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1. Introduction

In this paper we study second-order differential inclusions of the form

(1.1) (p(t)x′(t))′ ∈ F (t, x(t)) a.e. ([0, T ]), x(0) = x0, x′(0) = x1,

whereI = [0, T ], F : I ×X → P(X) is a set-valued map,X is a separable Banach
space,x0, x1 ∈ X andp(·) : [0, T ] → (0,∞) is continuous.

In some recent papers ([3, 6]) several existence results for problem (1.1) were
obtained using fixed point techniques. Even if we deal with an initial value problem
instead of a boundary value problem, the differential inclusion (1.1) may be regarded
as an extension to the set-valued framework of the classical Sturm-Liouville differ-
ential equation.

The aim of this paper is to show that Filippov’s ideas ([4]) can be suitably adapted
in order to prove the existence of solutions to problem (1.1). We recall that for a dif-
ferential inclusion defined by a lipschitzian set-valued map with nonconvex values,
Filippov’s theorem [4], well known in the literature as the Filippov-Gronwall in-
equality, consists in proving the existence of a solution satisfying some inequalities
involving a given quasi trajectory.

Such an approach allows us to avoid additional hypotheses on the Lipschitz con-
stant of the set-valued map that appear in the fixed point approaches ([3, 6]). The
proof of our results follows the general ideas in [5], where a similar result is obtained
for solutions of semilinear differential inclusions.

The paper is organized as follows: in Section2 we present the notations, defini-
tions and the preliminary results to be used in the sequel and in Section3 we prove
our main results.
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2. Preliminaries

Let us denote byI the interval[0, T ], T > 0 and letX be a real separable Banach
space with the norm| · | and with the corresponding metricd(·, ·). With B we denote
the closed unit ball inX.

ConsiderF : I×X → P(X) a set-valued map,x0, x1 ∈ X andp(·) : I → (0,∞)
a continuous mapping that have defined the Cauchy problem (1.1).

A continuous mappingx(·) ∈ C(I, X) is called a solution of problem (1.1) if
there exists a (Bochner) integrable functionf(·) ∈ L1(I,X) such that:

(2.1) f(t) ∈ F (t, x(t)) a.e. (I),

(2.2) x(t) = x0 + p(0)x1

∫ t

0

1

p(s)
ds +

∫ t

0

1

p(s)

∫ s

0

f(u)duds, ∀t ∈ I.

This definition of the solution is justified by the fact that iff(·) ∈ L1(I,X)
satisfies (2.1), then from the equality(p(t)x′(t))′ = f(t) a.e. (I), integrating by
parts and applying the Leibnitz-Newton formula for absolutely continuous functions
twice, we obtain first

(2.3) x′(t) =
p(0)

p(t)
x1 +

1

p(t)

∫ t

0

f(u)du, t ∈ I

and afterwards (2.2).
Note that, if we denoteS(t, u) :=

∫ t

u
1

p(s)
, t ∈ I, then (2.2) may be rewritten as

(2.4) x(t) = x0 + p(0)x1S(t, 0) +

∫ t

0

S(t, u)f(u)du ∀t ∈ I.
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We shall call(x(·), f(·)) a trajectory-selection pairof (1.1) if (2.1) and (2.2) are
satisfied.

We shall use the following notations for the solution sets of (1.1):

(2.5) S(x0, x1) = {(x(·), f(·)); (x(·), f(·)) is a trajectory-selection pair of (1.1)}.

In what followsy0, y1 ∈ X, g(·) ∈ L1(I, X) andy(·) is a solution of the Cauchy
problem

(2.6) (p(t)y′(t))′ = g(t) y(0) = y0, y′(0) = y1.

Hypothesis 2.1.

i) F (·, ·) : I × X → P(X) has nonempty closed values and for everyx ∈ X,
F (·, x) is measurable.

ii) There existβ > 0 and L(·) ∈ L1(I, (0,∞)) such that for almost allt ∈ I,
F (t, ·) is L(t)-Lipschitz ony(t) + βB in the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)|x1 − x2| ∀x1, x2 ∈ y(t) + βB,

wheredH(A, C) is the Pompeiu-Hausdorff distance betweenA, C ⊂ X

dH(A, C) = max{d∗(A, C), d∗(C, A)}, d∗(A, C) = sup{d(a, C); a ∈ A}.

iii) The functiont → γ(t) := d(g(t), F (t, y(t)) is integrable onI.

Setm(t) = eMT
∫ t
0 L(u)du, t ∈ I andM := supt∈I

1
p(t)

. Note that|S(t, u)| ≤
M(t− u) ≤ Mt ∀t, u ∈ I, u ≤ t.

OnC(I,X)× L1(I, X) we consider the following norm

|(x, f)|C×L = |x|C + |f |1 ∀ (x, f) ∈ C(I,X)× L1(I, X),
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where, as usual,|x|C = supt∈I |x(t)|, x ∈ C(I, X) and |f |1 =
∫ T

0
|f(t)|dt, f ∈

L1(I, X).
The technical results summarized in the next lemma are well known in the theory

of set-valued maps. For their proofs we refer, for example, to [5].

Lemma 2.2 ([5]). LetX be a separable Banach space,H : I → P(X) a measurable
set-valued map with nonempty closed values andg, h : I → X,L : I → (0,∞)
measurable functions. Then one has:

i) The functiont → d(h(t), H(t)) is measurable.

ii) If H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e. (I) then the set-valued mapt → H(t) ∩
(g(t) + L(t)B) has a measurable selection.

Moreover, if Hypothesis2.1 is satisfied andx(·) ∈ C(I, X) with |x − y|C ≤ β,
then the set-valued mapt → F (t, x(t)) is measurable.
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3. The Main Results

We are ready now to present a version of the Filippov theorem for the Cauchy prob-
lem (1.1).

Theorem 3.1.Considerδ ≥ 0, assume that Hypothesis2.1 is satisfied and set

η(t) = m(t)(δ + MT

∫ t

0

γ(s)ds).

If η(T ) ≤ β, then for anyx0, x1 ∈ X with

(|x0 − y0|+ MTp(0)|x1 − y1|) ≤ δ

and anyε > 0 there exists(x(·), f(·)) ∈ S(x0, x1) such that

|x(t)− y(t)| ≤ η(t) + εMTtm(t) ∀t ∈ I,

|f(t)− g(t)| ≤ L(t)(η(t) + εMTtm(t)) + γ(t) + ε a.e. (I).

Proof. Let ε > 0 such thatη(T ) + εMT 2m(T ) < β and set

χ(t) = δ + MT

∫ t

0

γ(s)ds + εMTt,

x0(t) ≡ y(t), f0(t) ≡ g(t), t ∈ I.
We claim that it is sufficient to construct the sequencesxn(·) ∈ C(I,X), fn(·) ∈

L1(I, X), n ≥ 1 with the following properties

(3.1) xn(t) = x0 + p(0)S(t, 0)x1 +

∫ t

0

S(t, s)fn(s)ds, ∀t ∈ I,
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(3.2) |x1(t)− x0(t)| ≤ χ(t) ∀t ∈ I,

(3.3) |f1(t)− f0(t)| ≤ γ(t) + ε a.e. (I),

(3.4) fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1,

(3.5) |fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1.

Indeed, from (3.1), (3.2) and (3.5) we have for almost allt ∈ I

|xn+1(t)− xn(t)| ≤
∫ t

0

|S(t, t1)| · |fn+1(t1)− fn(t1)|dt1

≤ MT

∫ t

0

L(t1)|xn(t1)− xn−1(t1)|dt1

≤ MT

∫ t

0

L(t1)

∫ t1

0

|S(t1, t2)|,

|fn(t2)− fn−1(t2)|dt2

≤ (MT )2

∫ t

0

L(t1)

∫ t1

0

L(t2)|xn−1(t2)− xn−2(t2)|dt2dt1

≤ (MT )n

∫ t

0

L(t1)

∫ t1

0

L(t2) · · ·
∫ tn−1

0

L(tn)|x1(tn)− y(tn)|dtn . . . dt1

http://jipam.vu.edu.au
mailto:acernea@fmi.unibuc.ro
http://jipam.vu.edu.au


Filippov Type Existence
Theorem

Aurelian Cernea

vol. 9, iss. 2, art. 35, 2008

Title Page

Contents

JJ II

J I

Page 9 of 13

Go Back

Full Screen

Close

≤ χ(t)(MT )n

∫ t

0

L(t1)

∫ t1

0

L(t2) · · ·
∫ tn−1

0

L(tn)dtn . . . dt1

= χ(t)
(MT

∫ t

0
L(s)ds)n

n!
.

Therefore{xn(·)} is a Cauchy sequence in the Banach spaceC(I, X). Thus, from
(3.5) for almost allt ∈ I, the sequence{fn(t)} is Cauchy inX. Moreover, from
(3.2) and the last inequality we have

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=2

|xi+1(t)− xi(t)|(3.6)

≤ χ(t)

[
1 + MT

∫ t

0

L(s)ds +
(MT

∫ t

0
L(s)ds)2

2!
+ · · ·

]
≤ χ(t)eMT

∫ t
0 L(s)ds

= η(t) + εMTtm(t)

and taking into account the choice ofε, we get

(3.7) |xn(·)− y(·)|C ≤ β, ∀n ≥ 0.

On the other hand, from (3.3), (3.5) and (3.6) we obtain for almost allt ∈ I

|fn(t)− g(t)| ≤
n−1∑
i=1

|fi+1(t)− fi(t)|+ |f1(t)− g(t)|(3.8)

≤ L(t)
n−2∑
i=1

|xi(t)− xi−1(t)|+ γ(t) + ε

≤ L(t)(η(t) + εtm(t)) + γ(t) + ε.
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Let x(·) ∈ C(I, X) be the limit of the Cauchy sequencexn(·). From (3.8) the
sequencefn(·) is integrably bounded and we have already proved that for almost all
t ∈ I, the sequence{fn(t)} is Cauchy inX. Takef(·) ∈ L1(I, X) with f(t) =
limn→∞ fn(t).

Using Hypothesis2.1 iii) we have that for almost allt ∈ I, the set

Q(t) = {(x, v); v ∈ F (t, x), |x− y(t)| ≤ β}

is closed. In addition, (3.4) and (3.7) imply that forn ≥ 1 andt ∈ I, (xn−1(t), fn(t)) ∈
Q(t). So, passing to the limit we deduce that (2.1) holds true for almost allt ∈ I.

Moreover, passing to the limit in (3.1) and using Lebesque’s dominated conver-
gence theorem we get (2.4). Finally, passing to the limit in (3.6) and (3.8) we ob-
tained the desired estimations.

It remains to construct the sequencesxn(·), fn(·) with the properties in (3.1) –
(3.5). The construction will be done by induction.

We apply, first, Lemma2.2 and we have that the set-valued mapt → F (t, y(t))
is measurable with closed values and

F (t, y(t)) ∩ {g(t) + (γ(t) + ε)B} 6= ∅ a.e. (I).

From Lemma2.2we findf1(·) a measurable selection of the set-valued map

H1(t) := F (t, y(t)) ∩ {g(t) + (γ(t) + ε)B}.

Obviously,f1(·) satisfy (3.3). Definex1(·) as in (3.1) with n = 1. Therefore, we
have

|x1(t)− y(t)| ≤ |x0 − y0|+ |p(0)S(t, 0)(x1 − y1)|+
∣∣∣∣∫ t

0

S(t, s)(f1(s)− g(s))ds

∣∣∣∣
≤ δ + M

∫ t

0

(γ(s) + ε)ds ≤ η(t) + MTεt ≤ β.
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Assume that for someN ≥ 1 we already constructedxn(·) ∈ C(I,X) and
fn(·) ∈ L1(I, X), n = 1, 2, . . . , N satisfying (3.1) – (3.5). We define the set-valued
map

HN+1(t) := F (t, xN(t)) ∩ {fN(t) + L(t)|xN(t)− xN−1(t)|B}, t ∈ I.

From Lemma2.2 the set-valued mapt → F (t, xN(t)) is measurable and from
the lipschitzianity ofF (t, ·) we have that for almost allt ∈ I, HN+1(t) 6= ∅. We
apply Lemma2.2and find a measurable selectionfN+1(·) of F (·, xN(·)) such that

|fN+1(t)− fN(t)| ≤ L(t)|xN(t)− xN−1(t)| a.e. (I)

We definexN+1(·) as in (3.1) with n = N + 1 and the proof is complete.

Remark1. As one can see from the proof of Theorem3.1 the functionf(·) is ob-
tained to be integrable and so the functiont →

∫ t

0
f(s)ds is at most absolutely

continuous. Taking into account (2.3), if we assume thatp(·) is absolutely contin-
uous we find thatx(·), the solution of (1.1), belongs to the space of differentiable
functions whose first derivativex′(·) is absolutely continuous.

The next corollary of Theorem3.1 shows the Lipschitz dependence of the solu-
tions with respect to the initial conditions.

Corollary 3.2. Let (y, g) be a trajectory-selection of (1.1) and assume that Hypoth-
esis2.1 is satisfied. Then there exists aK > 0 such that for anyη = (η1, η2) in a
neighborhood of(y(0), y′(0)) we have

dC×L((y, g),S(η1, η2)) ≤ K(|η1 − y(0)|+ |η2 − y′(0)|).
Proof. Take0 < ε < 1. We apply Theorem3.1 and deduce the existence ofδ > 0
such that for anyη = (η1, η2) ∈ B((y(0), y′(0)), δ) there exists a trajectory-selection
(xε, fε) of (1.1) with xε(0) = η1 andx′ε(0) = η2 such that

|xε − y|C ≤ m(T )(|η1 − y(0)|+ p(0)MT |η2 − y′(0)|) + εMT 2m(T )
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and

|fε − g|1 ≤ m(T )(|η1 − y(0)|+ MT |η2 − y′(0)|) + ε(MT 2m(T ) + 1).

Sinceε > 0 is arbitrary the proof is complete.
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