences	9
5	General Properties of Functions in UCV _p	15
	5.1 Remarks	21
Refe	erences	

Subordination Results for the Family of Uniformly Convex p-valent Functions

H.A. Al-Kharsani and S.S. Al-Hajiry

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

1. Introduction

Denote by A(p, n) the class of normalized functions

(1.1)
$$f(z) = z^p + \sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$$

regular in the unit disk $D = \{z : |z| < 1\}$ and $p \in \mathbb{N}$, consider also its subclasses $C(p), S^*(p)$ consisting of p-valent convex and starlike functions respectively, where $C(1) \equiv C, S^*(1) \equiv S^*$, the classes of univalent convex and starlike functions.

It is well known that for any $f \in \mathbb{C}$, not only f(D) but the images of all circles centered at 0 and lying in D are convex arcs. B. Pinchuk posed a question whether this property is still valid for circles centered at other points of D. A.W. Goodman [1] gave a negative answer to this question and introduced the class UCV of univalent uniformly convex functions, $f \in C$ such that any circular arc γ lying in D, having the center $\zeta \in D$ is carried by f into a convex arc. A.W.Goodman [1] stated the criterion

(1.2) Re
$$\left[1 + (z - \zeta)\frac{f''(z)}{f'(z)}\right] > 0, \quad \forall z, \zeta \in D \iff f \in UCV.$$

Later F. Ronning (and independently W. Ma and D. Minda) [7] obtained a more suitable form of the criterion, namely

(1.3)
$$\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)}\right] > \left|\frac{zf''(z)}{f'(z)}\right|, \quad \forall z \in D \iff f \in UCV.$$

This criterion was used to find some sharp coefficients estimates and distortion theorems for functions in the class UCV.

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

2. The Class PAR_p

We now introduce a subfamily PAR_p of P. Let

(2.1)
$$\Omega = \left\{ w = \mu + i\upsilon : \frac{\upsilon^2}{p} < 2\mu - p \right\}$$

(2.2)
$$= \{ w : \operatorname{Re} w > |w - p| \}.$$

Note that Ω is the interior of a parabola in the right half-plane which is symmetric about the real axis and has vertex at (p/2, 0). The following diagram shows Ω when p = 3:

Let

(2.3)
$$PAR_p = \{h \in p : h(D) \subseteq \Omega\}$$

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

Example 2.1. It is known that $z = -\tan^2\left(\frac{\pi}{2\sqrt{2p}}\sqrt{w}\right)$ maps

$$\left\{ w = \mu + i\nu : \frac{\nu^2}{p}$$

conformally onto D. Hence, $z = -\tan^2\left(\frac{\pi}{2\sqrt{2p}}\sqrt{p-w}\right)$ maps Ω conformally onto D. Let w = Q(z) be the inverse function. Then Q(z) is a Riemann mapping function from D to Ω which satisfies Q(0) = p; more explicitly,

(2.4)
$$Q(z) = p + \frac{2p}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2 = \sum_{n=0}^{\infty} B_n z^n$$

(2.5)
$$= p + \frac{8p}{\pi^2}z + \frac{16p}{3\pi^2}z^2 + \frac{184p}{45\pi^2}z^3 + \cdots$$

Obviously, Q(z) belongs to the class PAR_p . Geometrically, PAR_p consists of those holomorphic functions h(z) (h(0) = p) defined on D which are subordinate to Q(z), written $h(z) \prec Q(z)$.

The analytic characterization of the class PAR_p is shown in the following relation:

(2.6)
$$h(z) \in PAR_p \Leftrightarrow \operatorname{Re}\{h(z)\} \ge |h(z) - p|$$

such that h(z) is a *p*-valent analytic function on *D*.

Now, we can derive the following definition.

Definition 2.1. Let $f(z) \in A(p, n)$. Then $f(z) \in UCV_p$ if $f(z) \in C(p)$ and $1 + z \frac{f''(z)}{f'(z)} \in PAR_p$.

Subordination Results for the Family of Uniformly Convex *p*-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

3. Characterization of UCV_p

We present the nesses ary and sufficient condition to belong to the class UCV_p in the following theorem:

Theorem 3.1. Let $f(z) \in A(p, n)$. Then

(3.1)
$$f(z) \in UCV_p \Leftrightarrow 1 + \operatorname{Re}\left\{z\frac{f''(z)}{f'(z)}\right\} \ge \left|z\frac{f''(z)}{f'(z)} - (p-1)\right|, \quad z \in D.$$

Proof. Let $f(z) \in UCV_p$ and $h(z) = 1 + z \frac{f''(z)}{f'(z)}$. Then $h(z) \in PAR_p$, that is, $\operatorname{Re}\{h(z)\} \ge |h(z) - p|$. Then

$$\operatorname{Re}\left\{1 + z \frac{f''(z)}{f'(z)}\right\} \ge \left|z \frac{f''(z)}{f'(z)} - (p-1)\right|.$$

Example 3.1. We now specify a holomorphic function K(z) in D by

(3.2)
$$1 + z \frac{K''(z)}{K'(z)} = Q(z),$$

where Q(z) is the conformal mapping onto Ω given in Example 2.1. Then it is clear from Theorem 3.1 that K(z) is in UCV_p . Let

(3.3)
$$K(z) = z^p + \sum_{k=2}^{\infty} A_k z^{k+p-1}.$$

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

From the relationship between the functions Q(z) and K(z), we obtain

(3.4)
$$(p+n-1)(n-1)A_n = \sum_{k=1}^{n-1} (k+p-1)A_k B_{n-k}.$$

Since all the coefficients B_n are positive, it follows that all of the coefficients A_n are also positive. In particular,

(3.5)
$$A_2 = \frac{8p^2}{\pi^2(p+1)},$$

and

(3.6)
$$A_3 = \frac{p^2}{2(p+2)} \left(\frac{16}{3\pi^2} + \frac{64p}{\pi^4}\right).$$

Note that

(3.7)
$$\log \frac{k'(z)}{z^{p-1}} = \int_0^z \frac{Q(\varsigma) - p}{\varsigma} d\varsigma$$

By computing some coefficients of K(z) when p = 3, we can obtain the following diagram

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

4. Subordination Theorem and Consequences

In this section, we first derive some subordination results from Theorem 4.1; as corollaries we obtain sharp distortion, growth, covering and rotation theorems from the family UCV_p .

Theorem 4.1. Assume that $f(z) \in UCV_p$. Then $1 + z \frac{f''(z)}{f'(z)} \prec 1 + z \frac{K''(z)}{K'(z)}$ and $\frac{f'(z)}{z^{p-1}} \prec \frac{K'(z)}{z^{p-1}}$.

Proof. Let $f(z) \in UCV_p$. Then $h(z) = 1 + z \frac{f''(z)}{f'(z)} \prec 1 + z \frac{K''(z)}{K'(z)}$ is the same as $h(z) \prec Q(z)$. Note that Q(z) - p is a convex univalent function in D. By using a result of Goluzin, we may conclude that

(4.1)
$$\log \frac{f'(z)}{z^{p-1}} = \int_0^z \frac{h(\varsigma) - 1}{\varsigma} d\varsigma \prec \int_0^z \frac{Q(\varsigma) - p}{\varsigma} d\varsigma = \log \frac{K'(z)}{z^{p-1}}.$$

Equivalently, $\frac{f'(z)}{z^{p-1}} \prec \frac{K'(z)}{z^{p-1}}$.

Corollary 4.2 (Distortion Theorem). Assume $f(z) \in UCV_p$ and |z| = r < 1. Then $K'(-r) \leq |f'(z)| \leq K'(r)$.

Equality holds for some $z \neq 0$ if and only if f(z) is a rotation of K(z).

Proof. Since Q(z) - p is convex univalent in D, it follows that $\log K'(z)$ is also convex univalent in D. In fact, the power series for $\log K'(z)$ has positive coefficients, so the image of D under this convex function is symmetric about

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

the real axis. As $\log \frac{f'(z)}{z^{p-1}} \prec \log \frac{K'(z)}{z^{p-1}}$, the subordination principle shows that

(4.2)
$$K'(-r) = e^{\{\log K'(-r)\}} = e^{\{\min_{|z|=r} \operatorname{Re}\{\log K'(z)\}\}}$$
$$\leq e^{\{\operatorname{Re}\log K'(z)\}} = |f'(z)| \leq e^{\{\max_{|z|=r} \operatorname{Re}\{\log K'(z)\}\}}$$
$$= e^{\{\log K'(r)\}} = K'(r).$$

Note that for $|z_0| = r$, either

$$\operatorname{Re}\{\log f'(z_0)\} = \min_{|z|=r} \operatorname{Re}\{\log K'(z)\}$$

or

$$\operatorname{Re}\{\log f'(z_0)\} = \max_{|z|=r} \operatorname{Re}\{\log K'(z)\}$$

for some $z_0 \neq 0$ if and only if $\log f'(z) = \log K'(e^{i\theta}z)$ for some $\theta \in R$. \Box

Theorem 4.3. Let $f(z) \in UCV_p$. Then

(4.3)
$$|f'(z)| \le |z^{p-1}| e^{\frac{14p}{\pi^2} \zeta(3)} = |z^{p-1}| L^p$$

for |z| < 1. $(L \approx 5.502, \varsigma(t)$ is the Riemann Zeta function.)

Proof. Let $\phi(z) = \frac{zg'(z)}{g(z)}$, where g(z) = zf'(z). Then $\phi(z) \prec Q(z)$ which means that $\phi(z) \prec p + \frac{2p}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)$. Moreover,

$$\log \frac{g(z)}{z^p} = \int_0^z \left(\frac{\phi(s) - p}{s}\right) ds$$

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

and therefore, if $z = re^{i\theta}$ and |z| = 1,

$$\begin{split} \log \left| \frac{g(z)}{z^p} \right| &= \int_0^r \Re e(\phi(te^{i\theta}) - p) \frac{dt}{t} \le \frac{2p}{\pi^2} \int_0^r \frac{1}{t} \log \left(\frac{1 + \sqrt{t}}{1 - \sqrt{t}} \right) dt \\ &\le \frac{2p}{\pi^2} \int_0^1 \frac{1}{t} \log \left(\frac{1 + \sqrt{t}}{1 - \sqrt{t}} \right) dt = \frac{2p}{\pi^2} (7\varsigma(3)), \end{split}$$

where

$$\int_0^1 \frac{1}{t} \log\left(\frac{1+\sqrt{t}}{1-\sqrt{t}}\right) dt = 7\varsigma(3) \qquad [8].$$

Then we find that

$$\left|\frac{zf'(z)}{z^p}\right| \le e^{\frac{2p}{\pi^2}(7\varsigma(3))}.$$

The following diagram shows the boundary of K(z)'s dervative when p = 2 in a circle has the radius $(5.5)^2$:

H.A. Al-Kharsani and S.S. Al-Hajiry

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au **Corollary 4.4 (Growth Theorem).** Let $f(z) \in UCV_p$ and |z| = r < 1. Then $-K(-r) \leq |f(z)| \leq K(r)$.

Equality holds for some $z \neq 0$ if and only if f(z) is a rotation of K(z).

Corollary 4.5 (Covering Theorem). Suppose $f(z) \in UCV_p$. Then either f(z) is a rotation of K(z) or $\{w : |w| \leq -K(-1)\} \subseteq f(D)$.

Corollary 4.6 (Rotation Theorem). Let $f(z) \in UCV_p$ and $|z_0| = r < 1$. Then

(4.4)
$$|Arg\{f'(z_0)\}| \le \max_{|z|=r} Arg\{K'(z)\}.$$

Equality holds for some $z \neq 0$ if and only if f(z) is a rotation of K(z).

Theorem 4.7. Let $f(z) = z^p + \sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$ and $f(z) \in UCV_p$, and let $A_{n+p-1} = \max_{f(z)\in UCV_p} |a_{n+p-1}|$. Then

(4.5)
$$A_{p+1} = \frac{8p^2}{\pi^2(p+1)}.$$

The result is sharp. Further, we get

(4.6)
$$A_{n+p-1} \le \frac{8p^2}{(n+p-1)(n-1)\pi^2} \prod_{k=3}^n \left(1 + \frac{8p}{(k-2)\pi^2}\right).$$

Proof. Let $f(z) = z^p + \sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$ and $f(z) \in UCV_p$, and define

$$\phi(z) = 1 + \frac{zf''(z)}{f'(z)} = p + \sum_{k=2}^{\infty} c_k z^{k+p-1}$$

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

Then $\phi(z) \prec Q(z)$. Q(z) is univalent in D and Q(D) is a convex region, so Rogosinski's theorem applies.

$$Q(z) = p + \frac{8p}{\pi^2}z + \frac{16p}{3\pi^2}z^2 + \frac{184p}{45\pi^2}z^3 + \cdots$$

so we have $|c_n| \leq |B_1| = \frac{8p}{\pi^2} := B$. Now, from the relationship between functions f(z) and Q(z), we obtain

$$(n+p-1)(n-1)a_{n+p-1} = \sum_{k=1}^{n-1} (k+p-1)a_{k+p-1}c_{n-k}.$$

From this we get $|a_{p+1}| = \frac{pB}{(p+1)} = \frac{8p^2}{\pi^2(p+1)}$. If we choose f(z) to be that function for which $Q(z) = 1 + \frac{zf''(z)}{f'(z)}$, then $f(z) \in UCV_p$ with $a_{p+1} = \frac{8p^2}{\pi^2(p+1)}$, which shows that this result is sharp. Now, when we put $|c_1| = B$, then

$$a_{p+2} = \frac{pa_pc_2 + (p+1)a_{p+1}c_2}{2(p+2)}$$
$$|a_{p+2}| \le \frac{pB(1+Bp)}{2(p+2)}.$$

When n = 3

$$a_{p+3} = \frac{pa_pc_3 + (p+1)a_{p+1}c_2 + (p+2)a_{p+2}c_1}{3(p+3)}$$
$$|a_{p+3}| \le \frac{1}{2}\frac{pB(1+Bp)(2+Bp)}{3(p+3)}$$
$$= \frac{1}{3(p+3)}pB(1+Bp)\left(1+\frac{Bp}{2}\right).$$

Subordination Results for the Family of Uniformly Convex *p*-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

We now proceed by induction. Assume we have

$$|a_{p+n-1}| \le \frac{1}{(n-1)(p+n-1)} pB(1+Bp) \left(1+\frac{Bp}{2}\right) \cdots \left(1+\frac{Bp}{n-2}\right)$$
$$= \frac{pB}{(n-1)(p+n-1)} \prod_{k=3}^{n} \left(1+\frac{Bp}{k-2}\right).$$

Corollary 4.8. Let $f(z) = z^p + \sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$ and $f(z) \in UCV_p$. Then $|a_{p+n-1}| = O\left(\frac{1}{n^2}\right)$.

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

5. General Properties of Functions in UCV_p

Theorem 5.1. Let $f(z) = z^p + \sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$ and $f(z) \in UCV_p$. Then f(z) is a *p*-valently convex function of order β in $|z| < r_1 = r_1(p,\beta)$, where $r_1(p,\beta)$ is the largest value of r for which

(5.1)
$$r^{k-1} \le \frac{(p-\beta)(k-1)}{(k+p-\beta-1)B\prod_{j=3}^{k} \left(1+\frac{pB}{j-2}\right)},$$
$$(k \in \mathbb{N} - \{1\}, \ 0 \le \beta < p).$$

Proof. It is sufficient to show that for $f(z) \in UCV_p$,

$$\left| 1 + \frac{zf''(z)}{f'(z)} - p \right| \le p - \beta, \quad |z| < r_1(p,\beta), \quad 0 \le \beta < p,$$

where $r_1(p,\beta)$ is the largest value of r for which the inequality (5.1) holds true. Observe that

$$\left|1 + \frac{zf''(z)}{f'(z)} - p\right| = \left|\frac{\sum_{k=2}^{\infty}(k+p-1)(k-1)a_{k+p-1}z^{k-1}}{p + \sum_{k=2}^{\infty}(k+p-1)a_{k+p-1}z^{k-1}}\right|.$$

Then we have $\left|1+\frac{zf''(z)}{f'(z)}-p\right|\leq p-\beta~~{\rm if}~{\rm and~only~if}$

$$\frac{\sum_{k=2}^{\infty} (k+p-1)(k-1) |a_{k+p-1}| r^{k-1}}{p - \sum_{k=2}^{\infty} (k+p-1) |a_{k+p-1}| r^{k-1}} \le p - \beta$$

$$\Rightarrow \sum_{k=2}^{\infty} (k+p-1)(k+p-1-\beta) |a_{k+p-1}| r^{k-1} \le p^2 - p\beta.$$

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

Then from Theorem 4.7 since $f(z) \in UCV_p$, we have

$$|a_{k+p-1}| \le \frac{p\beta}{(k+p-1)(k-1)} \prod_{j=3}^{k} \left(1 + \frac{Bp}{j-2}\right)$$

and we may set

$$|a_{k+p-1}| = \frac{p\beta}{(k+p-1)(k-1)} \prod_{j=3}^{k} \left(1 + \frac{Bp}{j-2}\right) c_{k+p-1}, c_{k+p-1} \ge 0,$$
$$\left\{k \in \mathbb{N} - \{1\}, \sum_{k=1}^{\infty} c_{k+p-1} \le 1\right\}.$$

Now, for each fixed r, we choose a positive integer $k_0 = k_0(r)$ for which

$$\frac{(k+p-1-\beta)}{(k-1)}r^{k-1}$$

is maximal. Then

- -

$$\sum_{k=2}^{\infty} (k+p-1)(k+p-\beta-1) |a_{k+p-1}| r^{k-1}$$
$$\leq \frac{(k_0+p-\beta-1)}{(k_0-1)} r^{k_0-1} \prod_{j=3}^k \left(1+\frac{Bp}{j-2}\right).$$

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

Consequently, the function f(z) is a p-valently convex function of order β in $|z| < r_1 = r_1(p, \beta)$ provided that

$$\frac{(k_0 + p - \beta - 1)}{(k_0 - 1)} r^{k_0 - 1} \prod_{j=3}^k \left(1 + \frac{Bp}{j - 2} \right) \le p(p - \beta).$$

We find the value $r_0 = r_0(p, \beta)$ and the corresponding integer $k_0(r_0)$ so that

$$\frac{(k_0 + p - \beta - 1)}{(k_0 - 1)} r^{k_0 - 1} \prod_{j=3}^k \left(1 + \frac{Bp}{j - 2} \right) = p(p - \beta), \quad (0 \le \beta < p).$$

Then this value r_0 is the radius of p-valent convexity of order β for functions $f(z) \in UCV_p$.

Theorem 5.2. $h(z) = z^p + b_{n+p-1}z^{n+p-1}$ is in UCV_p if and only if

$$r \le \frac{p^2}{(p+n-1)(p+2n-2)},$$

where $|b_{n+p-1}| = r$ and $b_{n+p-1}z^{n-1} = re^{i\theta}$.

Proof. Let $w(z) = 1 + \frac{zh''(z)}{h'(z)}$. Then $h(z) \in UCV_p$ if and only if $w(z) \in PAR_p$ which means that $\operatorname{Re}\{w(z)\} \ge |w(z) - p|$. On the other side we have

$$\operatorname{Re}\left\{1 + \frac{zh''(z)}{h'(z)}\right\} \ge \left|1 + \frac{zh''(z)}{h'(z)} - p\right|,$$

Page 17 of 22

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

then

$$\begin{split} \operatorname{Re} \left\{ 1 + \frac{zh''(z)}{h'(z)} \right\} &= \operatorname{Re} \left\{ (p-1) + \frac{p + (n+p-1)nre^{i\theta}}{p + (n+p-1)re^{i\theta}} \right\} \\ &= \frac{p^3 + p(n+p-1)(n+2p-1)r\cos\theta + (n+p-1)^3r^2}{|p + (n+p-1)re^{i\theta}|^2} \end{split}$$

The right-hand side is seen to have a minimum for $\theta = \pi$ and this minimal value is

$$\frac{p^3 + p(n+p-1)(n+2p-1)r + (n+p-1)^3r^2}{|p+(n+p-1)re^{i\theta}|^2}$$

Now, by computation we see that

$$\left|1 + \frac{zh''(z)}{h'(z)} - p\right| = \frac{(n+p-1)(n-1)r}{|p+(n+p-1)re^{i\theta}|}.$$

Then

$$(n+p-1)(n-1)r \le \frac{p^3 + p(n+p-1)(n+2p-1)r + (n+p-1)^3r^2}{p - (n+p-1)r},$$

which leads to

$$(n+p-1)(n-1)r \le p^2 - (n+p-1)^2r.$$

Hence,

$$r \le \frac{p^2}{(n+p-1)(2n+p-2)}.$$

Subordination Results for the Family of Uniformly Convex p-valent Functions

H.A. Al-Kharsani and S.S. Al-Hajiry

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

Theorem 5.3. Let $f(z) \in UCV$, then $(f(z))^p \in UCV_p$.

Proof. Let $w(z) = (f(z))^p$, then

$$1 + z\frac{w''(z)}{w'(z)} = 1 + z\frac{f''(z)}{f'(z)} + (p-1)z\frac{f'(z)}{f(z)}.$$

Then we find

$$\begin{aligned} \operatorname{Re}\left\{1+z\frac{w''(z)}{w'(z)}\right\} &- \left|z\frac{w''(z)}{w'(z)} - (p-1)\right| \\ &= \operatorname{Re}\left\{1+z\frac{f''(z)}{f'(z)} + (p-1)z\frac{f'(z)}{f(z)}\right\} \\ &- \left|z\frac{f''(z)}{f'(z)} + (p-1)z\frac{f'(z)}{f(z)} - (p-1)\right|. \end{aligned}$$

Since $f(z) \in UCV$, therefore we have

$$\operatorname{Re}\left\{1 + z\frac{f''(z)}{f'(z)} + (p-1)z\frac{f'(z)}{f(z)}\right\} - \left|z\frac{f''(z)}{f'(z)} + (p-1)z\frac{f'(z)}{f(z)} - (p-1)\right| \\ \ge (p-1)\operatorname{Re}\left\{z\frac{f'(z)}{f(z)}\right\} - \left|z\frac{f'(z)}{f(z)} - 1\right|$$

 $f(z) \in UCV$, then $f(z) \in SP$ [7] which means that

$$\operatorname{Re}\left\{z\frac{f'(z)}{f(z)}\right\} - \left|z\frac{f'(z)}{f(z)} - 1\right| \ge 0$$

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

Then

$$\operatorname{Re}\left\{1 + z\frac{w''(z)}{w'(z)}\right\} - \left|z\frac{w''(z)}{w'(z)} - (p-1)\right| \ge 0.$$

The following diagram shows the external function k(z) of the class UCV when $(k(z))^p, p = 2$:

The following diagram shows the external function K(z) of the class UCV_p when p = 2:

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

And the following diagram shows that $(k(z))^p \prec K(z)$:

5.1. Remarks

Taking p = 1 in Theorem 3.1, we obtain the corresponding Theorem 1 of [7]. Taking p = 1 in Theorem 4.1, we obtain the corresponding Theorem 3 of [3].

Taking p = 1 in inequality (4.3), we obtain Theorem 6 of [7], and in inequalities (4.5), (4.6), we obtain Theorem 5 of [7].

Taking p = 1 in Theorem 5.2, we obtain Theorem 2 of [4].

Page 21 of 22

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

References

- [1] A.W. GOODMAN, On uniformly convex functions, *Ann. Polon. Math.*, **56**(1) (1991), 87–92.
- [2] S. KANAS AND A. WISNIOWSKA, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1-2) (1999), 327–336.
- [3] W.C. MA AND D. MINDA, Uniformly convex functions, *Ann. Polon. Math.*, **57**(2) (1992), 165–175.
- [4] S. OWA, On uniformly convex functions, *Math. Japonica*, **48**(3) (1998), 377–384.
- [5] M.S. ROBERTSON, On the theory of univalent functions, *Ann. Math.*, 2(37) (1936), 347–408.
- [6] F. RONNING, A survey on uniformly convex and uniformly starlike functions, *Ann. Univ. Mariae Curie-Sklodowska Sect. A*, **47** (1993), 123–134.
- [7] F. RONNING, Uniformly convex functions and a corresponding class of starlike functions, *Proc. Amer. Math. Soc.*, **118**(1) (1993), 189–196.
- [8] F. RONNING, On uniform starlikeness and related properties of univalent functions, *Complex Variables Theory Appl.*, **24**(3-4) (1994), 233–239.

Subordination Results for the Family of Uniformly Convex p-valent Functions

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au