Journal of Inequalities in Pure and Applied Mathematics

SUBORDINATION RESULTS FOR THE FAMILY OF UNIFORMLY CONVEX p-VALENT FUNCTIONS

H.A. AL-KHARSANI AND S.S. AL-HAJIRY

Department of Mathematics
Faculty of Science
Girls College, Dammam
Saudi Arabia.
EMail: ssmh1@hotmail.com
volume 7, issue 1, article 20, 2006.

Received 16 May, 2005; accepted 02 October, 2005.

Communicated by: G. Kohr

Abstract
Contents
Gome Page
Go Back
Close

Abstract

Abstract

The object of the present paper is to introduce a class of p-valent uniformly functions $U C V_{p}$. We deduce a criteria for functions to lie in the class $U C V_{p}$ and derive several interesting properties such as distortion inequalities and coefficients estimates. We confirm our results using the Mathematica program by drawing diagrams of extremal functions of this class.

2000 Mathematics Subject Classification: 30C45.
Key words: p-valent, Uniformly convex functions, Subordination.
We express our thanks to Dr.M.K.Aouf for his helpful comments.

Contents

1 Introduction ... 3

4 Subordination Theorem and Consequences 9

5.1 Remarks .. 21

References

Subordination Results for the Family of Uniformly Convex
p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Page 2 of 22
J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006
http://jipam.vu.edu.au

1. Introduction

Denote by $A(p, n)$ the class of normalized functions

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1} \tag{1.1}
\end{equation*}
$$

regular in the unit disk $D=\{z:|z|<1\}$ and $p \in \mathbb{N}$, consider also its subclasses $C(p), S^{*}(p)$ consisting of p-valent convex and starlike functions respectively, where $C(1) \equiv C, S^{*}(1) \equiv S^{*}$, the classes of univalent convex and starlike functions.

It is well known that for any $f \in \mathbb{C}$, not only $f(D)$ but the images of all circles centered at 0 and lying in D are convex arcs. B. Pinchuk posed a question whether this property is still valid for circles centered at other points of D. A.W. Goodman [1] gave a negative answer to this question and introduced the class $U C V$ of univalent uniformly convex functions, $f \in C$ such that any circular arc γ lying in D, having the center $\zeta \in D$ is carried by f into a convex arc. A.W.Goodman [1] stated the criterion

$$
\begin{equation*}
\operatorname{Re}\left[1+(z-\zeta) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>0, \quad \forall z, \zeta \in D \Longleftrightarrow f \in U C V . \tag{1.2}
\end{equation*}
$$

Later F. Ronning (and independently W. Ma and D. Minda) [7] obtained a more suitable form of the criterion, namely

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, \quad \forall z \in D \Longleftrightarrow f \in U C V . \tag{1.3}
\end{equation*}
$$

This criterion was used to find some sharp coefficients estimates and distortion theorems for functions in the class $U C V$.

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S. Al-Hajiry

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Go Back	
Close	
Quit	

Page 3 of 22

2. The Class $P A R_{p}$

We now introduce a subfamily $P A R_{p}$ of P. Let

$$
\begin{align*}
\Omega & =\left\{w=\mu+i v: \frac{v^{2}}{p}<2 \mu-p\right\} \tag{2.1}\\
& =\{w: \operatorname{Re} w>|w-p|\} \tag{2.2}
\end{align*}
$$

Note that Ω is the interior of a parabola in the right half-plane which is symmetric about the real axis and has vertex at $(p / 2,0)$. The following diagram shows Ω when $p=3$:

Let

$$
\begin{equation*}
P A R_{p}=\{h \in p: h(D) \subseteq \Omega\} \tag{2.3}
\end{equation*}
$$

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page
Contents
Go Back
Close
Page 4 of 22

Example 2.1. It is known that $z=-\tan ^{2}\left(\frac{\pi}{2 \sqrt{2 p}} \sqrt{w}\right)$ maps

$$
\left\{w=\mu+i \nu: \frac{\nu^{2}}{p}<p-2 \mu\right\}
$$

conformally onto D. Hence, $z=-\tan ^{2}\left(\frac{\pi}{2 \sqrt{2 p}} \sqrt{p-w}\right)$ maps Ω conformally onto D. Let $w=Q(z)$ be the inverse function. Then $Q(z)$ is a Riemann mapping function from D to Ω which satisfies $Q(0)=p$; more explicitly,

$$
\begin{align*}
Q(z) & =p+\frac{2 p}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}=\sum_{n=0}^{\infty} B_{n} z^{n} \tag{2.4}\\
& =p+\frac{8 p}{\pi^{2}} z+\frac{16 p}{3 \pi^{2}} z^{2}+\frac{184 p}{45 \pi^{2}} z^{3}+\cdots \tag{2.5}
\end{align*}
$$

Obviously, $Q(z)$ belongs to the class $P A R_{p}$. Geometrically, $P A R_{p}$ consists of those holomorphic functions $h(z)(h(0)=p)$ defined on D which are subordinate to $Q(z)$, written $h(z) \prec Q(z)$.

The analytic characterization of the class $P A R_{p}$ is shown in the following relation:

$$
\begin{equation*}
h(z) \in P A R_{p} \Leftrightarrow \operatorname{Re}\{h(z)\} \geq|h(z)-p| \tag{2.6}
\end{equation*}
$$

such that $h(z)$ is a p-valent analytic function on D.
Now, we can derive the following definition.
Definition 2.1. Let $f(z) \in A(p, n)$. Then $f(z) \in U C V_{p}$ if $f(z) \in C(p)$ and $1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \in P A R_{p}$.

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Contents

Go Back
Close
Quit
Page 5 of 22

Page 5 of 22

3. Characterization of $U C V_{p}$

We present the nessesary and sufficient condition to belong to the class $U C V_{p}$ in the following theorem:

Theorem 3.1. Let $f(z) \in A(p, n)$. Then
(3.1) $f(z) \in U C V_{p} \Leftrightarrow 1+\operatorname{Re}\left\{z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq\left|z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-(p-1)\right|, \quad z \in D$.

Proof. Let $f(z) \in U C V_{p}$ and $h(z)=1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}$. Then $h(z) \in P A R_{p}$, that is, $\operatorname{Re}\{h(z)\} \geq|h(z)-p|$. Then

$$
\operatorname{Re}\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq\left|z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-(p-1)\right|
$$

Example 3.1. We now specify a holomorphic function $K(z)$ in D by

$$
\begin{equation*}
1+z \frac{K^{\prime \prime}(z)}{K^{\prime}(z)}=Q(z) \tag{3.2}
\end{equation*}
$$

where $Q(z)$ is the conformal mapping onto Ω given in Example 2.1. Then it is clear from Theorem 3.1 that $K(z)$ is in $U C V_{p}$.

Let

$$
\begin{equation*}
K(z)=z^{p}+\sum_{k=2}^{\infty} A_{k} z^{k+p-1} \tag{3.3}
\end{equation*}
$$

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 6 of 22 |

From the relationship between the functions $Q(z)$ and $K(z)$, we obtain

$$
\begin{equation*}
(p+n-1)(n-1) A_{n}=\sum_{k=1}^{n-1}(k+p-1) A_{k} B_{n-k} \tag{3.4}
\end{equation*}
$$

Since all the coefficients B_{n} are positive, it follows that all of the coefficients A_{n} are also positive. In particular,

$$
\begin{equation*}
A_{2}=\frac{8 p^{2}}{\pi^{2}(p+1)} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{3}=\frac{p^{2}}{2(p+2)}\left(\frac{16}{3 \pi^{2}}+\frac{64 p}{\pi^{4}}\right) \tag{3.6}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\log \frac{k^{\prime}(z)}{z^{p-1}}=\int_{0}^{z} \frac{Q(\varsigma)-p}{\varsigma} d \varsigma \tag{3.7}
\end{equation*}
$$

By computing some coefficients of $K(z)$ when $p=3$, we can obtain the following diagram

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006 http://jipam.vu.edu.au

4. Subordination Theorem and Consequences

In this section, we first derive some subordination results from Theorem 4.1; as corollaries we obtain sharp distortion, growth, covering and rotation theorems from the family $U C V_{p}$.

Theorem 4.1. Assume that $f(z) \in U C V_{p}$. Then $1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \prec 1+z \frac{K^{\prime \prime}(z)}{K^{\prime}(z)}$ and $\frac{f^{\prime}(z)}{z^{p-1}} \prec \frac{K^{\prime}(z)}{z^{p-1}}$.

Proof. Let $f(z) \in U C V_{p}$. Then $h(z)=1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \prec 1+z \frac{K^{\prime \prime}(z)}{K^{\prime}(z)}$ is the same as $h(z) \prec Q(z)$. Note that $Q(z)-p$ is a convex univalent function in D. By using a result of Goluzin, we may conclude that

$$
\begin{equation*}
\log \frac{f^{\prime}(z)}{z^{p-1}}=\int_{0}^{z} \frac{h(\varsigma)-1}{\varsigma} d \varsigma \prec \int_{0}^{z} \frac{Q(\varsigma)-p}{\varsigma} d \varsigma=\log \frac{K^{\prime}(z)}{z^{p-1}} \tag{4.1}
\end{equation*}
$$

Equivalently, $\frac{f^{\prime}(z)}{z^{p-1}} \prec \frac{K^{\prime}(z)}{z^{p-1}}$.
Corollary 4.2 (Distortion Theorem). Assume $f(z) \in U C V_{p}$ and $|z|=r<1$. Then $K^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq K^{\prime}(r)$.

Equality holds for some $z \neq 0$ if and only if $f(z)$ is a rotation of $K(z)$.
Proof. Since $Q(z)-p$ is convex univalent in D, it follows that $\log K^{\prime}(z)$ is also convex univalent in D. In fact, the power series for $\log K^{\prime}(z)$ has positive coefficients, so the image of D under this convex function is symmetric about

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Title Page
Contents
$\mathbf{4}$
Go Back
Close
Quit
Page 9 of 22

the real axis. As $\log \frac{f^{\prime}(z)}{z^{p-1}} \prec \log \frac{K^{\prime}(z)}{z^{p-1}}$, the subordination principle shows that

$$
\begin{align*}
K^{\prime}(-r) & =e^{\left\{\log K^{\prime}(-r)\right\}}=e^{\left\{\min _{|z|=r} \operatorname{Re}\left\{\log K^{\prime}(z)\right\}\right\}} \tag{4.2}\\
& \left.\leq e^{\left\{\operatorname{Relog} K^{\prime}(z)\right\}}=\left|f^{\prime}(z)\right| \leq e^{\left\{\max _{|z|=r} \operatorname{Re}\left\{\log K^{\prime}(z)\right\}\right.}\right\} \\
& =e^{\left\{\log K^{\prime}(r)\right\}}=K^{\prime}(r)
\end{align*}
$$

Note that for $\left|z_{0}\right|=r$, either

$$
\operatorname{Re}\left\{\log f^{\prime}\left(z_{0}\right)\right\}=\min _{|z|=r} \operatorname{Re}\left\{\log K^{\prime}(z)\right\}
$$

or

$$
\operatorname{Re}\left\{\log f^{\prime}\left(z_{0}\right)\right\}=\max _{|z|=r} \operatorname{Re}\left\{\log K^{\prime}(z)\right\}
$$

for some $z_{0} \neq 0$ if and only if $\log f^{\prime}(z)=\log K^{\prime}\left(e^{i \theta} z\right)$ for some $\theta \in R$.
Theorem 4.3. Let $f(z) \in U C V_{p}$. Then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq\left|z^{p-1}\right| e^{\frac{14 p}{\pi^{2}} \varsigma(3)}=\left|z^{p-1}\right| L^{p} \tag{4.3}
\end{equation*}
$$

for $|z|<1$. $(L \approx 5.502, \varsigma(t)$ is the Riemann Zeta function. $)$
Proof. Let $\phi(z)=\frac{z g^{\prime}(z)}{g(z)}$, where $g(z)=z f^{\prime}(z)$. Then $\phi(z) \prec Q(z)$ which means that $\phi(z) \prec p+\frac{2 p}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)$. Moreover,

$$
\log \frac{g(z)}{z^{p}}=\int_{0}^{z}\left(\frac{\phi(s)-p}{s}\right) d s
$$

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page
Contents
Go Back
Close
Quit
Page 10 of 22

and therefore, if $z=r e^{i \theta}$ and $|z|=1$,

$$
\begin{aligned}
\log \left|\frac{g(z)}{z^{p}}\right| & =\int_{0}^{r} \Re e\left(\phi\left(t e^{i \theta}\right)-p\right) \frac{d t}{t} \leq \frac{2 p}{\pi^{2}} \int_{0}^{r} \frac{1}{t} \log \left(\frac{1+\sqrt{t}}{1-\sqrt{t}}\right) d t \\
& \leq \frac{2 p}{\pi^{2}} \int_{0}^{1} \frac{1}{t} \log \left(\frac{1+\sqrt{t}}{1-\sqrt{t}}\right) d t=\frac{2 p}{\pi^{2}}(7 \varsigma(3))
\end{aligned}
$$

where

$$
\int_{0}^{1} \frac{1}{t} \log \left(\frac{1+\sqrt{t}}{1-\sqrt{t}}\right) d t=7 \varsigma(3)
$$

Then we find that

$$
\left|\frac{z f^{\prime}(z)}{z^{p}}\right| \leq e^{\frac{2 p}{\pi^{2}}(7 \varsigma(3))}
$$

Rosdination Results for the Family of Uniformly Convex
p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

The following diagram shows the boundary of $K(z)$'s dervative when $p=2$ in a circle has the radius $(5.5)^{2}$:

Title Page

Contents

$\mathbf{~ G o ~ B a c k ~}$
Close
Quit
Page 11 of 22

Corollary 4.4 (Growth Theorem). Let $f(z) \in U C V_{p}$ and $|z|=r<1$. Then $-K(-r) \leq|f(z)| \leq K(r)$.

Equality holds for some $z \neq 0$ if and only if $f(z)$ is a rotation of $K(z)$.
Corollary 4.5 (Covering Theorem). Suppose $f(z) \in U C V_{p}$. Then either $f(z)$ is a rotation of $K(z)$ or $\{w:|w| \leq-K(-1)\} \subseteq f(D)$.
Corollary 4.6 (Rotation Theorem). Let $f(z) \in U C V_{p}$ and $\left|z_{0}\right|=r<1$. Then

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{f^{\prime}\left(z_{0}\right)\right\}\right| \leq \max _{|z|=r} \operatorname{Arg}\left\{K^{\prime}(z)\right. \tag{4.4}
\end{equation*}
$$

Equality holds for some $z \neq 0$ if and only if $f(z)$ is a rotation of $K(z)$.
Theorem 4.7. Let $f(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$ and $f(z) \in U C V_{p}$, and let $A_{n+p-1}=\max _{f(z) \in U C V_{p}}\left|a_{n+p-1}\right|$. Then

$$
\begin{equation*}
A_{p+1}=\frac{8 p^{2}}{\pi^{2}(p+1)} \tag{4.5}
\end{equation*}
$$

The result is sharp. Further, we get

$$
\begin{equation*}
A_{n+p-1} \leq \frac{8 p^{2}}{(n+p-1)(n-1) \pi^{2}} \prod_{k=3}^{n}\left(1+\frac{8 p}{(k-2) \pi^{2}}\right) \tag{4.6}
\end{equation*}
$$

Proof. Let $f(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$ and $f(z) \in U C V_{p}$, and define

$$
\phi(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=p+\sum_{k=2}^{\infty} c_{k} z^{k+p-1}
$$

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Contents

| $\mathbf{~ G o ~ B a c k ~}$ |
| :---: | :---: |
| Close |
| Quit |
| Page 12 of 22 |

Then $\phi(z) \prec Q(z) . Q(z)$ is univalent in D and $Q(D)$ is a convex region, so Rogosinski's theorem applies.

$$
Q(z)=p+\frac{8 p}{\pi^{2}} z+\frac{16 p}{3 \pi^{2}} z^{2}+\frac{184 p}{45 \pi^{2}} z^{3}+\cdots
$$

so we have $\left|c_{n}\right| \leq\left|B_{1}\right|=\frac{8 p}{\pi^{2}}:=B$. Now, from the relationship between functions $f(z)$ and $Q(z)$, we obtain

$$
(n+p-1)(n-1) a_{n+p-1}=\sum_{k=1}^{n-1}(k+p-1) a_{k+p-1} c_{n-k} .
$$

From this we get $\left|a_{p+1}\right|=\frac{p B}{(p+1)}=\frac{8 p^{2}}{\pi^{2}(p+1)}$. If we choose $f(z)$ to be that function for which $Q(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$, then $f(z) \in U C V_{p}$ with $a_{p+1}=\frac{8 p^{2}}{\pi^{2}(p+1)}$, which shows that this result is sharp. Now, when we put $\left|c_{1}\right|=B$, then

$$
\begin{aligned}
a_{p+2} & =\frac{p a_{p} c_{2}+(p+1) a_{p+1} c_{1}}{2(p+2)} \\
\left|a_{p+2}\right| & \leq \frac{p B(1+B p)}{2(p+2)}
\end{aligned}
$$

When $n=3$

$$
\begin{aligned}
a_{p+3} & =\frac{p a_{p} c_{3}+(p+1) a_{p+1} c_{2}+(p+2) a_{p+2} c_{1}}{3(p+3)} \\
\left|a_{p+3}\right| & \leq \frac{1}{2} \frac{p B(1+B p)(2+B p)}{3(p+3)} \\
& =\frac{1}{3(p+3)} p B(1+B p)\left(1+\frac{B p}{2}\right)
\end{aligned}
$$

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	

Page 13 of 22
J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006

We now proceed by induction. Assume we have

$$
\begin{aligned}
\left|a_{p+n-1}\right| & \leq \frac{1}{(n-1)(p+n-1)} p B(1+B p)\left(1+\frac{B p}{2}\right) \cdots\left(1+\frac{B p}{n-2}\right) \\
& =\frac{p B}{(n-1)(p+n-1)} \prod_{k=3}^{n}\left(1+\frac{B p}{k-2}\right)
\end{aligned}
$$

Corollary 4.8. Let $f(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$ and $f(z) \in U C V_{p}$. Then $\left|a_{p+n-1}\right|=O\left(\frac{1}{n^{2}}\right)$.

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry
Title Page

5. General Properties of Functions in $U C V_{p}$

Theorem 5.1. Let $f(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}$ and $f(z) \in U C V_{p}$. Then $f(z)$ is a p-valently convex function of order β in $|z|<r_{1}=r_{1}(p, \beta)$, where $r_{1}(p, \beta)$ is the largest value of r for which

$$
\begin{align*}
r^{k-1} \leq & \frac{(p-\beta)(k-1)}{(k+p-\beta-1) B \prod_{j=3}^{k}\left(1+\frac{p B}{j-2}\right)} \tag{5.1}\\
& (k \in \mathbb{N}-\{1\}, 0 \leq \beta<p)
\end{align*}
$$

Proof. It is sufficient to show that for $f(z) \in U C V_{p}$,

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \leq p-\beta, \quad|z|<r_{1}(p, \beta), \quad 0 \leq \beta<p
$$

where $r_{1}(p, \beta)$ is the largest value of r for which the inequality (5.1) holds true. Observe that

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right|=\left|\frac{\sum_{k=2}^{\infty}(k+p-1)(k-1) a_{k+p-1} z^{k-1}}{p+\sum_{k=2}^{\infty}(k+p-1) a_{k+p-1} z^{k-1}}\right| .
$$

Then we have $\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \leq p-\beta$ if and only if

$$
\begin{aligned}
& \frac{\sum_{k=2}^{\infty}(k+p-1)(k-1)\left|a_{k+p-1}\right| r^{k-1}}{p-\sum_{k=2}^{\infty}(k+p-1)\left|a_{k+p-1}\right| r^{k-1}} \leq p-\beta \\
& \quad \Rightarrow \sum_{k=2}^{\infty}(k+p-1)(k+p-1-\beta)\left|a_{k+p-1}\right| r^{k-1} \leq p^{2}-p \beta
\end{aligned}
$$

Title Page

Contents

$\mathbf{4}$	
$\mathbf{~ G o ~ B a c k ~}$	
Close	
Quit	

Page 15 of 22

Then from Theorem 4.7 since $f(z) \in U C V_{p}$, we have

$$
\left|a_{k+p-1}\right| \leq \frac{p \beta}{(k+p-1)(k-1)} \prod_{j=3}^{k}\left(1+\frac{B p}{j-2}\right)
$$

and we may set

$$
\begin{gathered}
\left|a_{k+p-1}\right|=\frac{p \beta}{(k+p-1)(k-1)} \prod_{j=3}^{k}\left(1+\frac{B p}{j-2}\right) c_{k+p-1}, c_{k+p-1} \geq 0 \\
\left\{k \in \mathbb{N}-\{1\}, \sum_{k=1}^{\infty} c_{k+p-1} \leq 1\right\}
\end{gathered}
$$

Now, for each fixed r, we choose a positive integer $k_{0}=k_{0}(r)$ for which

$$
\frac{(k+p-1-\beta)}{(k-1)} r^{k-1}
$$

is maximal. Then

$$
\begin{aligned}
\sum_{k=2}^{\infty}(k+p-1)(k+p-\beta-1) & \left|a_{k+p-1}\right| r^{k-1} \\
& \leq \frac{\left(k_{0}+p-\beta-1\right)}{\left(k_{0}-1\right)} r^{k_{0}-1} \prod_{j=3}^{k}\left(1+\frac{B p}{j-2}\right)
\end{aligned}
$$

Subordination Results for the Family of Uniformly Convex
p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 16 of 22	

Consequently, the function $f(z)$ is a p-valently convex function of order β in $|z|<r_{1}=r_{1}(p, \beta)$ provided that

$$
\frac{\left(k_{0}+p-\beta-1\right)}{\left(k_{0}-1\right)} r^{k_{0}-1} \prod_{j=3}^{k}\left(1+\frac{B p}{j-2}\right) \leq p(p-\beta) .
$$

We find the value $r_{0}=r_{0}(p, \beta)$ and the corresponding integer $k_{0}\left(r_{0}\right)$ so that

$$
\frac{\left(k_{0}+p-\beta-1\right)}{\left(k_{0}-1\right)} r^{k_{0}-1} \prod_{j=3}^{k}\left(1+\frac{B p}{j-2}\right)=p(p-\beta), \quad(0 \leq \beta<p)
$$

Then this value r_{0} is the radius of p-valent convexity of order β for functions $f(z) \in U C V_{p}$.
Theorem 5.2. $h(z)=z^{p}+b_{n+p-1} z^{n+p-1}$ is in $U C V_{p}$ if and only if

$$
r \leq \frac{p^{2}}{(p+n-1)(p+2 n-2)}
$$

where $\left|b_{n+p-1}\right|=r$ and $b_{n+p-1} z^{n-1}=r e^{i \theta}$.
Proof. Let $w(z)=1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}$. Then $h(z) \in U C V_{p}$ if and only if $w(z) \in P A R_{p}$ which means that $\operatorname{Re}\{w(z)\} \geq|w(z)-p|$. On the other side we have

$$
\operatorname{Re}\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\} \geq\left|1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}-p\right|
$$

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Contents

$\mathbf{4 4}$	
$\mathbf{~ G o ~ B a c k ~}$	
Close	
Quit	

Page 17 of 22
J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006
then

$$
\begin{aligned}
\operatorname{Re}\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\} & =\operatorname{Re}\left\{(p-1)+\frac{p+(n+p-1) n r e^{i \theta}}{p+(n+p-1) r e^{i \theta}}\right\} \\
& =\frac{p^{3}+p(n+p-1)(n+2 p-1) r \cos \theta+(n+p-1)^{3} r^{2}}{\left|p+(n+p-1) r e^{i \theta}\right|^{2}}
\end{aligned}
$$

The right-hand side is seen to have a minimum for $\theta=\pi$ and this minimal value is

$$
\frac{p^{3}+p(n+p-1)(n+2 p-1) r+(n+p-1)^{3} r^{2}}{\left|p+(n+p-1) r e^{i \theta}\right|^{2}}
$$

Now, by computation we see that

$$
\left|1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}-p\right|=\frac{(n+p-1)(n-1) r}{\left|p+(n+p-1) r e^{i \theta}\right|} .
$$

Then

$$
(n+p-1)(n-1) r \leq \frac{p^{3}+p(n+p-1)(n+2 p-1) r+(n+p-1)^{3} r^{2}}{p-(n+p-1) r}
$$

which leads to

$$
(n+p-1)(n-1) r \leq p^{2}-(n+p-1)^{2} r .
$$

Hence,

$$
r \leq \frac{p^{2}}{(n+p-1)(2 n+p-2)}
$$

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Contents

$\mathbf{4 4}$	
Go Back	
Close	
Quit	
Page 18 of 22	

Theorem 5.3. Let $f(z) \in U C V$, then $(f(z))^{p} \in U C V_{p}$.
Proof. Let $w(z)=(f(z))^{p}$, then

$$
1+z \frac{w^{\prime \prime}(z)}{w^{\prime}(z)}=1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+(p-1) z \frac{f^{\prime}(z)}{f(z)}
$$

Then we find

$$
\begin{aligned}
\operatorname{Re}\left\{1+z \frac{w^{\prime \prime}(z)}{w^{\prime}(z)}\right\} & -\left|z \frac{w^{\prime \prime}(z)}{w^{\prime}(z)}-(p-1)\right| \\
= & \operatorname{Re}\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+(p-1) z \frac{f^{\prime}(z)}{f(z)}\right\} \\
& -\left|z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+(p-1) z \frac{f^{\prime}(z)}{f(z)}-(p-1)\right|
\end{aligned}
$$

Since $f(z) \in U C V$, therefore we have

$$
\begin{aligned}
& \operatorname{Re}\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right.\left.+(p-1) z \frac{f^{\prime}(z)}{f(z)}\right\} \\
&-\left|z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+(p-1) z \frac{f^{\prime}(z)}{f(z)}-(p-1)\right| \\
& \geq(p-1) \operatorname{Re}\left\{z \frac{f^{\prime}(z)}{f(z)}\right\}-\left|z \frac{f^{\prime}(z)}{f(z)}-1\right|
\end{aligned}
$$

$f(z) \in U C V$, then $f(z) \in S P$ [7] which means that

$$
\operatorname{Re}\left\{z \frac{f^{\prime}(z)}{f(z)}\right\}-\left|z \frac{f^{\prime}(z)}{f(z)}-1\right| \geq 0
$$

Subordination Results for the Family of Uniformly Convex $p-$ valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page

Contents

Go Back
Close
Quit
Page 19 of 22
J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006

Then

$$
\operatorname{Re}\left\{1+z \frac{w^{\prime \prime}(z)}{w^{\prime}(z)}\right\}-\left|z \frac{w^{\prime \prime}(z)}{w^{\prime}(z)}-(p-1)\right| \geq 0
$$

The following diagram shows the extermal function $k(z)$ of the class $U C V$ when $(k(z))^{p}, p=2$:

The following diagram shows the extermal function $K(z)$ of the class $U C V_{p}$ when $p=2$:

Subordination Results for the Family of Uniformly Convex
$\underset{p}{ }$-valent Functions
H.A. Al-Kharsani and S.S.

Al-Hajiry

Title Page
Contents
Go Back
Close
Quit
Page 20 of 22

And the following diagram shows that $(k(z))^{p} \prec K(z)$:

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S. Al-Hajiry

5.1. Remarks

Taking $p=1$ in Theorem 3.1, we obtain the corresponding Theorem 1 of [7].
Taking $p=1$ in Theorem 4.1, we obtain the corresponding Theorem 3 of [3].

Taking $p=1$ in inequality (4.3), we obtain Theorem 6 of [7], and in inequalities (4.5), (4.6), we obtain Theorem 5 of [7].

Taking $p=1$ in Theorem 5.2, we obtain Theorem 2 of [4].

Title Page
Contents

$\mathbf{4 4}$	
Go Back	
Close	
Quit	
Page 21 of 22	

References

[1] A.W. GOODMAN, On uniformly convex functions, Ann. Polon. Math., 56(1) (1991), 87-92.
[2] S. KANAS AND A. WISNIOWSKA, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1-2) (1999), 327-336.
[3] W.C. MA and D. MINDA, Uniformly convex functions, Ann. Polon. Math., 57(2) (1992), 165-175.
[4] S. OWA, On uniformly convex functions, Math. Japonica, 48(3) (1998), 377-384.
[5] M.S. ROBERTSON, On the theory of univalent functions, Ann. Math., 2(37) (1936), 347-408.
[6] F. RONNING, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 47 (1993), 123-134.
[7] F. RONNING, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1) (1993), 189-196.
[8] F. RONNING, On uniform starlikeness and related properties of univalent functions, Complex Variables Theory Appl., 24(3-4) (1994), 233-239.

Subordination Results for the Family of Uniformly Convex p-valent Functions
H.A. Al-Kharsani and S.S. Al-Hajiry

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 22 of 22
J. Ineq. Pure and Appl. Math. 7(1) Art. 20, 2006
http://jipam.vu.edu.au

